首页> 中国专利> 包含微孔聚合物的有机化学传感器及使用方法

包含微孔聚合物的有机化学传感器及使用方法

摘要

本发明申请人公开了用于感测有机化学被分析物的感测元件,感测元件包括第一电极、第二电极和设置为至少靠近第一电极和第二电极的对被分析物相应的微孔疏水性电介质材料。对被分析物相应的电介质材料可以为固有微孔性的聚合物。可监测感测元件的电气性质,例如电容,以便感测有机化学被分析物。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-03-22

    授权

    授权

  • 2010-10-13

    实质审查的生效 IPC(主分类):G01N27/327 申请日:20080918

    实质审查的生效

  • 2010-08-25

    公开

    公开

说明书

背景技术

检测化学被分析物(尤其是有机化学被分析物)的能力在许多应用(包括环境监测等等)中是重要的。这种对有机分子的检测和/或监测尤其可用于(例如)所谓的使用寿命结束指示器中,该指示器是个人防护设备(例如呼吸器)所需的。

已经开发出许多用于检测化学被分析物的方法,例如光学、重量分析、微电子机械等的方法。具体而言,已经开发出用于监测电气性质(例如电容、阻抗、电阻等)的传感器。这类传感器常常依赖于被分析物被吸附到材料上或吸收到其中时材料电气性质发生的变化。

例如,授予Snow等人的美国专利申请公开2006/0249402公开了一种感测装置,该传感装置具有底部电极、底部电极上的电介质、电介质上的纳米电极网格和与该网格电接触的顶部电极。纳米电极可以是碳纳米管网。Snow等人将这种装置描述为在存在化学被分析物的情况下能够表现出电容变化。

授予Patel等人的美国专利申请公开2006/0237310公开了一种装置,该装置被描述为能够通过被分析物在化学感测材料中的吸附或吸收,使得电气性质(如电容、电阻等)以可被与涂有该化学感测材料的感测电极对相关的电路所检测的方式发生变化,从而检测到多种目标被分析物。

授予Stetter和Maclay的美国专利5,512,882公开了一种传感器,其阻抗在暴露于所选化学物质的蒸气时改变。该传感器包含某种聚合物,该聚合物的物理结构被蒸气改变(如通过膨胀或衰变)。该传感器还具有散布有聚合物的导电元件。可通过阻抗测量电路来测量变化。

授予Sittler的美国专利5,482,678公开了一种传感器,其包含在存在有机液体、气体或蒸气的情况下膨胀的材料。该材料被涂敷到载体表面,使得该材料膨胀后载体挠曲并改变两块电容器极板之间的距离,从而改变极板之间的电容。

授予Plog和Maunz的美国专利5,965,451公开了一种用于选择性地检测烃的气体传感器,其具有电容元件和作为电介质的气体可渗透的敏感层。该敏感层为掺杂贵金属的沸石,该沸石具有由原生孔隙构成的规则晶体结构,原生孔隙的直径接近有待检测的气体分子的气体动力学直径。

发明内容

申请人公开了一种适用于检测或监测环境中(例如大气环境中)的有机化学被分析物的感测元件。这种感测元件包含靠近第一电极和第二电极的对被分析物相应的电介质材料。在上下文中,对被分析物相应的电介质材料意指这样一种材料:能够吸收有机化学被分析物,并且在将有机被分析物吸收到该材料中时电气性质可表现出可测量的变化。在一个实施例中,对被分析物相应的电介质材料在吸收被分析物时表现出介电常数的变化,使得感测元件的电容变化可被观测。

在一个实施例中,对被分析物相应的电介质材料是固有微孔性的聚合物。这种材料可以提供下列优点:对于低含量的有机被分析物有高灵敏度;对有机被分析物响应迅速;并且对水的灵敏度低。在不受理论或机理限制的情况下,申请人假定其在使用固有微孔性的聚合物作为对被分析物相应的电介质材料中已经发现的性质可能由于下列若干性质中的任何或全部性质:疏水性、最佳量的孔隙度、涵盖最佳孔尺寸范围的微孔的孔体积、以及固有微孔性的聚合物从溶液中分离以形成对被分析物相应的电介质层的能力。

在多个实施例中,固有微孔性的聚合物可通过使用如下所述的任何单体组合来配制,该单体组合导致刚性很强的聚合物并且给出内有足够结构特征的聚合物,以引起扭曲的结构。在多个实施例中,这种材料可含有由刚性连接基连接的大致平面的第一物种构成的有机高分子,所述刚性连接基具有扭曲点,使得由该连接基连接的两个相邻的第一平面的物种保持在非共面取向中。在多个实施例中,这种材料可含有由刚性连接基主要连接至最多两个其他所述第一物种的大致平面的第一物种构成的有机高分子,所述刚性连接基具有扭曲点,使得由所述连接基连接的两个相邻的第一平面的物种保持在非共面取向中。在多个实施例中,这种扭曲点可以具有螺基、桥环部分或空间位阻的单个共价键,在该单个共价键周围存在受限的旋转。

在一个方面,本文公开了用于感测有机化学被分析物的感测元件,其包括:第一电极和第二电极;以及设置为至少靠近第一电极和第二电极的对被分析物相应的微孔疏水性电介质材料,其中对被分析物相应的微孔疏水性电介质材料是固有微孔性的聚合物。在一个实施例中,电极中的至少一个可被有机化学被分析物渗透。在另一个实施例中,可渗透的电极是不连续的。在又一个实施例中,可渗透的电极是图案化的。在多个实施例中,感测元件可具有靠近电极中的至少一个的背衬层和/或覆盖层。在多个实施例中,感测元件可具有平行极板电容器构型或叉指状电容器构型。

在另一方面,本文公开了用于感测有机化学被分析物的传感器,该传感器包括:感测元件,感测元件包括第一电极、第二电极和设置为至少靠近第一电极和第二电极的对被分析物相应的微孔疏水性电介质材料,其中对被分析物相应的微孔疏水性电介质材料是固有微孔性的聚合物;和操作电路,操作电路与第一电极和第二电极电气连通,其中操作电路能够向第一电极和第二电极施加电压并且能够检测感测元件的电气性质的变化。

在又一方面,本文公开了感测有机化学被分析物的方法,该方法包括:提供传感器,传感器包括感测元件和操作电路,感测元件包括第一电极、第二电极和设置为至少靠近第一电极和第二电极的对被分析物相应的微孔疏水性电介质材料,其中对被分析物相应的微孔疏水性电介质材料是固有微孔性的聚合物,操作电路与第一电极和第二电极电气连通,其中操作电路能够向第一电极和第二电极施加电压并且能够检测感测元件的电气性质的变化;使感测元件暴露于环境中,环境可能包含一种或多种有机化学被分析物;向第一电极和第二电极施加电压;以及监测感测元件的电气性质。

本发明的这些方面和其他方面从以下具体实施方式中将显而易见。然而,在任何情况下不应将以上内容理解为是对要求保护的主题的限制,该主题仅受所附权利要求书的限定,因为其在审查期间可以进行修改。

附图说明

图1为采用平行极板构型的示例性感测元件的侧视图。

图2为采用叉指状构型的示例性感测元件的俯视图。

图2a为沿图2中标记为“2a”的线截取的图2的示例性感测元件的剖视图。

图3为采用叉指状构型的示例性感测元件的透视图。

图4为平行极板构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图5为平行极板构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图6为叉指状构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图7为叉指状构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图8为叉指状构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图9为叉指状构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图10为叉指状构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图11为叉指状构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图12为平行极板构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图13为平行极板构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图14为平行极板构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图15为平行极板构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

图16为平行极板构型的示例性感测元件的电容测量值的图线,电容测量值随暴露于多种含量的有机被分析物的时间而变化。

在上述多张图中,相同的附图标记表明相同的元件。除非另外指明,本文件中所有附图均未按比例绘制,并且选择这些附图只是为了示出本发明的不同实施例。具体来说,多种组件的尺寸仅采用说明性术语进行描述,不应从附图推断多种组件的尺寸之间的任何关系。

具体实施方式

虽然本公开中可以使用例如“顶部”、“底部”、“上方”、“下方”、“前”、“后”以及“第一”和“第二”之类的术语,但应当理解,这些术语仅仅是在相对意义上使用。

感测元件

参照图1和图2,本文公开了感测元件1/101,其包括至少对被分析物相应的电介质层10/110,该电介质层靠近第一电极20/120和第二电极30/130。下文将依次讨论这些组件及其特征和性质,以及其他任选组件及其特征和性质。这些讨论将参考以下两者进行:图1,其示出基于平行极板电容器的一般构型的示例性感测元件;图2、图2a和图3,其示出基于叉指状电容器的一般构型的示例性感测元件。为了清楚起见,在描绘不同的一般构型的图中,对多种组件标以不同的附图标记(一般来讲,以100为单位增加)。然而应当理解,除非另外说明,多种组件的结构、组合物和性质可以适用于任何电容性设计的感测元件。

感测元件1/101被构造为使得对被分析物相应的电介质层10/110足够靠近第一电极20/120和第二电极30/130,以至于该层中包含的对被分析物相应的电介质材料能够与电极建立的电场发生相互作用。在感测元件1/101的操作中,对被分析物相应的电介质层10/110在吸收一种或多种被分析物时表现出电气性质的变化。在一个实施例中,电气性质为下述的电容或与电容有关的性质。通过在第一电极20/120和第二电极30/130之间赋予电荷差(例如在两个电极之间赋予电压差),并监测感测元件为对被分析物的存在做出响应而发生的性质变化,可测量这种与电容有关的性质的变化。如本文随后所述,使用操作电路28/128可完成这种监测。

术语“电容”和“与电容有关的性质”涵盖任何电气性质及其测定过程,这种测定过程通常与赋予电荷(无论是静电荷还是时变电荷)和在赋予电荷期间和/或之后监测电气性质相关。这种性质不但包括电容,而且包括阻抗、导纳、电阻、电导系数等,并且可以根据本领域已知的多种方法测量。

对被分析物相应的电介质层

对被分析物相应的电介质层10/110(术语“层”在一般意义上使用,并涵盖任何物理构型)至少部分地包含对被分析物相应的电介质材料。在上下文中,术语“对被分析物相应的电介质材料”意指这样一种材料:能够吸收有机化学被分析物,并且在将有机被分析物吸收到该材料中时在一些电气性质方面可表现出可测量的变化。

固有微孔性的聚合物

在一个实施例中,对被分析物相应的电介质材料选自包含所谓“固有微孔性的聚合物”(下文称PIM)的这类材料中。这种聚合物包括(但不限于)下列文献中所公开的聚合物:“Polymers of IntrinsicMicroporosity(PIMs):Robust,Solution-Processable,OrganicMicroporous Materials,”Budd et al.,Chem.Commun.,2004,pp.230-231(Budd等人,“固有微孔性的聚合物(PIM):稳固、可溶液加工的有机微孔材料”,《化学通讯》2004年第230-231页);“Polymers ofIntrinsic Microporosity(PIMs),”McKeown et al.,Chem.Eur.J.,2005,11,No.9,2610-2620(McKeown等人,“固有微孔性的聚合物(PIM)”,《欧洲化学杂志》2005年11月第9期第2610-2620页);授予McKeown等人的美国专利申请公开2006/0246273;以及授予McKeown等人的已公布的PCT申请WO 2005/012397A2。

PIM可通过使用任何单体组合来配制,该单体组合导致刚性很强的内有足够结构特征的聚合物,以引起扭曲的结构。在多个实施例中,PIM可含有由刚性连接基连接的大致平面的物种构成的有机高分子,所述刚性连接基具有扭曲点,使得由该连接基连接的两个相邻的平面的物种保持在非共面取向中。在另外的实施例中,这种材料可含有由刚性连接基主要连接至最多两个其他所述第一物种的大致平面的第一物种构成的有机高分子,所述刚性连接基具有扭曲点,使得由所述连接基连接的两个相邻的第一平面的物种保持在非共面取向中。在多个实施例中,这种扭曲点可以具有螺基、桥环部分或空间位阻的单个共价键,在该单个共价键周围存在受限的旋转。

在具有这种刚性扭曲的结构的聚合物中,聚合物链无法有效包络在一起,因而该聚合物具有固有的微孔性。因此,PIM具有的优点为拥有并非显著取决于材料受热过程的微孔性。因而PIM可以在以再生产的方式可大量制造的方面和在不表现出老化时变化、储存寿命等性质的方面提供优点。

在上下文中,术语“微孔的”和“微孔性”意指材料具有大量内部互连的孔体积,并且平均孔尺寸(用(例如)吸附等温线方法表征时)小于约100nm。这种微孔性使得有机被分析物的分子(如果有)能够渗透材料的内部孔体积,并且留在内部孔中。这种被分析物在内部孔中的存在可改变材料的介电气性质,使得介电常数(或任何其他合适的电气性质)的变化可被观测。在不受理论或机理限制的情况下,申请人认为,凭借微孔电介质材料,本发明所公开的感测元件1/101可以具有感测有机被分析物方面的有利性质在于:电介质材料的电气性质方面的可测量的变化可能由被分析物分子在孔中的存在所致。因此,在不要求被分析物分子在聚合物材料本身内被充分溶解以引起聚合物材料的性质(例如溶胀和/或膨胀)发生变化(虽然这种现象也可能发生,并且也可能有助于可测量的电气响应)的情况下,可能会检测到被分析物。对被分析物相应的电介质材料的这种微孔性可能有助于提高电介质材料对少量有机被分析物的灵敏度。

在多个实施例中,PIM具有至少约10%、至少约20%、或至少约30%的孔隙度(如用(例如)吸附等温线技术表征时,该技术例如使用可以商品名Autosorb得自Quantachrome Instruments(Boynton Beach,Florida)的仪器进行的那些)。这种孔隙度可提供对低含量有机化学被分析物的良好响应。然而,该材料不应当具有这样的大体积,以至于难以避免第一电极20/120和第二电极30/130之间的电气短路或电弧放电。因此,在多个实施例中,该材料具有至多约90%、至多约60%、或至多约40%的孔隙度。

再次说明,在不受理论或机理限制的情况下,内部孔的尺寸和分布可以使得孔中的至少一些中的有机被分析物分子中的至少一些可以形成比本来(如,比在被分析物被监测的环境下)会有的凝聚度更高的状态(如准液态)。这会导致与在被监测的环境下相比,被分析物分子以更大数量和/或更高浓度聚集在内部孔中;此外(或相反),该状态下的被分析物分子可以显示具有比在未凝聚蒸气或气体状态下更高的介电常数(相对介电常数)。因此,基于对被分析物相应的微孔电介质材料(正确选择了孔尺寸和分布)的感测元件可以显示具有对少量有机被分析物优异的灵敏度。在多个实施例中,PIM具有小于约50nm、小于约20nm、或小于约10nm的平均孔尺寸。在多个实施例中,PIM具有大于约0.3nm、大于约0.5nm、或大于约1.0nm的平均孔尺寸。

在一个实施例中,PIM为疏水材料(如疏水性有机聚合物材料),该材料吸收液态水的程度不会使其显著膨胀或者说是物理特性不会表现出显著改变。这种疏水性质对于提供对水的存在相对不敏感的有机被分析物感测元件是有用的。然而,该材料可以包含用于特定目的的相对极性部分。

在一个实施例中,PIM包含连续基质。这种基质被定义为某种组件(如涂层、层等),在该组件中,材料的固体部分是连续互连的(而不论是否存在上述孔隙度或是否存在下文将讨论的任选添加剂)。也就是说,连续基质与包含粒子聚集体(如沸石、活性炭、碳纳米管等)的组件是区别明显的。例如,由溶液沉积的层或涂层通常会包含连续基质(即使该涂层本身以图案化方式涂布和/或包含颗粒添加剂)。通过粉末喷涂、涂布并干燥分散体(如胶乳)、或通过涂布并干燥溶胶凝胶混合物沉积的粒子的集合可以不包含申请人定义的连续网。然而,如果这种胶乳、溶胶凝胶等层可被压实,使得单个粒子不再可识别,并且也不可能识别从不同粒子获得的组件的区域,那么这种层就可以符合申请人对连续基质的定义。

在某些实施例中,PIM可溶于通用有机溶剂中,因而适合常规的沉积方法(例如涂布)。

在某些实施例中,在PIM材料被沉积(如被涂布)或以其他方式形成以便包含对被分析物相应的电介质层之后,可以使用合适的交联剂(例如双(苯甲腈)二氯化钯(II))将该材料交联。该处理可以使得对被分析物相应的电介质层不溶于有机溶剂、和/或可以提高某些应用中期望的某些物理特性,例如耐久性、耐磨性等。

在某些实施例中,PIM可以与其他材料混合。例如,PIM可以与本身不是对被分析物相应的电介质材料的材料混合。尽管不会增强对被分析物的灵敏度,但这种材料可以有其他用途。例如,这种材料可以允许形成具有优异的机械性能等等的含PIM层。在一个实施例中,PIM可以和其他材料溶解于通用溶剂中以形成均匀的溶液,可以浇注该溶液以形成同时包含PIM和其他聚合物的、对被分析物相应的电介质共混物层。PIM也可以与对被分析物相应的电介质材料(例如,沸石、活性炭、硅胶、超高交联聚合物网等等)混合。这种材料可以包含悬浮在含有PIM材料的溶液中的不溶解的材料。将这种溶液/悬浮液涂布并干燥,可以得到对被分析物相应的复合材料电介质层,该层同时包含PIM材料和额外的对被分析物相应的电介质材料。

在多个实施例中,对被分析物不敏感的电介质材料的额外的层可以设置为靠近对被分析物相应的电介质层。提供这种层可以出于多种原因中的任何者,如,作为保护层、作为粘结层以提高粘接性等等。

在多个实施例中,可使用多个单独的对被分析物相应的电介质材料层。例如,可使用多个PIM材料层。或者,除了PIM材料层之外,还可使用一个或多个对被分析物相应的某些其他电介质材料层。多种对被分析物相应的电介质材料层可彼此直接接触,或可由用于一些其他用途的一个或多个层(如本文所述的钝化层、粘结层)隔开。

电极

参照图1和图2,第一电极20/120和第二电极30/130可包含任何合适的导电材料。可使用不同的材料(导电和/或不导电的材料)的组合作为不同的层或作为混合物,只要具有足够的整体导电性(如,电极材料具有小于约10-2欧姆·米的恒定电阻率)。可用于制备第一电极和/或第二电极的材料的实例包括(但不限于)有机材料、无机材料、金属、合金、以及包含这些材料中的任何或全部材料的多种混合物和复合材料。在某些实施例中,可以使用被涂布的(如蒸镀、溅镀等)金属或金属氧化物、或其组合。合适的导电材料包括(例如)铝、锡、铟锡氧化物、金、银、铂、钯、铜等等。在一个实施例中,两个电极均包含相同的材料;在可供选择的实施例中,第一电极和第二电极包含不同的材料。

在多个实施例中,第一电极和第二电极中的任一者或两者可被有机被分析物渗透。就感测元件以一般方式被构造为如图1所示的平行极板电容器而言,这种电极渗透性可以特别有用。在这种情况下,如果第二电极30是可渗透的,则有机被分析物可通过主表面13进入对被分析物相应的电介质层10,而不必只能通过边缘15进入对被分析物相应的电介质层10(其可能是较慢的过程)。同样,如果第一电极20是可渗透的,则有机被分析物可以能够通过主表面11进入对被分析物相应的电介质层10(然而,如果背衬40对被分析物而言为不可渗透的,则以可渗透构型提供第一电极20可能没有用)。

在多个实施例中,电极可由于不连续而为被分析物可渗透的。在上下文中,术语“不连续的”并不意味着电极包括彼此未电接触的单元(斑点、岛等)。相反,“不连续的”意指在电极的整个边界内,一些区域不包含导电材料。这种不连续的电极可以是微观不连续的。例如,可通过沉积(如涂布、喷墨印刷等)含有导电材料的粒子(如纳米粒子)的溶胶来形成电极。在这种情况下,电极含有充分接触的导电粒子以确保电极具有导电性,但在粒子之间具有足够的空间以使得电极对有机被分析物而言为可渗透的。在其他实施例中,电极可具有宏观不连续的结构。例如,如果导电材料包含蒸镀金属(其通常为不可渗透的),则可以将导电金属以图案(例如,以网格图案、或以实例1所公开的“梳形”图案)的方式而不是作为连续层来沉积。

参照图1和图2,第一电极20/120的电气可触及区域25/125和第二电极30/130的电气可触及区域35/135被设置为使得可以通过这些区域将操作电路28/128连接到感测元件。这种电气可触及区域可设置在任何方便的位置中。例如,在图1和图2的示例性例证中,这种电气可触及区域被示出位于电极的边缘上,在图3的示例性例证中,这种电气可触及区域被示出位于电极的主表面(123和133)上。在一个实施例中,设置了与第一电极20的可触及区域接触(如附接到)的连接装置(如接触垫或凸块)22/122,使得可(例如通过线材24/124的附接)完成感测元件1/101和操作电路28/128之间的电气连接。同样也可设置与第二电极30的可触及区域接触的类似的连接装置32/132。

示例性感测元件及制备方法

平行极板构型

在一个实施例中,可制备以一般的方式被构造为平行极板电容器(如图1的剖视图中的示例方式所示)的感测元件1。在这种构型中,感测元件具有两个大致为平面的、平行相对的电极,对被分析物相应的电介质层存在于两个电极之间并且抑制两个电极之间直接电接触。

在制备这种感测元件的示例性方法中,提供了背衬40(其可以为材料的连续块、层或膜),其靠近电极中的至少一个,并且可以起到为成品感测元件提供物理强度和完整性的作用。可以使用任何合适的材料,包括玻璃、陶瓷、塑料等。在大规模生产过程中,可以使用聚合物膜(例如聚酯)。在一些实施例中,背衬为被分析物可渗透的材料(例如硅橡胶、微孔膜等)。

在一个实施例中,在背衬40上设置了充当第一电极20的导电层。该导电层可以包含上述材料中的任何材料,包括导电材料和不导电材料的共混物或混合物,并且可以通过任何合适的方法沉积,包括(但不限于)旋涂、浸涂、网版印刷、转涂、溅镀、物理气相沉积、化学气相沉积、或这种方法中的两种或更多种的组合。在替代实施例中,可以通过将预制膜(如金属箔、导电带等)置于背衬40的顶部上来设置导电层。如此前所述,该第一电极20可以作为连续层或不连续层提供。

在一个实施例中,导电层被设置为使得电极20的第一表面21靠近和/或接触背衬40的第一表面41的至少一部分。在可供选择的实施例中,在电极20的第一表面21的至少一部分与背衬40的第一表面41之间存在任选层。只要不妨碍感测元件1的功能,则这种任选层可以用于任何目的(例如增强第一电极20与背衬40之间的粘结)。

在制备感测元件1的过程中,也提供对被分析物相应的电介质层10。在一个实施例中,对被分析物相应的电介质层10被设置为使得层10的第一主表面11直接接触第一电极20的第二表面23的至少一部分(保持第一电极20的至少一部分可触及,以用于连接到操作电路)。

在一个实施例中,通过涂布方法(例如,包括(但不限于)溶剂涂布、旋涂、浸涂、转涂、网版印刷等等)将对被分析物相应的电介质材料设置为靠近第一电极。在某些实施例中,电介质材料以这样的方式设置,以使可能起到危及感测元件的性能的作用的缺陷、针孔等的存在最小化。在具体实施例中,对被分析物相应的电介质层包含通过以下方式沉积的固有微孔性的聚合物:将PIM材料的溶液涂布在合适的基底上并允许溶液干燥,以便形成含有PIM材料的固体层。

对被分析物相应的电介质层10也可通过其他方法提供。例如,可在第一电极的第二表面上设置对被分析物相应的电介质材料的预成形的薄膜。在可供选择的实施例中,对被分析物相应的电介质材料可以颗粒形式(如作为粉末、作为悬浮液、或作为溶胶)提供,并且以这种形式沉积到第一电极上,以便形成颗粒涂层。如果需要,可以将这种材料压实,以便形成对被分析物相应的电介质材料的连续基质。

在多个实施例中,可通过将第二导电层设置为靠近对被分析物相应的电介质层10来形成第二电极30。第二电极30可以包含上述导电材料,并且可以根据上述方法沉积。在某些实施例中(特别是在背衬40对被分析物而言为不可渗透的情况下),第二电极可以包括不连续结构(同样如此前所述),以便对有机被分析物而言为可被渗透的。

参照图1,任选护盖层或阻挡层50可被设置为靠近电极中的至少一个。在一个实施例中,覆盖层50可设置在第二电极30的顶部上(保持第二电极30的某个区域可触及,以用于电接触)。任何这种覆盖层50都不应显著妨碍感测元件1的功能。例如,如果感测元件被构造为使得所关注的被分析物必须穿过覆盖层50以便到达对被分析物相应的电介质层10,则该覆盖层应当对被分析物而言为可充分渗透的。

覆盖层50可以通过本领域已知的任何方法沉积,包括涂布(如旋涂、浸涂、溶剂涂布、蒸镀、转涂、网版印刷、柔性版印刷等等)。在替代实施例中,覆盖层50可包括设置在第二电极30上的预制层(如膜或带)。在一个实施例中,覆盖层50被设置为使得覆盖层50的第一表面51直接接触第二电极30的第二表面33的至少一部分。覆盖层的第二表面可以为感测元件的最外表面,或(如果需要)其本身可以接纳额外的涂层或层。

在一个实施例中,第一电极20的第二表面23以及对被分析物相应的电介质层10的第一主表面11直接接触,两者间没有插入层。同样,在一个实施例中,第二电极30的第一表面31与对被分析物相应的电介质层10的第二主表面13直接接触,两者间没有插入层。图1描绘了这种实施例。然而,也可以设想的是,第一电极20与对被分析物相应的电介质层10之间、和/或第二电极30与对被分析物相应的电介质层10之间可以存在其他任选层。在这种情况下,电极中的任一者或两者可以不直接接触对被分析物相应的电介质材料的表面中的一些或全部。例如,可以用粘结层提高电极与对被分析物相应的电介质层之间的粘结性。或可以在对被分析物相应的电介质层的表面和电极的表面之间设置钝化层(例如二氧化硅层),以便使电极之间的电弧放电的可能性最小化。在一些实施例中,可以使用多个这类任选层;或者可以使单个层起到多种功能的作用。只要它们不会显著妨碍感测元件的所需功能,就可以将任何这类任选层(例如上述粘结层、钝化层、保护层、覆盖层等)用于任何目的。例如,如果感测元件被构造为使得所关注的被分析物必须穿过任选层以便到达对被分析物相应的电介质层10,则该任选层应当对该被分析物而言为可充分渗透的。

通常,多种层的边缘可彼此齐平对齐(如图1的示例性实施例所示)。或者,多种层可以与其他层重叠、和/或某些层的边缘可以相对于其他层凹陷。

在将对被分析物相应的电介质材料沉积在第一电极20的顶部上的过程中,应当在第一电极20上设置电气可触及区域25,以使电极和操作电路之间能够电接触。相似地,如果将覆盖层置于第二电极30的顶部上,则应当相似地设置电气可触及区域35。这种电气可触及区域可设置在任何方便的位置中。在一个实施例中,可以设置与第一电极20的可触及区域25电接触的连接装置(如接触垫、凸块等)22。相似地,也可以同样设置与第二电极30的可触及区域35接触的类似的连接装置32。

叉指状构型

在另一个实施例中,可制备以一般方式被构造为叉指状电容器的感测元件。图2的俯视图、图2a的剖视图(沿图2的线“2a”截取)和图3的透视图示出了叉指状感测元件的示例性实施例。在上下文中,术语“叉指状”涵盖了在叉指状构型中存在的至少两个电极的任何布置方式。这种构型包括叉指状梳形图案(例如图2、图2a和图3所示),以及本领域熟知的叉指状螺旋型或螺线型图案。所有这些设计都具有共同的特点:即在大体上共面的叉指状布置方式中存在(至少)两个电极,并且在电极附近存在对被分析物相应的电介质层,使得当电极之间建立电场时,该层中包含的对被分析物相应的电介质材料能够与电场相互作用。对被分析物相应的电介质层/材料可以设置在电极之间(即位于两个电极的平面内),并且插入到达第一电极和第二电极的任何两点之间最近的直线路径中。或者,对被分析物相应的电介质层/材料可以设置为使得:虽然不与电极共面,但对被分析物相应的电介质材料至少暴露于两个电极的相邻的部分之间建立的边缘电场中。在又一个替代实施例中,对被分析物相应的电介质层可以同时设置在这两个位置中。

通过采用将材料图案化沉积的熟知方法中的任何方法(如掩模气相沉积、网版印刷、喷墨印刷)将导电材料沉积为两种叉指型图案,可得到叉指状电极。可以根据需要设计电极图案的具体几何/尺寸性质(间距、高度、长度等)。

在一个实施例中,叉指状电极设置在可以由上述材料构成的背衬140上。第一电极120和第二电极130通常设置在相同背衬140上。在一个实施例(图2、图2a和图3所示)中,第一电极120的第一表面121、以及第二电极130的第一表面131均直接接触背衬140的第一表面141的至少某个部分。在可供选择的实施例中(未描绘),电极120和/或130与背衬140之间可存在任选层,该任选层类似于上述任选层,并且受到相同的问题和约束。

如图2、图2a和图3的示例性实施例所示,第一电极120和第二电极130的图案化沉积可以让背衬140的表面141(或其上的任何任选层的表面)的某个区域暴露在外。然后可通过上文参照平行极板型感测元件所述的类似方法,将对被分析物相应的电介质层沉积到背衬140上。所沉积的对被分析物相应的电介质材料因而将充满两个电极之间的空间(如图2、图2a和图3所示空间117)。因此,在该实施例中,对被分析物相应的电介质层110的第一表面111将直接接触背衬140的表面141的至少一部分。如图2a和图3所示,该沉积方法也可以引起对被分析物相应的电介质层110覆盖、并接触第一电极的第二表面123以及第二电极的第二表面133(除非有选择地进行沉积,如将电极中的一个或两个均掩盖)。因此,在多个实施例中,对被分析物相应的电介质层110的第一表面111直接接触第一电极120的第二表面123、和/或第二电极130的第二表面133。

在可供选择的实施例中,任选层(图2、图2a或图3中未示出)可以设置在第一电极120的第二表面123的顶部上、和/或第一电极130的第二表面133的顶部上。(在该实施例中,对被分析物相应的电介质层110的第一表面111与第一电极120的第二表面123之间、和/或与第二电极130的第二表面133之间可以不进行直接接触。)这种任选层可以起到上文所述类似的作用(保护等)。然而,在叉指型感测元件中,一个或两个电极的顶部上的任选层可以不必对被分析物而言为可渗透的,因为被分析物可以不必通过渗透任选层到达对被分析物相应的电介质层110的区域117。

在一个实施例中,可以将任选覆盖层150(其可以充当保护层、绝缘层、装饰层等)沉积在对被分析物相应的电介质层110的第二表面113的顶部上。任何这类覆盖层都不应显著妨碍感测元件的功能(如,它对关注的被分析物而言应当为可充分渗透的)。该覆盖层可以包括通过任何已知的涂布方法(如旋涂、浸涂、溶剂涂布、蒸镀、转涂、网版印刷、柔性版印刷等等)沉积的涂层。在替代实施例中,覆盖层150可以包括设置在层110的第二表面113的顶部上的预制层(如膜或带)。

在沉积对被分析物相应的电介质材料(以及任何任选覆盖层)时,应当在第一电极120上设置电气可触及区域125、以及在第二电极130上设置可触及区域135,以允许每一个电极和操作电路之间进行电接触。这种电气可触及区域可设置在任何方便的位置中。例如,这种电气可触及区域125和135在图2的示例性例证中被示出位于电极的边缘上,而在图3的示例性例证中被示出位于电极的表面123和133上。

在一个实施例中,可以设置与第一电极120的可触及区域125电接触的连接装置(如接触垫、凸块等)122。相似地,可以设置同样与第二电极130的可触及区域135接触的连接装置132。

操作电路

对被分析物相应的电介质层吸收足够的被分析物时,与感测元件相关的电气性质(包括(但不限于)电容、阻抗、导纳、电流、或电阻)可以发生可检测的变化。这种可检测的变化可以被与第一电极和第二电极电气连通的操作电路28/128检测到。在上下文中,“操作电路”通常是指可用于向第一电极和第二电极施加电压(从而向电极赋予电荷差)和/或监测感测元件的电气性质的电气设备,其中电气性质可以响应有机被分析物的存在而发生变化。在多个实施例中,操作电路可以监测下列任何一种性质或其组合:电感、电容、电压、电阻、电导系数、电流、阻抗、相位角、功耗因子、或耗散。

这种操作电路可以包括单个设备,该设备既向电极施加电压、又监测电气性质。在可供选择的实施例中,这种操作电路可以包括两个单独的设备:一个提供电压、另一个监测信号。操作电路可以通过线材24/124和34/134连接到第一电极20/120和第二电极30/130。在可供选择的实施例中,操作电路可以设置为直接接触第一电极和/或第二电极,这种接触既可以通过连接装置22/122和32/132来完成,也可以通过将操作电路的某个部分直接接触每一个电极的电气可触及区域来完成。例如,操作电路可设置为驻留在电路板或柔性电路(其中的任一者可充当背衬40/140)上。然后可将第一电极直接沉积到电路板/背衬40上,使得它直接接触操作电路的一部分。

操作电路28/128可以包括(例如)电源(其可以包括电池或硬连线的电源;或者,可以通过(例如)向内置到操作电路中的RFID电路充电来间接地提供电源)。操作电路28/128也可以包括一个或多个微处理器,其被构造用于控制电极的充电和/或监测被充电的感测电极对的一个或多个电气性质的变化。另外提供的有:模数转换器、用于保存来自感测元件的数据的存储装置、用于操作感测元件的软件、提供数据记录和/或单向或双向遥测功能的元件等。

被分析物

感测元件(例如本文所公开的)可用于检测和/或监测(不论是定性地还是定量地)有机被分析物的存在。这种被分析物可包括(但不限于):烃类、碳氟化合物、烷烃类、环烷类、芳族化合物、醇类、醚类、酯类、酮类、卤代烃类、胺类、有机酸类、氰酸盐类、硝酸盐类以及腈类,例如正辛烷、环己烷、甲基乙基酮、丙酮、乙酸乙酯、二硫化碳、四氯化碳、苯、苯乙烯、甲苯、二甲苯类、甲基氯仿、四氢呋喃、甲醇、乙醇、异丙醇、正丁醇、叔丁醇、2-乙氧基乙醇、乙酸、2-氨基吡啶、乙二醇单甲醚、甲苯-2,4-二异氰酸酯、硝基甲烷和乙腈等。被分析物可为相对非极性有机分子或相对极性有机分子。被分析物可以为所谓的蒸气,即在被分析物(如甲苯、丙酮、庚烷等)所经历的温度和压力环境条件下能够形成固体或液体的分子。被分析物可为所谓的气体,即在环境条件下通常不能形成液体或固体的分子(但如上所述,这种分子在对被分析物相应的电介质材料的内部孔中仍可以具有凝聚度更高的状态)。这种气体可以包括甲烷、乙烷等等。在一些情况下,可以检测到有机被分析物分子的混合物。

本发明通过下列实例进一步说明。下列实例中的所有数值均应被视为由术语“大约”修饰。

实例

凝胶渗透色谱法(GPC)

利用凝胶渗透色谱法(GPC)测量多种材料的分子量。通过向大约25mg的材料中添加10mL的THF来制备每一个样品。利用0.25微米的特氟隆注射器过滤器过滤溶液。将100微升的溶液注入六蒸馏柱套件(JordiAssociates混合床和500A 25cm长的蒸馏柱,Jordi Associates Inc.(Bellingham,MA))中,该套件与Waters 2695TM Separation Module(Waters 2695TM分离模块)(Waters Corp.(Milford,MA))联合使用。Waters 2695TM在35℃的温度下操作,并使用THF作为洗脱液(以1.0mL/min的流速流动)。Shimadzu Scientific RID-10A折射率检测器(Shimadzu Scientific Inc.(Columbia,MD))与Wyatt DAWN EOS多角度激光散射检测器(Wyatt Technology,Co.(Santa Barbara,CA))联合使用来检测浓度变化。利用Wyatt的ASTRA软件完成分子量的计算:首先计算每一个样品的dn/dc,然后利用该值计算分子量。结果用Mw(重均分子量)和Mn(数均分子量)表示。

制备PIM1

一般根据Budd等人在Advanced Materials,2004,Vol.16,No.5,pp.456-459(《先进材料》,2004年,第16卷第5册第456-459页)中所报道的工序,由单体5,5’,6,6’-四羟基-3,3,3’,3’-四甲基-1,1’-螺旋双茚满和四氟对苯二腈制备PIM材料。将19.31g的5,5’,6,6’-四羟基-3,3,3’,3’-四甲基-1,1’-螺旋双茚满与11.34g的四氟对苯二腈、47.02g的碳酸钾和500毫升的N,N-二甲基甲酰胺混合,并将混合物在65℃下反应48小时。将所得聚合物溶解在四氢呋喃中,通过甲醇沉淀三次,然后在室温条件下于真空中干燥。得到重均分子量大约为95,000、数均分子量大约为64,300的黄色固体产物,分子量通过利用光散射检测的凝胶渗透色谱法确定。

制备PIM2

按照关于PIM1所述的相同一般工序制备PIM材料。将19.31g的5,5’,6,6’-四羟基-3,3,3’,3’-四甲基-1,1’-螺旋双茚满与11.34g的四氟对苯二腈、47.02g的碳酸钾和500毫升的N,N-二甲基甲酰胺混合,并将混合物在65℃下反应48小时。将所得聚合物溶解在四氢呋喃中,通过甲醇沉淀三次,然后在室温条件下于真空中干燥。得到重均分子量大约为109,000、数均分子量大约为73,600的黄色固体产物,分子量通过利用光散射检测的凝胶渗透色谱法确定。

制备PIM3

按照关于PIM1所述的相同一般工序制备PIM材料。将5.62g的5,5’,6,6’-四羟基-3,3,3’,3’-四甲基-1,1’-螺旋双茚满与3.30g的四氟对苯二腈、13.68g的碳酸钾和150毫升的N,N-二甲基甲酰胺混合,并将混合物在65℃下反应62小时。将所得聚合物溶解在四氢呋喃中,通过甲醇沉淀两次,然后在室温条件下于真空中干燥。得到重均分子量大约为65,300、数均分子量大约为35,600的黄色固体产物,分子量通过利用光散射检测的凝胶渗透色谱法确定。

制备PIM4

按照关于PIM1所述的相同一般工序制备PIM材料,不同的是使用再结晶的5,5’,6,6’-四羟基-3,3,3’,3’-四甲基-1,1’-螺旋双茚满。在聚合反应中使用之前,将购自Aldrich的5,5’,6,6’-四羟基-3,3,3’,3’-四甲基-1,1’-螺旋双茚满从THF/庚烷(1.2∶1)中再结晶。将33.44g的再结晶5,5’,6,6’-四羟基-3,3,3’,3’-四甲基-1,1’-螺旋双茚满与19.80g的四氟对苯二腈溶解于900mL的无水N,N-二甲基甲酰胺中。使氮气起泡通过搅拌的溶液1小时。将81.45g的碳酸钾加入单体溶液。将所得混合物在67℃下用力搅拌67.5小时。将所得聚合物溶解在四氢呋喃中,通过甲醇沉淀两次,然后在65℃条件下于真空中干燥。得到重均分子量大约为58,900、数均分子量大约为35,800的黄色固体产物,分子量通过利用光散射检测的凝胶渗透色谱法确定。

制备样品1

使用以1×10-5托的基底压力操作的CHA Industries Mark-50蒸发器和No.A-2049铝丸(纯度99.995%,6×6mm,得自Cerac Inc.)在洁净的玻璃片(2.5cm×2.5cm)上涂布连续的(未图案化的)铝涂层。以15埃/秒的速度沉积铝涂层。最终厚度为100nm。用金刚石笔尖的笔在铝化玻璃上距一个边缘约5mm处划线。将划线后的铝化玻璃敲打为5cm×5cm的玻璃块,使得样品的整个边缘周围都有掩模铝表面形成的边距。小心确保掩模区域距划线仍有大约2mm。制备4重量%的PIM1氯苯溶液,并使用Laurell Technologies,Corp.(North Wales,PA)制造的WS-400B-8NPP-Lite Single Wafer旋转处理器以1200rpm的转速将溶液旋涂到掩模样品上2分钟。使用以商品名Silverjet DGP-40LT-25C得自Advanced NanoProducts Co.,Ltd.(South Korea)的银纳米粒子悬浮液(平均粒径30nm,悬浮在甲醇中)制备第二电极。将0.5g的量的这种可直接使用的悬浮液与1毫升甲醇混合。将稀释的银纳米粒子悬浮液以1000rpm的转速旋涂到PIM膜上2分钟。从掩模样品上移除条带,并将样品在150℃下、在常规干燥烘箱中加热3小时。通过将预制掩模附接到样品上,并在样品上最靠近划线的一侧制作一系列1mm宽×4mm长的铝凸块,使得铝凸块将第二电极连接到底部铝电极上。在基底压力为1×10-6托的Kurt Lesker真空系统中进行铝蒸镀。以的速率将购自Alfa Aesar的纯度为99.999%的铝从钨舟中热蒸发。最终厚度为100nm。该工序从而提供具有第一电极的玻璃(背衬)层,第一电极具有连续的铝层,可将操作电路与该铝层接触。铝电极的顶部上为含PIM材料的对被分析物相应的电介质层(厚度大约600nm)。PIM材料的顶部上为包含微观不连续(因此为被分析物可渗透的)银层(厚度大约300nm)的第二电极。第二电极通过铝凸块接触较小的被铝涂布的区域,使得通过将操作电路附接到该较小的被铝涂布的区域,可以将第二电极与操作电路连接。

制备样品2

按照关于样品1所述,在一块洁净的玻璃上用铝涂布、划线、制作掩模以及用PIM1涂布。从掩模样品上移除条带,并将样品在150℃下、在常规干燥烘箱中加热1小时。将图案化的第二电极在PIM材料的顶部上喷墨印刷,以完成该样品的构造。为了喷墨印刷第二电极,在AdobePhotoshop中创建了位图图像(702点/英寸),然后下载到XY沉积系统。用于沉积银的印刷头为具有10pL的液滴体积、128个喷嘴/孔的DimatixSX3-128印刷头,印刷头组件长度大约为6.5cm,喷嘴间距为508微米。用于构造该电极的银纳米粒子溶胶可以商品名AG-IJ-G-100-S1购自Cabot。该银纳米粒子溶胶大约含15-40重量%的乙醇、15-40重量%的乙二醇和20重量%的银。喷墨印刷期间通过使用多孔铝真空台板将样品固定地保持。完成印刷时,将样品从多孔铝真空台板上移除,并在125℃下置于Thermolyne热板上15分钟。

喷墨印刷银电极包括由实心矩形和从一端伸出的细纹组成的梳形图案。印刷电极的矩形部分被布置为使得该矩形的一部分位于较小的镀铝区域的一部分的顶部上(使得通过将导线附接到该较小的镀铝区域上,可以实现与顶部电极的电接触),第二印刷电极的其余部分位于PIM材料的顶部上。电极上的细纹设计成长度大约为8.3mm、宽度大约为102微米。细纹之间的间隙设计成大约152微米。(应该指出的是,所有这些尺寸均为位图图像的标称尺寸,而不是实际“印刷的”尺寸)。

该工序提供第一电极包含连续铝的玻璃背衬层。铝电极的顶部上为包含PIM材料的对被分析物相应的电介质层,包括梳形图案银层的第二电极位于PIM层的顶部上。可以按照参照样品1所述的类似方式将操作电路附接到电极上。

制备样品3

通过将铜(厚度大约43微米)蒸镀到聚酰亚胺背衬层(厚度大约52微米)上,制备叉指状电极换能器。电极包括连接到导线的尺寸为0.5cm×0.5cm的叉指状梳形图案。电极细纹宽度大约为20微米,间距大约为40微米。将叉指状换能器敲打成5cm×5cm的玻璃块,使得换能器的两端被条带覆盖,并且条带中的一个完全覆盖导线。将4重量%的PIM1氯苯溶液(制备方法如上)以2500rpm的速度旋涂到掩模样品上2分钟。将条带从掩模样品上移除。该工序从而提供具有第一叉指状铜电极和第二叉指状铜电极的聚酰亚胺背衬层。叉指状电极的顶部上为包含厚度大约400nm的PIM材料的对被分析物相应的电介质层。

制备样品4

通过将金蒸镀到聚合物背衬层上,制备叉指状电极换能器。然后以光刻法的方式来限定金,以具有连接到导线上的尺寸为1.2cm×1.0cm的叉指状梳形图案。电极细纹间距大约为320微米。将叉指状换能器敲打成5cm×5cm的玻璃块,使得换能器的两端被条带覆盖,并且条带中的一个完全覆盖导线。将4重量%的PIM2氯苯溶液(制备方法如上)以1200rpm的速度旋涂到掩模样品上2分钟。从掩模样品上移除条带,并将样品在100℃下、在常规干燥烘箱中加热1小时。该工序从而提供具有第一和第二叉指金电极的聚合物背衬层。叉指状电极的顶部上为包含厚度大约400nm的PIM材料的对被分析物相应的电介质层。

制备样品5

通过将金蒸镀到聚合物背衬层上,制备叉指状电极换能器。然后以光刻法的方式来限定金,以具有连接到导线上的尺寸为1.2cm×1.0cm的叉指状梳形图案。电极细纹间距大约为120微米。将叉指状换能器敲打成5cm×5cm的玻璃块,使得换能器的两端被条带覆盖,并且条带中的一个完全覆盖导线。将4重量%的PIM2氯苯溶液(制备方法如上)以1200rpm的速度旋涂到掩模样品上2分钟。从掩模样品上移除条带,并将样品在100℃下、在常规干燥烘箱中加热1小时。该工序从而提供具有第一和第二叉指金电极的聚合物背衬层。叉指状电极的顶部上为包含厚度大约400nm的PIM材料的对被分析物相应的电介质层。

制备样品6

通过将金蒸镀到聚合物背衬层上,制备叉指状电极换能器。然后以光刻法的方式来限定金,以具有连接到导线上的尺寸为1.2cm×1.0cm的叉指状梳形图案。电极细纹间距大约为80微米。将叉指状换能器敲打成5cm×5cm的玻璃块,使得换能器的两端被条带覆盖,并且条带中的一个完全覆盖导线。将4重量%的PIM2氯苯溶液(制备方法如上)以1200rpm的速度旋涂到掩模样品上2分钟。从掩模样品上移除条带,并将样品在100℃下、在常规干燥烘箱中加热1小时。该工序从而提供具有第一和第二叉指金电极的聚合物背衬层。叉指状电极的顶部上为包含厚度大约400nm的PIM材料的对被分析物相应的电介质层。

制备样品7

通过将金蒸镀到聚合物背衬层上,制备叉指状电极换能器。然后以光刻法的方式来限定金,以具有连接到导线上的尺寸为1.2cm×1.0cm的叉指状梳形图案。电极细纹间距大约为40微米。将叉指状换能器敲打成5cm×5cm的玻璃块,使得换能器的两端被条带覆盖,并且条带中的一个完全覆盖导线。将4重量%的PIM2氯苯溶液(制备方法如上)以1200rpm的速度旋涂到掩模样品上2分钟。从掩模样品上移除条带,并将样品在100℃下、在常规干燥烘箱中加热1小时。该工序从而提供具有第一和第二叉指金电极的聚合物背衬层。叉指状电极的顶部上为包含厚度大约400nm的PIM材料的对被分析物相应的电介质层。

制备样品8

通过依次热蒸镀(DV-502A,Denton Vacuum(Moorestown,NewJersey))20埃的铬和100nm的金,制备镀金聚对苯二甲酸乙二醇酯(PET)(ST504,杜邦公司(Wilmington,Delaware))基底。

通过用光刻法在直径10cm的硅晶圆上制备光致抗蚀剂(Shipleyl818,Rohm and Haas公司(Philadelphia,Pennsylvania))图案,生成用于模铸弹性体压模的母模。通过将未固化的聚二甲基硅氧烷(PDMS,SylgardTM184,Dow Corning(Midland Michigan))倾注在母模上形成大约3.0mm的厚度,对照母模模铸了弹性体压模。通过将接触母模的未固化有机硅暴露于真空中,除去气体,然后将其在70℃下固化2小时。从母模上剥离后,得到具有浮雕图案的PDMS压模,其浮雕图案具有高度大约1.8微米的凸起特征。利用该压模,制备电极细纹宽度大约为3微米、间距大约为10微米的叉指状电极换能器。

为了制备叉指状电极换能器,通过将结构化的压模的背面(无浮雕图案的平坦表面)接触10mM的十八烷硫醇(“ODT”00005,TCI AMERICA(Wellesley Hills,Massachusetts))乙醇溶液20小时,对该压模进行喷墨。通过首先将镀金PET膜样品的边缘与压模表面接触,然后用直径约3.0cm的辊子碾压该PET膜,使其与整个压模接触,来让PET膜接触压模的浮雕图案表面(该面朝上)。然后使镀金PET膜与压模保持接触20秒,从而在金表面形成图案化的硫醇类自组装单层(SAM)。然后将镀金PET膜从压模上剥离。然后将具有印刷图案的镀金PET膜浸入蚀刻剂溶液50秒,以进行选择性蚀刻和金属图案化。该蚀刻剂包含1.0g的硫脲(T8656,Sigma-Aldrich(St.Louis,Missouri))、0.54ml的浓盐酸(HX0603-75,EMDChemicals(Gibbstown,New Jersey))、0.5ml的过氧化氢(30%,5240-05,Mallinckrodt Baker(Phillipsburg,New Jersey))和21g的去离子水。在对金进行图案化蚀刻之后,使用由2.5g的高锰酸钾(PX1551-1,EMDChemicals(Gibbstown,New Jersey))、4g的氢氧化钾(484016,Sigma-Aldrich(St.Louis,Missouri))和100ml的去离子水配成的溶液对残余的铬进行蚀刻。将叉指状换能器敲打成5cm×5cm的玻璃块,使得换能器的两端被条带覆盖,并且条带中的一个完全覆盖导线。将4重量%的PIM2氯苯溶液(制备方法如上)以1200rpm的速度旋涂到掩模样品上2分钟。将条带从掩模样品上移除,并将样品在100℃的常规干燥烘箱中加热1小时。该工序从而提供具有第一和第二叉指金电极的聚合物背衬层。叉指状电极的顶部上为包含厚度大约400nm的PIM材料的对被分析物相应的电介质层。

制备样品9

利用掩模以及上文“制备样品1”中所述设备,在一块洁净的玻璃(2.5cm×2.5cm)上的1.2cm×2.0cm的一角处依次蒸镀10nm的钛和100nm的铝,形成连续(未图案化)涂层。利用PIM3的氯苯溶液在整个玻璃片的顶部上旋涂750nm厚的层。用含少量丙酮的拭子移除PIM层,露出底部铝电极的一小角,以用于连接到操作电路。利用上文“制备样品2”中所述喷墨印刷法,在PIM层的顶部上印刷0.9cm×1.5cm的银纳米粒子溶胶(Cabot AG-IJ-G-100-S1)矩形,其中PIM层被布置为使得该矩形只有0.9cm×1.0cm的部分直接位于底部铝电极上。完成印刷时,将样品在125℃下置于Thermolyne热板上15分钟。为了提高连接到顶部电极的能力,利用Advanced Nano Products Co.,Ltd.的银纳米粒子悬浮液(得自Advanced Nano Products Co.,Ltd.的Silverjet DGP-40LT-25C)将顶部喷墨印刷电极增厚(仅在不直接位于底部铝电极上方的区域)。只需要用油漆刷子将该纳米粒子悬浮液刷到所需区域的顶部上,便完成增厚步骤。在增厚步骤之后,将样品在150℃下、在常规干燥烘箱中干燥1小时。该工序提供第一电极包含连续铝的玻璃背衬层。铝电极的顶部上为包含PIM材料的对被分析物相应的电介质层,并且包括微观不连续(因此为被分析物可渗透的)银层的第二电极位于PIM层的顶部上。可以按照参照样品1所述的类似方式将操作电路附接到电极上。

制备样品10

利用掩模以及上文“制备样品1”中所述设备,在一块洁净的玻璃(2.5cm×2.5cm)上的1.2cm×2.0cm的一角处依次蒸镀10nm的钛和100nm的铝,形成连续(未图案化)涂层。利用PIM4的氯苯溶液在整个玻璃片的顶部上旋涂400nm厚的层。用含少量丙酮的拭子移除PIM层,露出底部铝电极的一小角,以用于连接到操作电路。利用上文“制备样品2”中所述喷墨印刷法,在PIM层的顶部上印刷0.9cm×1.5cm的银纳米粒子溶胶(Cabot AG-IJ-G-100-S1)矩形,其中PIM层被布置为使得该矩形只有0.9cm×1.0cm的部分直接位于底部铝电极上。完成印刷时,将样品在125℃下置于Thermolyne热板上15分钟。为了提高连接到顶部电极的连接能力,利用Advanced Nano Products Co.,Ltd.的银纳米粒子悬浮液(得自Advanced Nano Products Co.,Ltd.的Silverjet DGP-40LT-25C)将顶部喷墨印刷电极增厚(仅在不直接位于底部铝电极上方的区域)。只需要用油漆刷子将该纳米粒子悬浮液刷到所需区域的顶部上,便完成增厚步骤。在增厚步骤之后,将样品在150℃下、在常规干燥烘箱中干燥1小时。该工序提供第一电极包含连续铝的玻璃背衬层。铝电极的顶部上为包含PIM材料的对被分析物相应的电介质层,并且包括微观不连续(因此为被分析物可渗透的)银层的第二电极位于PIM层的顶部上。可以按照参照样品1所述的类似方式将操作电路附接到电极上。

测试样品1

使用简单的定制构建的直通递送体系将已知浓度的丙酮递送至样品以进行测量。递送体系整体采用特氟隆管子。将氮气喷入含有液态丙酮的容器内并保持恒温,以形成含有饱和丙酮的氮气流。利用得自FisherScientific的制冷机使液态丙酮保持恒温,并按照Handbook of VaporPressure(蒸气压力手册)(Yaws,C.I.Gulf Publishing:Houston,1994)中的方法计算为形成饱和丙酮气流而要将制冷机保持在哪个温度。通过使用一系列质量流量控制器,用额外的氮气将此饱和丙酮气流稀释。使用红外光谱仪(可以商品名Miran Sapphire得自ThermoElectron(Waltham,MA))校准气流中丙酮的浓度。将丙酮气流通入含有样品1的样品箱(保持受控温度)。利用鳄鱼夹将样品的第一电极和第二电极连接到包括LCR测量仪(可以商品名Instek Model 821 LCR测量仪得自InstekAmerica,Corp.(Chino,CA))的操作电路。在整个蒸气测试期间,按特定时间间隔以10千赫的频率监测样品电容(以毫微法拉计)的变化(如图4所示)。

首先将样品置于未密封的试验箱中,以测量样品在环境条件下(相对湿度大约58%的室内空气中)的初始电容。然后从0时点开始将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将试验箱密封,将含394ppm的丙酮的氮气流引入试验箱中并保持第一时期。然后将试验箱返回到干燥氮气环境中。反复再暴露于394ppm的丙酮中两次,并在每一次暴露于丙酮中之后都将样品暴露于无丙酮的干燥氮气流中。在最后一次暴露于干燥氮气中之后,将样品暴露于含915ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮的浓度逐步降低到651ppm、394ppm和133ppm。此后,将样品暴露于干燥的氮气中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度51%的空气中)。

测试样品2

利用参照样品1所述的相同装置测试样品2(制备方法如上)。在整个蒸气测试期间,按特定时间间隔以10千赫的频率监测样品电容(以毫微法拉计)的变化(如图5所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约64%的空气中)的初始电容。然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。将试验箱密封,将含394ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱重新返回到干燥氮气环境中。反复再暴露于394ppm的丙酮中两次,并在每一次暴露之后都将样品暴露于干燥氮气流中。接着,依次将样品暴露于含133、394、651和915ppm的丙酮的氮气流,并在每一次暴露之后将样品返回到无丙酮的干燥氮气环境中。在最后一次暴露于干燥氮气中之后,将样品暴露于含915ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮的浓度逐步降低到651ppm、394ppm和133ppm。此后,将样品暴露于干燥的氮气中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度64%的空气中)。

测试样品3

利用参照样品1所述的相同装置测试样品3(制备方法如上)。在测试期间,按特定时间间隔以20千赫的频率监测样品电容(以微微法计)的变化(如图6所示)。蒸气测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度为40%的空气中,图6未示出)的初始电容。然后将样品暴露于干燥的氮气(相对湿度8%,20℃)中。将试验箱密封,将含133ppm的丙酮的干燥氮气流引入试验箱中(在图6中,暴露于氮气中与暴露于133ppm的丙酮中之间的峰为人为结果)。在丙酮浓度为133ppm的条件下经过一段时间之后,将丙酮浓度增加到394ppm。在丙酮浓度为394ppm的条件下经过一段时间之后,将丙酮浓度增加到651ppm。在丙酮浓度为651ppm的条件下经过一段时间之后,将丙酮浓度增加到915ppm。在此之后,将样品暴露于干燥的氮气中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度40%的空气中)。

测试样品4

利用参照样品1所述的相同装置测试样品4(制备方法如上)。在测试期间,按特定时间间隔以10千赫的频率监测样品电容(以微微法计)的变化(如图7所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约50%的空气中)的初始电容。将试验箱密封,然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将含133ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于133ppm的丙酮中,然后暴露于干燥氮气中。接着将含394ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于394ppm的丙酮中,然后暴露于干燥氮气中。在暴露于干燥氮气之后,将样品暴露于含651ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮的浓度逐步降低到394ppm和133ppm。此后,将样品暴露于干燥的氮气中。

测试样品5

利用参照样品1所述的相同装置测试样品5(制备方法如上)。在测试期间,按特定时间间隔以10千赫的频率监测样品电容(以微微法计)的变化(如图8所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约52%的空气中)的初始电容。将试验箱密封,然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将含133ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于133ppm的丙酮中,然后暴露于干燥氮气中。然后将含394ppm的丙酮的氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于394ppm的丙酮中,然后暴露于干燥氮气中。在暴露于干燥氮气中之后,将样品暴露于含651ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮浓度逐步降低到394ppm和133ppm。此后,将样品暴露于干燥的氮气中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度50%的空气中)。

测试样品6

利用参照样品1所述的相同装置测试样品6(制备方法如上)。在测试期间,按特定时间间隔以10千赫的频率监测样品电容(以微微法计)的变化(如图9所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约71%的空气中)的初始电容。将试验箱密封,然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将含133ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于133ppm的丙酮中,然后暴露于干燥氮气中。然后将含394ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于394ppm的丙酮中,然后暴露于干燥氮气中。在暴露于干燥氮气中之后,将样品暴露于含651ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮的浓度逐步降低到394ppm和133ppm。此后,将样品暴露于干燥的氮气中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度71%的空气中)。

测试样品7

利用参照样品1所述的相同装置测试样品7(制备方法如上)。在测试期间,按特定时间间隔以10千赫的频率监测样品电容(以微微法计)的变化(如图10所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约74%的空气中)的初始电容。将试验箱密封,然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将含133ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于133ppm的丙酮中,然后暴露于干燥氮气中。然后将含394ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于394ppm的丙酮中,然后暴露于干燥氮气中。在暴露于干燥氮气中之后,将样品暴露于含651ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮的浓度逐步降低到394ppm和133ppm。此后,将样品暴露于干燥的氮气中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度71%的空气中)。

测试样品8

利用参照样品1所述的相同装置测试样品8(制备方法如上)。在测试期间,按特定时间间隔以200千赫的频率监测样品电容(以微微法计)的变化(如图11所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约66%的空气中)的初始电容。将试验箱密封,然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将含133ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于133ppm的丙酮中,然后暴露于干燥氮气中。然后将含394ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。重新暴露于394ppm的丙酮中,然后暴露于干燥氮气中。在暴露于干燥氮气中之后,将样品暴露于含133ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮的浓度逐步增加到394ppm和651ppm。在651ppm的丙酮的条件下暴露一段时间后,将丙酮的浓度逐步降低到394ppm和133ppm。此后,将样品暴露于干燥的氮气中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度65%的空气中)。

测试样品9

利用参照样品1所述的相同装置测试样品9(制备方法如上)。在测试期间,按特定时间间隔以1千赫的频率监测样品电容(以毫微法拉计)的变化。数据绘制在图12中,其绘制为电容比(ΔC/Co,相对于绝对电容)随时间变化的关系图。将样品放在试验箱中,然后将试验箱密封。随后将样品暴露于干燥的氮气(相对湿度大约8%,20℃,图12未示出)中。整个实验过程中,样品在这些干燥氮气环境中的电容被用作Co值。整个实验过程在20℃的恒温下进行,因此相对湿度也是在该温度下计算。然后将样品暴露于含有相对湿度12%的氮气流中。经过一段时间后,将样品暴露于含50ppm的丙酮并且相对湿度为12%的氮气流中。将相对湿度保持在12%,并将丙酮的浓度依次逐步增加到250ppm、500ppm和1000ppm。然后使试验箱返回到相对湿度为12%的氮气环境中。经过一段时间后,将氮气流的相对湿度增加到24%。接着在相对湿度保持在24%的情况下,将样品依次暴露于丙酮浓度不断增加(50ppm、250ppm、500ppm和1000ppm)的环境中。然后使试验箱返回到相对湿度为24%的氮气环境中。经过一段时间后,将氮气流的相对湿度增加到39%。接着在相对湿度保持在39%的情况下,将样品依次暴露于丙酮浓度不断增加(50ppm、250ppm、500ppm和1000ppm)的环境中。然后使试验箱返回到相对湿度为39%的氮气环境中。然后使试验箱返回到干燥的氮气环境中(相对湿度8%)。经过一段时间后,将氮气流的相对湿度增加到56%。接着在相对湿度保持在56%的情况下,将样品依次暴露于丙酮浓度不断增加(50ppm、250ppm、500ppm和1000ppm)的环境中。然后使试验箱返回到相对湿度为56%的氮气环境中。经过一段时间后,将氮气流的相对湿度增加到70%。接着在相对湿度保持在70%的情况下,将样品依次暴露于丙酮浓度不断增加(50ppm、250ppm、500ppm和1000ppm)的环境中。然后使试验箱返回到相对湿度为70%的氮气环境中。经过一段时间后,将氮气流的相对湿度增加到88%。接着在相对湿度保持在88%的情况下,将样品依次暴露于丙酮浓度不断增加(50ppm、250ppm、500ppm和1000ppm)的环境中。然后将样品暴露于相对湿度88%、含0ppm的丙酮的气流中。然后将样品返回到干燥的氮气环境(相对湿度8%)中。

测试样品10

利用参照样品1所述的相同装置测试样品10(制备方法如上)。在测试期间,按特定时间间隔以1千赫的频率监测样品电容(以毫微法拉计)的变化。数据绘制在图13中,其绘制为电容比(ΔC/Co)随时间变化的关系图。将样品放在试验箱中,然后将试验箱密封。然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。整个实验过程中,样品在这些干燥氮气环境中的电容被用作Co值。将含5ppm的丙酮的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。接着将样品暴露于含10ppm的丙酮的干燥氮气流中。经过一段时间后,将丙酮的浓度增加到20ppm。此后,将样品依次暴露于含50ppm、100ppm、200ppm和500ppm的丙酮的氮气流中。然后将样品返回到干燥氮气环境中(在图13中,暴露于200ppm的丙酮中和暴露于500ppm的丙酮中之间的电容比下降是递送被分析物过程中的问题所导致的人为结果)。

测试样品11

利用参照样品1所述的相同装置,对按照“制备样品2”中所述类似方式制备的新样品进行甲苯响应测试。在测试期间,按特定时间间隔以1千赫的频率监测样品电容(以毫微法拉计)的变化(如图14所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约29%的空气中)的初始电容。将试验箱密封,并将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将含16ppm的甲苯的干燥氮气流引入试验箱中。经过一段时间后,将甲苯的浓度增加到26ppm。此后,将样品依次暴露于含48ppm、91ppm和175ppm的甲苯的氮气流中。然后将样品返回到干燥的氮气环境中。

测试样品12

利用参照样品1所述的相同装置,对按照“制备样品2”中所述类似方式制备的新样品进行己烷响应测试。测试期间,按特定时间间隔以1千赫的频率监测样品电容(以毫微法拉计)的变化(如图15所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约23%的空气中)的初始电容。将试验箱密封,然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。然后将含73ppm的己烷的干燥氮气流引入试验箱中。经过一段时间后,将己烷的浓度增加到117ppm。此后,将样品依次暴露于含231、322和408ppm的己烷的氮气流中。然后将样品返回到干燥的氮气环境中。

测试样品13

利用参照样品1所述的相同装置,对按照“制备样品2”中所述类似方式制备的新样品进行异丙醇(IPA)响应测试。测试期间,按特定时间间隔以1千赫的频率监测样品电容(以毫微法拉计)的变化(如图16所示)。测试开始时,将样品置于未密封的试验箱中,以测量样品在室内环境条件下(相对湿度大约23%的空气中)的初始电容。将试验箱密封,然后将样品暴露于干燥的氮气(相对湿度大约8%,20℃)中。将含45ppm的异丙醇(IPA)的干燥氮气流引入试验箱中。然后将试验箱返回到干燥氮气环境中。接着将样品暴露于含15ppm的IPA的干燥氮气流中。经过一段时间后,将IPA的浓度增加到23ppm。此后,将样品依次暴露于含45ppm、87ppm、171ppm和254ppm的IPA的氮气流中。然后将样品返回到干燥的氮气环境中。接着打开试验箱,并将样品暴露于环境条件下(相对湿度26%的空气中)。

本文描述了本发明的一些实施例。然而应当理解,在不脱离本发明的情况下可以作出多种修改。因此,其他的实施例在以下权利要求书的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号