首页> 中国专利> 形成纳米纤维网和基底的层压体的方法以及使用该层压体的过滤器

形成纳米纤维网和基底的层压体的方法以及使用该层压体的过滤器

摘要

本发明公开了形成低基重纳米纤维网和基底的层压体的方法,所述方法包括在收集稀松布表面上形成纳米纤维网,然后使所述纳米纤维网与涂覆有粘合剂的基底接触。所述层压体适于用作气体过滤介质。

著录项

  • 公开/公告号CN101730621A

    专利类型发明专利

  • 公开/公告日2010-06-09

    原文格式PDF

  • 申请/专利权人 纳幕尔杜邦公司;

    申请/专利号CN200880018620.0

  • 发明设计人 A·谢林;A·科利;

    申请日2008-06-06

  • 分类号B32B5/00;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人段晓玲

  • 地址 美国特拉华州

  • 入库时间 2023-12-18 00:18:34

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-12-02

    专利权的转移 IPC(主分类):B32B 5/00 专利号:ZL2008800186200 登记生效日:20221118 变更事项:专利权人 变更前权利人:纳幕尔杜邦公司 变更后权利人:杜邦安全与建筑公司 变更事项:地址 变更前权利人:美国特拉华州 变更后权利人:美国特拉华州

    专利申请权、专利权的转移

  • 2013-01-02

    授权

    授权

  • 2010-08-11

    实质审查的生效 IPC(主分类):B32B5/00 申请日:20080606

    实质审查的生效

  • 2010-06-09

    公开

    公开

说明书

发明背景

1.发明领域

本发明涉及用于将纳米纤维网层压到基底上的方法,以及涉及用于从例如工业气体流的流体流中除去固体的过滤器和可用于过滤器的层压体。

2.相关领域探讨

通常使用集尘器或袋式气体过滤来过滤工业流出物或“废气”中的颗粒物质,以及收集颗粒或粉末状的细粒产品。袋式结构一般包括一排或多排柔性过滤元件,它们通常以滤袋的形式支撑在袋式结构内部。滤袋一般具有袖套状管式构型,其中气体流定向穿过袋式,使得在袋室工作期间被过滤的颗粒物质沉积在袖套外部。将每个滤袋固定并保持在某一位置上,使得气体能够有效地通过袋,从而除去夹带的颗粒。美国专利4,983,434举例说明了袋式过滤器的结构和其中所用的过滤器,该专利以引用方式并入本文。集尘器也可以使用具有一般为管状构型(圆形或非圆形)的筒式过滤元件,该构造通常包含褶状过滤介质。美国专利5,632,791举例说明了一种筒式过滤元件,该专利以引用方式并入本文。

在“袋室”(本文中用于指代使用滤袋和使用滤筒的两种结构)工作期间,当颗粒积聚引起滤袋两端出现明显压降时,必须定期清洁过滤元件(包括滤袋和滤筒,本文中可互换地称为“元件”或“滤袋”)。清洁袋式过滤器的一种方法称为“脉冲喷射”清洁或“反向脉冲”清洁,其是通过使滤袋经受短脉冲反向气体流,气体流进入滤袋内部,并将过滤下来的颗粒物质从位于袋式下部用于收集的滤袋的外部逐出。当清洁空气通过文丘里管时,文丘里管会吸出二次空气,产生的气团猛烈地扩张袋子,并释放收集的颗粒物质(“尘饼”)。滤袋通常将快速回缩至笼架,并且清洁过的过滤器继续收集颗粒。脉冲喷射是袋式和筒式过滤器中对袋式过滤介质本身压力最大的清洁类型。当层压材料用作脉冲喷射型过滤器的介质时,由反复扩展和收缩引起的对介质的应力会造成多层过滤介质分层。

美国专利6,740,142公开了一种袋式过滤介质,这种袋式过滤介质由至少部分地被细旦纤维层覆盖的基底形成,其中细旦纤维具有约0.01至约0.5微米的直径,并且细旦纤维层具有0.005至2.0克/平方米(gsm)的基重和0.1至3微米的厚度。根据美国专利6,740,142所公开,要制备该过滤介质,可直接在基底的表面上形成纳米纤维网。

本发明涉及形成层压过滤介质的方法以及由此制备的层压过滤介质。所得的过滤介质在使用反向脉冲进行清洁时具有改善的抗分层性,并且过滤效率高、易于清洁、具有必需的强度特性,而且制备过程经济实惠。

发明概述

在第一实施方案中,本发明涉及形成复合片材的方法,所述复合片材包括粘合层压到纳米纤维网上的基底,所述方法包括提供具有收集表面的载体层,在载体层的收集表面上形成纳米纤维网,提供具有两个主表面的柔性多孔基底,将粘合剂层施加到基底的一个表面的至少一部分上,使粘合剂层与纳米纤维网接触并将纳米纤维网粘结到基底上,以及任选地移除载体层,从而形成复合片材。

在另一个实施方案中,本发明涉及用于将颗粒物质从气体流中分离的过滤元件,该过滤元件包括过滤介质,过滤介质包括具有两个主表面的基底,其中基底在其一个主表面上粘合层压到具有小于约2gsm基重的第一纳米纤维网上。

在另一个实施方案中,本发明涉及用于将颗粒物质从气体流中分离的过滤元件,该过滤元件包括过滤介质,过滤介质只包括一个具有两个主表面的基底,其中基底在其一个主表面上以面对面的关系粘合层压到具有小于约2g sm基重的第一纳米纤维网上。

发明详述

如本文所用,“纳米纤维”是指具有小于约1000nm、甚至小于约800nm、甚至介于约50nm和500nm之间、甚至介于约100nm和400nm之间的数均直径或横截面的纤维。如本文所用,术语“直径”包括非圆形形状的最大横截面。

术语“非织造材料”是指包括多根无规分布的纤维的纤维网。纤维通常可以彼此粘结,或者可以不粘结。纤维可以是短纤维或连续纤维。纤维可包含一种材料或多种材料,也可以是不同纤维的组合,或者是分别包含不同材料的类似纤维的组合。

如本文所用,术语“纳米纤维网”是指包含纳米纤维的非织造纤维网。

本文所用的“载体层”和“稀松布”是指用来粘结、粘附或层压纳米纤维网的任何平面结构。有利的是,可用于本发明的载体层或稀松布为纺粘非织造层,但可由非织造纤维等的梳理纤维网、以及其他非织造和织造织物与防粘纸制成。

本发明的方法可用于将低基重的纳米纤维网粘合层压到基底上。在本发明之前,尚未发现一种方法来形成包括基底和具有小于约2gsm基重纳米纤维网的复合材料。具有如此低基重的纳米纤维网在处理过程中容易破损。我们发现,仅仅通过静电纺纱将低基重纳米纤维网纺粘到基底上所形成的复合织物缺乏所需的耐久性,不能用作颗粒过滤器,并且容易分层。

根据本发明,首先在载体层或稀松布上直接形成低基重纳米纤维网;然后,使用涂敷辊以不连续方式将粘合剂层施加到单独基底的主表面的至少一部分上。涂敷辊具有凸起部分的图案,以便以不连续薄膜的方式施加粘合剂。例如,具有凸起点的凹型辊适于以不连续的方式施加粘合剂。

接下来,使稀松布/纳米纤维网与基底接触,并且纳米纤维网与涂覆有粘合剂的基底表面呈面对面关系。再接下来,使用由两个辊形成的辊隙或其他使纳米纤维网和涂覆有粘合剂的基底接触的装置来使纳米纤维网与基底接触,使纳米纤维网接触涂覆有粘合剂的表面。咬送辊可以彼此接触,或者可以在辊表面之间存在固定或可变的间隙。有利的是,辊隙在软辊和硬辊之间形成。

粘合剂可以是熔融粘合剂或溶剂基粘合剂。如果使用熔融粘合剂,则要在高于该粘合剂的软化点或熔点的温度下施加粘合剂并且使纳米纤维网与基底接触。如果使用溶剂基粘合剂,则可在室温下进行粘合层压加工。作为另外一种选择,如果过滤器旨在用于高温气体过滤,则粘合剂可以为高温接合剂。高温接合剂可以为分散体形式。本领域的技术人员将容易地知道,对于可用于本发明方法的适用粘合剂没有具体限制。适用粘合剂的实例包括聚氨酯、乙烯乙酸乙烯酯、聚酯共聚物、聚烯烃、聚酰胺、苯乙烯共聚物、氯丁二烯、丙烯酸类、聚酰亚胺、聚四氟乙烯、聚醚酰亚胺和聚苯硫醚。

如果需要,在形成后,可将稀松布/纳米纤维网/粘合剂/基底复合结构卷起并贮存或运输。之后,可将复合结构展开,并将稀松布移除,使低基重纳米纤维网层压体留在基底上。在某些情况下,可能需要使稀松布保留在原位,以在处理和使用过程中保护纳米纤维网层。

粘合剂将纳米纤维网牢固地连结到基底上,使所得的层压体具有高度耐久性和抗分层性。所得的层压体可经受多次喷气体流脉冲循环。例如,在层压体根据VDI 3926经受至少30个循环后,更优选地在根据VDI 3926进行至少一个完整测试后,基底和纳米纤维网仍保持粘结。

纳米纤维网主要包含或仅包含纳米纤维,而纳米纤维有利地通过诸如传统静电纺纱或电吹的静电纺纱方法制备,以及在某些情况下通过熔喷法或包括熔膜原纤化的其他此类适用方法制备。传统的静电纺纱是在美国专利4,127,706中所述的技术,该专利全文并入本文。电吹法在世界专利公布WO 03/080905中有所公开,该专利全文以引用方式并入本文。熔膜原纤化方法在世界专利公布WO 2005/103355中有所公开,该专利全文以引用方式并入本文。

对于可用于制备本发明的纳米纤维网的聚合物材料并没有特别限制,所述聚合物材料包括加聚物和缩聚物材料,例如聚缩醛、聚酰胺、聚酯、聚烯烃、纤维素醚及酯、聚硫化亚烃、聚亚芳基氧化物、聚砜、改性聚砜聚合物、聚酰胺酰亚胺、聚酰亚胺、以及它们的混合物。属于这些类别的优选材料包括:聚氯乙烯、聚甲基丙烯酸甲酯(及其他丙烯酸类树脂)、聚苯乙烯、以及它们的共聚物(包括ABA型嵌段共聚物)、聚偏氟乙烯、聚偏氯乙烯、多种水解度(87%至99.5%)的交联与非交联形式的聚乙烯醇、聚酰胺酰亚胺和聚酰亚胺。优选的加聚物趋于是玻璃状的(玻璃化转变温度高于室温)。聚氯乙烯和聚甲基丙烯酸甲酯、聚苯乙烯聚合物的组合物或合金或低结晶度的聚偏氟乙烯和聚乙烯醇材料便是如此。一类优选的聚酰胺缩聚物为尼龙材料,例如尼龙-6、尼龙-6,6、尼龙6,6-6,10等。当通过熔喷法形成本发明的聚合物纳米纤维网时,可使用能够熔喷形成纳米纤维的任何热塑性聚合物,包括聚烯烃,例如聚乙烯、聚丙烯和聚丁烯;聚酯,例如聚对二苯甲酸乙二醇酯;以及聚酰胺,例如上述尼龙聚合物。

适用于本发明的基底的实例包括各种非织造织物、织造织物、针织织物、毡、纸材等。适用的非织造材料可包括熔喷纤维、纺粘纤维、射流喷网纤维、干法成网纤维或湿法成网纤维、纤维素纤维、熔喷纤维、或它们的共混物。基底可由多种常规纤维制成,这些纤维包括纤维素纤维(例如棉花、大麻或其他天然纤维)、无机纤维(包括玻璃纤维、碳纤维)、或由诸如聚酯、尼龙、聚烯烃的聚合物形成的有机纤维、或其他常规纤维或聚合材料以及它们的混合物。通常使用对空气通过与颗粒截留效应表现出优异弹性和抗性的纤维。织物应相对于夹带在空气中需要过滤的化学颗粒而言具有稳定性,并且相对于需要过滤的气体流的温度和由介质捕获的颗粒的温度而言具有稳定性。可用于本发明的基底的多样性为定制设计过滤介质提供了灵活性,以满足各种各样的特定过滤需求。

本发明的另一个目的是为用于袋式和筒型集尘器的过滤元件提供高效过滤介质,并且提供包含这些过滤介质的过滤元件。该过滤介质包含至少一种低基重纳米纤维网,其以耐用、机械稳定的复合结构粘合层压到基底。当诸如气体的流体流经过滤介质时,该层压体以最小的流量限制提供优异的过滤效率。基底可位于流体流上游、下游或内层中。

过滤介质包含基重小于2gsm、甚至介于约0.7gsm至约2gsm之间的第一纳米纤维网。该介质还包含基底,第一纳米纤维网以面对面的方式粘合层压到所述基底上。

本发明的过滤器元件可以维持在有用的开放状态下,方法为将过滤介质支撑在位于过滤元件内部的合适支撑结构上,或在过滤元件的颈部使用保持架。此类支撑结构可以是绕线或笼状结构的形式。作为另外一种选择,支撑结构可以是与过滤元件形状相似的多孔陶瓷或金属结构。如果支撑结构与过滤介质的大部分表面积接触,那么支撑结构应为可穿过的以允许气体通过所述结构,并且不应明显地增加过滤元件的压降。可将此类支撑结构成形为使得它们接触过滤元件的整个内部并将元件保持在最佳的形状。

本发明的过滤器可用于多种过滤应用,包括用于集尘的脉冲清洁和非脉冲清洁过滤器,燃气涡轮以及发动机进气或吸气系统;燃气涡轮进气或吸气系统、重型发动机进气或吸气系统、轻型汽车发动机进气或吸气系统;Z型过滤器;汽车车内通风;越野车车内通风、磁盘驱动器通风、复印机墨粉清除;商业或住宅过滤应用的采暖通风与空调过滤器。

实施例

在以下非限制性实施例中,采用了下述测试方法以确定各种所记录的特性和性能。ASTM是指美国材料与试验协会。ISO是指国际标准化组织。TAPPI是指纸浆与造纸工业技术协会。

过滤效率、压降和循环时间根据VDI 3926进行测量,其内容以引用方式并入本文。

在VDI 3926中,以微克/立方米(μg·m-3)为单位测量过滤效率(也称为漏尘率),以帕斯卡(Pa)为单位测量压降,以秒(s)为单位测量循环时间。过滤效率表示通过过滤器的灰尘量。压降为过滤器两面之间的压力差。循环时间是释放尘饼的两次脉冲之间的持续时间。达到某一压降(在VDI 3926中,最大压降设为1000Pa)时,会自动形成反向流脉冲。VDI3926基于如下设置:起始循环30次,然后循环10,000次以模拟过滤器老化,最后再循环30次。在最后30个循环结束时,测量过滤效率、压降和循环时间。

良好的过滤器应具有低过滤效率数(相当于低渗漏)、低压降和长循环时间。低压降符合最终使用者的节能需求,因为需要较低的压力来迫使气体通过过滤器。长循环时间符合较长过滤器寿命的需求。在实际使用中,少于30秒的循环时间表明必须更换过滤介质。

透气率根据ISO 9237测定,以1/dm2/min为单位进行记录。

实施例1至3

使用PCT国际公布WO 03/080905的方法,通过将尼龙6,6纳米纤维直接电吹至聚酯非织造稀松布上来制备纳米纤维网样本。纳米纤维网的纤维具有约400nm的平均纤维直径。纳米纤维网具有1.7gsm的基重。

纳米纤维网按如下方法通过粘合层压粘结至14盎司/平方码的聚酯毡样本上。通过凹型辊将聚氨酯粘合剂的不连续层施加到毡的一个表面上。将毡和纳米纤维网/稀松布喂送到两个辊之间的辊隙中,涂覆有粘合剂的毡表面接触纳米纤维网/稀松布的纳米纤维网侧。用于形成实施例1至3的层压体的辊隙压力分别为40psi、60psi和80psi。测试之前将稀松布从实施例1的层压体中移除。实施例2和3的层压体中的稀松布保留在原位。

比较实施例1

根据美国专利6,740,142所述的方法来制备过滤介质样本。通过世界专利公布WO 03/080905的方法来纺丝具有2gsm基重的尼龙6,6纳米纤维网。将纳米纤维网直接纺粘到14盎司/平方码的聚酯毡基底上。平均纤维直径为约400nm。通过热重量分析,尼龙6,6纳米纤维网的熔融温度为227℃。通过加工温度、整合压力和停留时间的约100种不同组合来制备样本。根据美国专利6,740,142,选择的温度接近于尼龙-6,6纳米纤维网的熔融温度。温度范围介于220℃和235℃之间;整合压力范围介于20巴和30巴之间;停留时间范围介于30秒和70秒之间。通过手动摩擦基底表面上的纳米纤维网,选出在纳米纤维网和基底之间看似具有最强粘附性的样本。通过在227℃的温度、30巴的压力、60秒的停留时间下在压机中整合所选样本来制备样本。

无论在整合之前还是在整合之后,样本在纳米纤维网和毡之间均表现出较差的粘附性,用拇指在纳米纤维网表面上轻微摩擦就可以将纳米纤维网从毡上分离开来。根据VDI 3926测试处理样本,经过不到30次循环即发生分层。

表1包括实施例1至3和比较实施例1的透气率、过滤效率、压降和循环时间。未得到比较实施例1的过滤效率、压降和循环时间数据,因为样本在测试的前30个循环内即已分层。由表1可见,实施例1至3的介质提供优异的抗分层性。还发现,实施例1至3的过滤介质在低压降下具有高过滤效率。

表1

  总基重  (gsm)  纳米纤维  网基重  (gsm)  透气率  (1/dm2/min)  过滤效率  (μg/m3)  压降  (Pa)  循环时间  (秒)  实施例1  531  1.7  98  17.6  194  361  实施例2  533  1.7  96  18.5  217  347  实施例3  515  1.7  101  15.1  170  432  比较实施  例1  466  2  143  无数据  (已分层)  无数据  (已分层)  无数据  (已分层)

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号