首页> 中国专利> 采用银包套制备的铁基化合物超导线材或带材

采用银包套制备的铁基化合物超导线材或带材

摘要

采用银包套制备的单芯或多芯铁基化合物超导线带材,其线芯为具有超导性能的铁基化合物,线芯外包覆有银或银合金材料。银或银合金包套外还可以包覆其它金属或合金材料。该超导线带材采用粉末装管法制备:将铁基化合物的初始粉装入银管、银合金管或银与其它金属的复合管内,在管内填充紧密,封闭管两端后,将金属管旋锻、拉拔、轧制、加工得到线带材;再经真空或惰性气氛退火,得到本发明超导线带材。由于退火后在超导芯和包套材料之间无反应层,并且银包套在高温下产生的银蒸汽消除FeAs相、提高了铁基超导体的晶粒连接性,本发明的铁基化合物新型超导线带材具有良好的电流输运性能。

著录项

  • 公开/公告号CN101707083A

    专利类型发明专利

  • 公开/公告日2010-05-12

    原文格式PDF

  • 申请/专利权人 中国科学院电工研究所;

    申请/专利号CN200910241918.4

  • 申请日2009-12-15

  • 分类号H01B12/02(20060101);C04B35/26(20060101);C04B35/40(20060101);

  • 代理机构11251 北京科迪生专利代理有限责任公司;

  • 代理人关玲

  • 地址 100080 北京市海淀区中关村北二条6号

  • 入库时间 2023-12-17 23:57:08

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-01-25

    授权

    授权

  • 2010-06-30

    实质审查的生效 IPC(主分类):H01B12/02 申请日:20091215

    实质审查的生效

  • 2010-05-12

    公开

    公开

说明书

技术领域

本发明涉及一种采用银包套制备的铁基化合物超导材料。

背景技术

2008年1月初,细野秀雄小组发现在铁基氧磷族元素化合物LaOFeAs中,将部分氧以掺杂的方式用氟取代,可使LaO1-xFxFeAs的临界温度达到26K,这一突破性进展开启了科学界新一轮的高温超导研究热潮[Kamihara Y.et al.,Iron-based layered superconductorLaO1-xFxFeAs(x=0.05-0.12)with Tc=26K.J.Am.Chem.Sco.130,3296-3297(2008)]。在新超导体发现的浪潮中,我国科学家占据了重要位置,发现了一系列具有代表性和高临界转变温度的铁基超导体。

铁基超导体是一种新发现的高温超导体,其最高超导转变温度目前已达到55K,并有可能继续提高。与传统超导材料相比,铁基超导体有转变温度高、上临界场大、临界电流的强磁场依赖性小等优点,是一种在20-70K范围内具有极大应用前景的新型超导材料。与氧化物高温超导材料相比,铁基超导体的晶体结构更为简单、相干长度大、各向异性小、制备工艺简单,因此铁基超导材料的制备受到国际上的广泛关注。科学家们在关注其超导机理的同时,也十分重视其潜在的应用前景。目前,将铁基超导体制备成线带材的工作也已经开展,但所采用的铁、铌、钽等包套材料在高温退火后,会与超导芯反应,在包套材料和超导芯之间生成反应层,极大阻碍了电流在超导芯中的输运。此外,采用固态反映法制备的铁基超导体普遍存在FeAs相,包覆在超导晶粒周围,严重阻碍了超导电流在晶粒之间的传输。

发明内容

本发明的目的是克服现有技术的缺点,消除包套材料和超导芯之间的反应层,利用银包套在高温下产生的银蒸汽促进铁基超导晶粒的生长,消除FeAs相,增强晶粒间的连接性,提高铁基化合物超导线带材的电流输运性能,提出一种采用银包套制备的铁基化合物超导线材或带材。

本发明铁基化合物超导线材和带材具有单芯或多芯结构,线芯为具有超导性能的铁基化合物超导材料,线芯外可以只包覆银或银合金材料,也可以在银或银合金材料外再包覆一层其它金属材料。

本发明的特征在于先制备铁基化合物超导材料初始粉。铁基化合物超导材料主要包括碱金属:Cs、Rb、K、Na掺杂的三元铁基化合物超导材料A1-xBxFe2As2(A=Ba、Sr或Ca,B=Cs、Rb、K、Na,x=0-0.6),以及氟掺杂的四元铁基化合物超导材料LnFeAsO1-δFδ(Ln为选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y中的一种或多种元素;δ=0-0.4)。初始粉可以是未经烧结的生粉,即几种原料的均匀混合物,也可以是经过500-1500℃烧结后的熟粉:即具有超导性铁基化合物。

将铁基化合物的初始粉装入银管、银合金管或银与其它金属的复合管内。银合金选自银金、银铜、银镍、银铂、银铁、银钯、银钨、银碳或银钼合金。银或银合金包套外包覆的材料选自铁、铜、低碳钢、不锈钢、铬、钒、锰、钛、锆、钼、镍、铌、钨、铪或钽。

封闭所述的管的两端后,将金属管旋锻、拉拔、轧制、加工得到单芯线材或带材;用相同的工艺方法也可以制备银或银合金包套的多芯线材或带材。在真空或惰性气氛下将单芯或多芯线带材经500-960℃退火,得到本发明超导线材或带材。

本发明所采用的粉末装管法、线带材的拉拔轧制、在真空或惰性气氛下退火等工艺均为公知工艺。

本发明的优点是消除包套材料和超导芯之间的反应层,利用银包套在高温下产生的银蒸汽促进铁基超导晶粒的生长,消除FeAs相,增强晶粒间的连接性,提高铁基化合物超导线带材的电流输运性能。本发明的银包套铁基超导线材和带材,其中银包套材料除具有包覆、支撑、热传导等传统作用外,还作为高温下的银蒸汽源。在退火过程中,银蒸汽扩散到超导芯内部,促进铁基超导晶粒的生长,消除FeAs相,增强晶粒间的连接性,提高超导线材和带材的电流输运能力。这对于发展新型铁基超导线带材具有重要的意义。

附图说明

图1是本发明实例17的铁银复合包套的铁基单芯线材的横截面的照片。

具体实施方式

实例1

首先将La、Fe、As、Fe2O3以及LaF3的粉末按照化学式LaO0.9F0.1FeAs所示的化学比,准确称量La 4.695克,Fe 0.781克,As 2.620克,Fe2O3 1.675克,LaF3 0.228克,并将此粉末置于氩气氛手套箱中研磨,使其充分均匀混合。将混合均匀后的粉末装入10cm长的银管中,银管内径5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭铁管两端,继而对这一装有混合粉末的银管进行旋锻至4mm,然后拉拔至1mm,得到超导线材。将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至500℃保温10小时,再升温至800℃保温100小时,最后随退火炉冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,,超导转变温度不低于26K、传输临界电流密度大于1000A/cm2(4.2K,0T)。

实例2

首先将Sm,Fe2O3,FeAs,As以及SmF3的粉末按照化学式SmO0.85F0.15FeAs所示的化学比,准确称量Sm 4.800克,Fe2O31.521克,FeAs 1.904克,As 1.427克,SmF3 0.348克,并将此粉末置于氩气氛手套箱中研磨,使其充分均匀混合。将混合均匀后的粉末装入8cm长的银铁合金管中,管内径6mm,外径7.6mm,使粉末在管中达到充实、紧密,然后封闭银管两端,继而将封闭好的合金管装入一根内径为8mm,外径为10mm的铁管中,两端压紧。对这一装有初始粉末的复合管进行旋锻至6mm,然后拉拔至2mm,制成超导线材。将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至500℃保温15小时,再升温至850℃保温80小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于50K、传输临界电流密度大于2000A/cm2(4.2K,0T)。

实例3

首先将Ce、Fe、As、Fe2O3以及CeF3的粉末按照化学式CeO0.8F0.2FeAs所示的化学比,准确称量Ce 4.549克,Fe 0.907克,As 2.606克,Fe2O3 1.481克,CeF3 0.457克,并将此粉末置于氩气氛手套箱中研磨,使其充分均匀混合。将混合均匀后的粉末装入10cm长的银管中,管内径6.5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭银管两端。将装入超导先驱粉的银管装入内径8.2mm,外径10mm的铁管中,两端压紧。继而对这一铁银符合管进行旋锻至3mm,然后拉拔至1mm,加工成线材。将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至500℃保温20小时,再升温至900℃保温50小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于40K、传输临界电流密度大于1500A/cm2(4.2K,0T)。

实例4

首先将固态反应法烧结好的PrO0.75F0.25FeAs称量10克,置于氩气氛手套箱中研磨均匀。将研磨均匀后的初始粉装入10cm长的银管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银管管进行旋锻至8mm,然后拉拔至3mm,将该棒材截成长度相等的7段,再将这7段线材放入内径为9.2mm,外径为12的铜管中,两端压紧。再将这根多芯铜管将进行旋锻至8mm,然后拉拔至1.5mm,将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至950℃保温30小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于48K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

实例5

首先将Nd、Fe、As、Fe2O3以及LaF3的粉末按照化学式NdO0.7F0.3FeAs所示的化学比,准确称量Nd 4.447克,Fe 1.020克,As 2.567克,Fe2O3 1.276克,NdF3 0.689克,并将此粉末置于氩气氛手套箱中研磨,使其充分均匀混合。将研磨均匀后的初始粉装入10cm长的银金合金管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银金合金管进行旋锻至8mm,然后拉拔至2mm,将该棒材截成长度相等的19段,再将这19段线材放入内径为10.2mm,外径为12的铌管中,两端压紧。再将这根多芯铌管将进行旋锻至8mm,然后拉拔至1.5mm,将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,升温至500℃保温20小时,然后升温至850℃保温50小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于42K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

实例6

首先将固态反应法制备的GdO0.85FeAs称量10克,置于氩气氛手套箱中研磨,使其充分研磨均匀。将研磨均匀的粉末装入10cm长的银管中,银管内径5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭铁管两端,继而对这一装有混合粉末的银管进行旋锻至4mm,拉拔至1mm,继而按一定道次轧制成厚度为0.5mm的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至500℃保温10小时,再升温至950℃保温100小时,最后随退火炉冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于26K、传输临界电流密度大于1000A/cm2(4.2K,0T)。

实例7

首先将Sm,Fe2O3,FeAs,As以及SmF3的粉末按照化学式SmO0.6F0.4FeAs所示的化学比,准确称量Sm 4.368克,Fe 1.123克As 2.511克,Fe2O3 1.071克,SmF3 0.927克,并将此粉末置于氩气氛手套箱中研磨,使其充分均匀混合。将混合均匀后的粉末装入8cm长的银铜合金管中,管内径6mm,外径7.6mm,使粉末在管中达到充实、紧密,然后封闭银管两端,继而将封闭好的合金管装入一根内径为8mm,外径为10mm的铁管中,两端压紧。对这一装有初始粉末的复合管进行旋锻至6mm,然后拉拔至2mm,再按一定道次轧制成厚为0.6的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至500℃保温15小时,再升温至900℃保温80小时,最后随炉子冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于50K、传输临界电流密度大于2000A/cm2(4.2K,0T)。

实例8

首先将固态反应法制备的SmO0.8F0.2FeAs称量10克,置于氩气氛手套箱中研磨均匀。将研磨均匀的粉末装入10cm长的银管中,管内径6.5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭银管两端。将装入超导先驱粉的银管装入内径8.2mm,外径10mm的铁管中,两端压紧。继而对这一铁银符合管进行旋锻至3mm,拉拔至1mm,然后按一定道次轧制成厚度为0.8mm的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至850℃保温40小时,最后随炉子冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于52K、传输临界电流密度大于2500A/cm2(4.2K,0T)。

实例9

首先将固态反应法烧结好的SmO0.7F0.3FeAs称量10克,置于氩气氛手套箱中研磨均匀。将研磨均匀后的初始粉装入10cm长的银管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银管管进行旋锻至8mm,然后拉拔至3mm,将该棒材截成长度相等的7段,再将这7段线材放入内径为9.2mm,外径为12的铜管中,两端压紧。再将这根多芯铜管将进行旋锻至8mm,拉拔至2mm,然后按一定道次轧制成厚度为0.6mm的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至800℃保温30小时,最后随炉子冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于50K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

实例10

首先将Nd、Fe、As、Fe2O3以及LaF3的粉末按照化学式NdO0.9F0.1FeAs所示的化学比,准确称量Nd 4.786克,Fe 0.767克,As 2.572克,Fe2O3 1.645克,NdF3 0.230克,并将此粉末置于氩气氛手套箱中研磨,使其充分均匀混合。将研磨均匀后的初始粉装入20cm长的银金合金管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银金合金管进行旋锻至8mm,然后拉拔至2mm,将该棒材截成长度相等的19段,再将这19段线材放入内径为10.2mm,外径为12的铁管中,两端压紧。再将这根多芯铁管将进行旋锻至8mm,拉拔至1.5mm,然后按一定道次轧制成厚度为0.5mm的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至950℃保温20小时,最后随炉子冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于48K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

实例11

首先将固态反应法制备的Ba0.6K0.4FeAs称量10克,置于氩气氛手套箱中研磨,使其充分均匀混合。将混合均匀后的粉末装入10cm长的银管中,银管内径5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭铁管两端,继而对这一装有混合粉末的银管进行旋锻至4mm,然后拉拔至1mm,得到超导线材。将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至500℃保温10小时,再升温至800℃保温100小时,最后随退火炉冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于1000A/cm2(4.2K,0T)。

实例12

在氩气氛手套箱中,将Ba屑,K块,Fe粉,As粉末按照化学式Ba0.5K0.5Fe2As2所示的摩尔比,称量Ba 1.963克、K 0.559克,Fe 3.193克,As 4.284克,充分均匀混合,制得先驱粉。将混合均匀后的粉末装入8cm长的银铁合金管中,管内径6mm,外径7.6mm,使粉末在管中达到充实、紧密,然后封闭银管两端,继而将封闭好的合金管装入一根内径为8mm,外径为10mm的铁管中,两端压紧。对这一装有初始粉末的复合管进行旋锻至6mm,然后拉拔至2mm,制成线材。将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至500℃保温15小时,再升温至850℃保温80小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于2000A/cm2(4.2K,0T)。

实例13

在氩气氛手套箱中,将Ba屑,K块,FeAs粉末按照化学式Ba0.7K0.3Fe2As2所示的摩尔比,称量Ba 2.602克、K0.318克,FeAs 7.080克,充分均匀混合,制得先驱粉。将混合均匀后的粉末装入10cm长的银管中,管内径6.5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭银管两端。将装入超导先驱粉的银管装入内径8.2mm,外径10mm的铁管中,两端压紧。继而对这一铁银符合管进行旋锻至3mm,然后拉拔至1mm,加工成线材。将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至500℃保温20小时,再升温至900℃保温50小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于1500A/cm2(4.2K,0T)。

实例14

在氩气氛手套箱中,将固态反应法烧结好的Ba0.8K0.2Fe2As2称量10克,研磨均匀,将研磨均匀后的初始粉装入10cm长的银管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银管管进行旋锻至8mm,然后拉拔至3mm,将该棒材截成长度相等的7段,再将这7段线材放入内径为9.2mm,外径为12的铜管中,两端压紧。再将这根多芯铜管将进行旋锻至8mm,然后拉拔至1.5mm,将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至950℃保温30小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

实例15

在氩气氛手套箱中,将BaAs,KAs,Fe粉,As粉末按照化学式Ba0.9K0.1Fe2As2所示的摩尔比,称量BaAs 4.478克、KAs 0.601克,Fe 2.945克,As 1.976克,充分均匀混合,制得先驱粉。将研磨均匀后的先驱粉装入10cm长的银金合金管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银金合金管进行旋锻至8mm,然后拉拔至2mm,将该棒材截成长度相等的19段,再将这19段线材放入内径为10.2mm,外径为12的铌管中,两端压紧。再将这根多芯铌管将进行旋锻至8mm,然后拉拔至1.5mm,将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,升温至500℃保温20小时,然后升温至850℃保温50小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于37K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

实例16

在氩气氛手套箱中,将固态反应法烧结好的Sr0.55K0.45Fe2As2称量10克,研磨均匀,将研磨均匀的粉末装入10cm长的银管中,银管内径5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭铁管两端,继而对这一装有混合粉末的银管进行旋锻至4mm,拉拔至1mm,继而按一定道次轧制成厚度为0.5mm的带材.将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至500℃保温10小时,再升温至950℃保温100小时,最后随退火炉冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于1000A/cm2(4.2K,0T)。

实例17

在氩气氛手套箱中,将Sr屑,K块,Fe粉,As粉末按照化学式Sr0.6K0.4Fe2As2所示的摩尔比,称量Sr 1.594克、K 0.474克,Fe 3.387克,As 4.544克,充分均匀混合,制得先驱粉。将混合均匀后的粉末装入8cm长的银管中,管内径6.4mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭银管两端,继而将封闭好的合金管装入一根内径为8.2mm,外径为11mm的铁管中,两端压紧。对这一装有初始粉末的复合管进行旋锻至6mm,然后拉拔至2mm。将加工后的线材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至500℃保温15小时,再升温至900℃保温40小时,最后随炉子冷却至室温,便制成本发明的铁基超导线材。线材的横截面如附图1所示,超导芯为Sr0.65K0.35Fe2As2铁基超导体,外面是银/铁复合包套。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于37K、传输临界电流密度大于2000A/cm2(4.2K,0T)。

实例18

在氩气氛手套箱中,将Sr屑,K块,FeAs粉末按照化学式Sr0.75K0.25Fe2As2所示的摩尔比,称量Sr 1.950克、K 0.920克,FeAs 7.760克,充分均匀混合,制得先驱粉。将研磨均匀的粉末装入10cm长的银管中,管内径6.5mm,外径8mm,使粉末在管中达到充实、紧密,然后封闭银管两端。将装入超导先驱粉的银管装入内径8.2mm,外径10mm的铁管中,两端压紧。继而对这一铁银符合管进行旋锻至3mm,拉拔至1mm,然后按一定道次轧制成厚度为0.8mm的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后,升温至850℃保温40小时,最后随炉子冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于2500A/cm2(4.2K,0T)。

实例19

在氩气氛手套箱中,将Ba屑,K块,Fe粉,As粉末按照化学式Ba0.5K0.5Fe2As2所示的摩尔比,称量Ba 1.963克、K 0.559克,Fe 3.193克,As 4.284克,充分均匀混合,制得先驱粉。将研磨均匀后的初始粉装入10cm长的银管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银管管进行旋锻至8mm,然后拉拔至3mm,将该棒材截成长度相等的7段,再将这7段线材放入内径为9.2mm,外径为12的铜管中,两端压紧。再将这根多芯铜管将进行旋锻至8mm,拉拔至2mm,然后按一定道次轧制成厚度为0.6mm的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至800℃保温30小时,最后随炉子冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

实例20

在氩气氛手套箱中,将Ba屑,K块,FeAs粉末按照化学式Ba0.7K0.3Fe2As2所示的摩尔比,称量Ba 2.602克、K 0.318克,FeAs 7.080克,充分均匀混合,制得先驱粉。将研磨均匀后的初始粉装入20cm长的银金合金管中,管内径8mm,外径10mm,使粉末在管中达到充实、紧密,然后封闭不锈钢管两端,继而对这一装有混合粉末的银金合金管进行旋锻至8mm,然后拉拔至2mm,将该棒材截成长度相等的19段,再将这19段线材放入内径为10.2mm,外径为12的铁管中,两端压紧。再将这根多芯铁管将进行旋锻至8mm,拉拔至1.5mm,然后按一定道次轧制成厚度为0.5mm的带材。将加工后的带材置于真空退火炉中,于室温下抽真空,待达到10-3帕的真空度后充入高纯氩气,然后升温至950℃保温20小时,最后随炉子冷却至室温,便制成本发明的铁基超导带材。通过综合物性测量系统(PPMS-9,美国Qunatum Design公司制造)和超导线带材临界电流测试系统(日本东北大学强磁场实验室自制设备)对样品的超导转变温度和临界电流进行测量,超导转变温度不低于35K、传输临界电流密度大于1800A/cm2(4.2K,0T)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号