首页> 中国专利> 用于平坦化磁记录盘的方法及具有平坦化表面的盘

用于平坦化磁记录盘的方法及具有平坦化表面的盘

摘要

本发明公开一种用于平坦化磁记录盘的方法及具有平坦化表面的盘。一种用于平坦化具有升高的岸台和凹陷的沟槽的表面特征的磁记录盘的方法,包括在表面特征上形成固化的全氟聚醚聚合物的两层涂层。该盘可以具有保护碳覆层,该保护碳覆层的表面复制岸台和沟槽的形貌。液态的官能化PFPE被涂敷在盘表面上然后被固化,以形成具有接合到该碳覆层的官能化端基的第一涂层。然后,液态的非官能化PFPE聚合物被涂敷在官能化PFPE涂层上并被固化,以形成第二涂层。组合的涂层使盘表面基本上平坦化,从而在岸台上的涂层的顶部与沟槽上的涂层的顶部之间存在最小凹陷。

著录项

  • 公开/公告号CN101604529A

    专利类型发明专利

  • 公开/公告日2009-12-16

    原文格式PDF

  • 申请/专利权人 日立环球储存科技荷兰有限公司;

    申请/专利号CN200910140654.3

  • 申请日2009-06-10

  • 分类号G11B5/00(20060101);G11B5/84(20060101);G11B5/82(20060101);G11B5/72(20060101);

  • 代理机构11105 北京市柳沈律师事务所;

  • 代理人张波

  • 地址 荷兰阿姆斯特丹

  • 入库时间 2023-12-17 23:10:12

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-07-10

    未缴年费专利权终止 IPC(主分类):G11B5/00 授权公告日:20120425 终止日期:20170610 申请日:20090610

    专利权的终止

  • 2014-06-18

    专利权人的姓名或者名称、地址的变更 IPC(主分类):G11B5/00 变更前: 变更后: 申请日:20090610

    专利权人的姓名或者名称、地址的变更

  • 2012-04-25

    授权

    授权

  • 2010-02-10

    实质审查的生效

    实质审查的生效

  • 2009-12-16

    公开

    公开

说明书

技术领域

本发明主要涉及具有升高的岸台(elevated land)和凹陷的沟槽(recessedgroove)的预构图表面特征(pre-patterned surface feature)的磁记录盘,更具体地,涉及一种用于平坦化该盘表面的方法。

背景技术

传统的磁记录硬盘驱动器使用水平记录或者垂直记录,其中在水平记录中限定磁记录数据位的磁化区域沿硬盘上记录层的平面取向,而在垂直记录中磁化区域垂直于记录层的平面取向。传统的盘是“连续介质”(CM)盘,其中记录层是磁性材料的连续层,当写头在磁性材料上写入时,该磁性材料形成为包含磁记录数据位的同心数据轨道。记录层还包括伺服区(servosector)的预记录图案,该预记录图案不能被写头改写并且在读和写期间用于将读头/写头定位到期望的数据轨道及将头保持在该数据轨道上。传统的CM盘具有保护覆层(protective overcoat)(通常由无定形碳形成),该保护覆层覆盖记录层并提供没有表面特征的通常光滑的平坦表面。读头/写头位于气垫滑块上,当盘旋转时该气垫滑块被支撑于空气的薄膜或“气垫(air-bearing)”上的平滑盘表面上方。

CM盘的变型为“离散轨道介质”(DTM)盘,意思为连续磁性材料的同心数据轨道通过同心非磁保护带而彼此径向分离开。DTM盘在现有技术中是公知的,如在美国专利4912585中的示例所述。在DTM盘中,数据轨道一般是包含磁性材料的升高岸台,非磁保护带是凹陷在升高岸台之下的沟(trench)或沟槽(groove)。非磁保护带或者由非磁性材料形成,或者包含磁性材料,但是该磁性材料凹陷在升高的数据轨道之下足够深,从而不会对来自数据轨道的回读信号(readback signal)产生不利的影响。

除了CM盘和DTM盘,已经提出了具有“位构图介质”(“bit-patternedmedia”,BPM)磁记录盘以增大数据密度。在BPM盘中,盘上的可磁化材料被构图为小的隔离数据岛,使得在每个岛或“位”中存在单个磁畴(magneticdomain)。单个磁畴可以是单个晶粒或者由作为单个磁体积而一起转换磁状态的数个强耦合晶粒组成。这与其中单个“位”可以具有由畴壁分隔的多个磁畴的传统CM盘相反。为了产生构图岛(patterned island)的需要的磁隔离,在岛之间的空间的磁矩必须被破坏或者充分地减少从而使这些空间基本上没有磁性。在一种类型的BPM盘中,数据岛是由非磁性的沟或凹槽(recess)分隔的升高且间隔开的柱(pillar)。

CM盘、DTM盘和BPM盘都需要伺服区,该伺服区按角度分隔在盘周围且一般径向延伸过同心数据轨道。伺服区是预记录的图案,其不能被写头改写并在读和写期间用于将读头/写头定位到期望的数据轨道并将该头保持在数据轨道上。在DTM盘和BPM盘两者中,伺服区可以是被非磁性沟或凹槽分隔的升高伺服块(servo block)的图案。然而,CM盘也可以被制造为,升高伺服块的伺服区通过非磁性的沟或凹槽来分离。因而,CM盘、DTM盘和BPM盘都可以具有升高的岸台或凹陷的沟槽的预构图表面特征。

存在用于制造具有升高的岸台和凹陷的沟槽的表面特征的盘的几种方法。在一种方法中(具体适用于BPM盘),该盘经由纳米压印通过模子经复制而制成。纳米压印工艺不仅在数据轨道中形成隔离的数据岛,而且在伺服区中形成伺服块。在纳米压印中,模子或模板将表面特征的形貌图案复制到聚合物抗蚀剂上,该聚合物抗蚀剂涂覆在盘基板上。盘基板可以具有电介质涂层,例如氮化硅膜。然后,纳米压印的抗蚀剂图案用作掩膜,以利用氟等离子体将图案蚀刻在氮化硅膜中。在蚀刻氮化硅之后,去除抗蚀剂。然后,磁性材料溅射沉积在岸台和沟槽上。沟槽可以从读头/写头凹陷足够深,从而不会对读或写产生不利的影响,或者它们可以用掺杂材料“抑制(poison)”以使它们变成非磁性。BPM盘的纳米压印由Bandic等人报道在“Patternmagnetic media:impact of nanoscale patterning on hard disk drives”,Solid StateTechnology S7+Suppl.S,SEP 2006;并由Terris等人报道在“TOPICALREVIEW:Nanofabricated and self-assembled magnetic structures as data storagemedia”,J.Phys.D:Appl.Phys.38(2005),R199-R222。

对于具有升高的岸台和凹陷的沟槽的预构图表面特征的盘,需要平坦化表面形貌,从而通过由旋转盘产生的气垫将滑块保持在相对恒定的“飞行高度(fly height)”。US 6680079B2描述了一种平坦化盘表面的方法,即通过涂敷具有官能丙烯酸端基(functional acrylate end group)的全氟聚醚(PFPE)聚合物,然后固化聚合物以使其交联(cross-link)并将其接合到盘保护覆层。然而,此方法似乎仅能应用于在表面形貌上具有较小变化的盘。在较大的形貌变化(在约10nm或以上的范围内)时,在固化之后产生沟槽中聚合物的不期望的凹陷(recession)。因而,对于在表面形貌上具有较大变化的盘(例如DTM盘和具有预构图的伺服块的盘),在通过此方法平坦化之后,仍然保持表面形貌的较大变化。

需要一种使在表面形貌上存在较大变化的磁记录盘的表面平坦化的方法,该磁记录盘具有升高的岸台和凹陷的沟槽的预构图表面特征。

发明内容

本发明涉及一种用于平坦化具有升高的岸台和凹陷的沟槽的表面特征的磁记录盘的方法。该盘可以具有保护性碳覆层,该保护性碳覆层复制了表面岸台和沟槽的形貌。液态官能化(functionalized)全氟聚醚(PFPE)聚合物被涂敷在盘表面上,然后被固化以形成第一涂层,官能化端基接合到碳覆层并彼此交联。然后,液态非官能化PFPE(non-functionalized-PFPE)聚合物被涂敷在官能化PFPE涂层上并被固化以形成第二涂层。组合的涂层使盘表面基本平坦化,使得在岸台上方的涂层顶部与沟槽上方的涂层顶部之间存在最小凹陷(recession)。在一个实施例中,官能化PFPE聚合物可以具有官能丙烯酸端基。非官能化PFPE聚合物可以具有高分子量以减少由于盘旋转而引起抛离(spin-off)。作为可选的步骤,盘可以在涂敷官能化PFPE之后经受众所周知的带抛光(tape burnishing)或擦拭(wiping)工艺,以去除在岸台之上过量堆积的官能化PFPE。

该方法具有平坦化具有升高的岸台和凹陷的沟槽的表面特征的任何类型的磁记录盘(包括CM盘、DTM盘或者BPM盘)的应用,所有的盘都可以具有带有该表面特征的伺服区。

本发明还涉及一种平坦化的磁记录盘,该平坦化的磁记录盘具有在升高的岸台和凹陷的沟槽上的含碳保护覆层以及在该覆层上涂层,该涂层由交联的官能化PFPE和在官能化PFPE上的交联的非官能化PFPE形成。尽管存在间隙深度大于特定值的沟槽,但是该盘具有平坦化表面的在特定最小值以下的凹陷。

为了更充分理解本发明的本质和优点,应当参照下面结合附图的详细描述。

附图说明

图1是具有旋转致动器(actuator)和刚性磁记录盘的盘驱动器的示意图,该刚性磁记录盘具有预构图的伺服区;

图2A是离散轨道介质(DTM)盘的示意性俯视图,其示出了具有升高的伺服块的典型的伺服区和通过凹陷的保护带分离的三个升高的数据轨道的一部分;

图2B是位构图介质(BPM)盘的一部分的示意性俯视图,其示出了三个数据轨道,这三个数据轨道中的每一个都包含通过凹陷的非磁性区分离的离散隔离数据岛;

图3A-3C是在根据本发明的方法平坦化盘的各个阶段沿垂直于离散数据轨道的平面截取的DTM盘的截面图;

图4是实验结果的曲线图,其示出了对于沟槽间隙深度D恒定地保持在约30nm的盘,从岸台上的涂层到沟槽上涂层的凹陷R作为沟槽间隙宽度W的函数。

具体实施方式

图1示出了具有旋转致动器2和刚性磁记录盘10的盘驱动器,刚性磁记录盘10具有形成于表面11上的预构图表面特征。该表面特征至少包括按角度分隔开的伺服区18中的预构图伺服块。盘10围绕中心轴100沿方向102旋转。表面11具有通过内直径(ID)14和外直径(OD)16限定的环形数据带12。数据带在伺服区18之间的部分用于存储用户数据且包含圆形数据轨道,每个数据轨道通常分成物理数据扇区(physical data sector)。盘10可以是CM盘,在此情形下圆形数据轨道通过写头形成在连续记录层上。盘10还可以是DTM盘,在此情形下圆形数据轨道是通过凹陷的保护带分离的沿径向间隔的离散升高轨道,该DTM盘具有升高的轨道和凹陷的保护带,该升高的轨道和凹陷的保护带形成表面特征再加上伺服区18中的伺服块。盘10还可以是BPM盘,在此情形下圆形数据轨道包含由沟槽分离的离散升高数据岛,该BPM盘具有升高的岛和沟槽,该升高的岛和沟槽形成表面特征再加上伺服区18中的伺服块。旋转致动器2围绕枢轴(pivot)4旋转,并在其端部支撑读头/写头6。当致动器2旋转时,磁头6沿着在ID 14和OD 16之间基本呈弓形的路径移动。

伺服区18和离散升高轨道(如果盘是DTM盘时)或离散升高数据岛(如果盘是BPM盘时)可以使用主模板通过构图工艺形成。在纳米压印工艺中,主模板将形貌图案复制到盘基板上的聚合物抗蚀剂涂层上,抗蚀剂图案通过蚀刻工艺转移到盘基板上,然后磁性材料溅射沉积在图案上。伺服区18形成从ID 14到OD 16基本径向延伸的按角度分隔的弓形线(arcuate line)的图案。伺服区的弓形形状与头6的弓形路径匹配。在盘驱动器运行期间,头6在位于环形数据带12的ID 14和OD 16之间的多个同心圆形数据轨道的选定一个上读取或写入数据。为了从选定轨道精确地读取或写入数据,需要头6保持在轨道中心线上方。因此,每当伺服区18中的一个经过头6下方时,头6检测在伺服区中位置偏差信号(PES)场中的离散磁化伺服块。PES由盘驱动器的头定位控制系统产生并使用,从而将头6移向轨道中心线。因而,在盘10的整个旋转期间,头6通过来自连续的角度分隔的伺服区18中的伺服块中的伺服信息而持续保持在轨道中心线上方。

图2A是盘10(该盘是DTM盘)的扩大俯视图,其示出了典型的伺服区18和三个DTM数据轨道20、22、24的一部分。三个离散的升高数据轨道20、22、24和两个凹陷的保护带21、23被示出。伺服区18的所有阴影部分表示沿相同方向磁化的离散升高伺服块。如果盘驱动器被设计为纵向(longitudinal)或横向(horizontal)的磁记录,则它们可以都沿相同的方向横向地(即沿平行于图2A中的纸面的平面)磁化;或者如果盘驱动器设计为垂直磁记录,则它们可以都沿相同的方向垂直地(即在进出纸面的方向)磁化。还有可能,图2A中的每隔一个的阴影区可能具有相反的极性,非阴影区70没有磁性,这改善了伺服图案的信号品质,如转让给与本申请相同的受让人的US 7236325B2所述。伺服区18中的非阴影区70表示从升高的伺服块凹陷的非磁性区。每个离散伺服块是通过非磁性区70与其它伺服块分离的磁化块。术语“非磁性”表明伺服块之间的区域70是包含非铁磁材料(例如电介质或者在不施加磁场时基本无剩余磁畴的材料)或铁磁材料(在升高伺服块下方凹陷足够深从而不会对读或写产生不利的影响)的沟槽。非磁性区70还可以是在磁记录层或不包含铁磁材料的盘基板中的凹陷的沟槽或槽(trough)。

如图2A所示,组成伺服区18的伺服块布置在场30、40、50和60中。伺服场30是块(block)31-35的自动增益控制(AGC)场,块31-35用于测量信号的振幅并调整用于随后读取伺服块的增益。伺服场40是提供时序标记的扇区识别(SID)场(也称为伺服时序标记或STM场),以便为随后的伺服块建立开始/终止时序窗口。伺服场50是轨道识别(TID)场,也称为柱面或CYL场(因为具有多个堆叠的盘的盘驱动器中的所有盘表面中的轨道形成“柱面”轨道)。TID场50包含轨道编号(通常为灰编码(Gray-coded))并确定径向位置的整数部分。伺服场60是位置偏差信号(PES)场,其在此示例中包含伺服块的A、B、C、D子场作为部分公知的“四分隔(quad-burst)”PES图案,并用于确定径向位置的分数部分。

图2B示意地示出盘10(该盘是BPM盘)的一部分的俯视图。三个数据轨道20、22、24中的每个都包含离散的隔离数据岛64,并与通常沿径向延伸穿过同心数据轨道20、22、24的两个连续伺服区18一起示出。类似于伺服区18(图2A)中的伺服块,每个数据轨道20、22、24包含磁性材料的离散升高隔离岛,该隔离岛通过凹陷的非磁性区70与其它岛分离。因而,在图2B中示出的BPM盘不仅在伺服区18中而且在数据轨道20、22、24中包含升高的岸台和凹陷的沟槽的表面特征。

将参照图3A-3C解释用于平坦化具有升高的岸台和凹陷的沟槽的表面特征的盘的本发明的方法,图3A-3C示出了在该方法的各个阶段沿垂直于离散数据轨道的平面得到的DTM盘的截面图。然而,该方法可完全应用于具有升高的岸台和凹陷的沟槽的任何类型的盘(包括CM盘、DTM盘或BPM盘),所有的盘都可以具有含此表面特征的伺服区。

图3A示出了盘基板200的截面图,盘基板200具有通过凹陷的沟槽212分隔而间隔开的升高的岸台210。该基板可以是任何传统的盘基板,例如由玻璃或硅形成的基板。磁性层202沉积在基板200上且在岸台和沟槽的表面特征上。磁性层202可以是用于磁记录盘中的记录层的任何传统铁磁材料的单层或多层,诸如钴基合金(例如CoPtCr合金)。可以选择磁性层202的材料以提供水平或垂直的记录。磁性层通常具有在约30到100nm范围内的厚度。保护覆层204沉积在磁性层202上,用于使滑块抵抗侵蚀和磨损。保护覆层204通常由无定形碳、氢化碳和/或氮化碳形成,并具有在约1到5nm范围内的厚度。具有磁性层202的岸台210用作数据轨道,沟槽212用作分离DTM盘上的数据轨道的保护带。岸台210和沟槽212是沿圆周方向(如在图3A中由箭头尾部所示)排列的同心环,同心沟槽212是岸台之间的间隙,用于沿径向方向(如在图3A中由箭头所示)分隔同心岸台。对于沟槽212,其间隙深度“D”(也是岸台的高度)通常在约10到50nm的范围内,其间隙宽度“W”通常在约10到50nm的范围内。

图3B示出了在涂敷并固化官能化的全氟聚醚(PFPE)聚合物以形成第一涂层230之后的DTM盘。通过将盘浸入官能化PFPE与合适溶剂的溶液里然后蒸发溶剂来涂敷官能化PFPE。PFPE聚合物包括聚醚的氟化的低聚物(oligomer)、均聚物(homopolymer)和共聚物(copolymer)。用作第一涂层230的合适官能化PFPE包括可购买到的高度官能化的极性PFPE,例如具有极性羟(OH)端基的Z-Tetraol、Z-Dol TX(SolvaySolexis,Sp.A.,Italy),再加上PFPE的其它高度官能化的极性衍生物。合适的官能化PFPE还包括购买到的且在使用前官能化的非官能化极性PFPE。这些包括PFPE,诸如以商标(DuPont Specialty Chemicals,Deepwater,N.J.)、(Daikin Kogyo Co.Ltd.,Japan)以及Z牌下的其它PFPE。官能化PFPE应该具有活性官能端基,该活性官能端基能够与保护覆层204中的碳反应以及彼此间反应以在沟槽212内部形成牢固的体(strong bulk)。优选的官能化PFPE是具有丙烯酸(acrylate)官能端基的Z型(如在之前引用的US6,680,079B2中所述的),其可以经由暴露于紫外线(UV)照射而交联。用于官能化PFPE的合适溶剂包括氢氟醚(HFE)。HFE的示例包括单(mono)、二(di)、三(tri)和聚(poly)烷氧基取代的全氟烷(perfluoroalkane)以及被取代的氢氟烷醚。具体的示例包括氢氟醚(hydrofluoroether)、甲基九氟丁烷(methoxynonafluorobutane)及其异构混合物。优选的HFE溶剂是HFE7100,可从3M购得。也可以使用另一溶剂,来自DuPont的Vertrel XF。具有丙烯酸端基的官能化PFPE以约1∶100的体积比溶解在HFE中。盘被浸泡在该溶液中5分钟,然后具有丙烯酸端基的液态官能化PFPE暴露到UV照射3分钟。图3B示出在固化之后已经发生涂层230的大的收缩,导致沟槽212中涂层230的显著凹陷“R”,其中R是岸台和沟槽之间的涂层230的表面形貌变化的度量。凹陷的实际量强烈依赖于D和W(见图3A)。实验上已经确定,如果D在约80nm到100nm之间且W为约40nm,则R是约25nm。

为了试图改善盘的平坦化,以相同的方式涂敷并固化具有官能化丙烯酸端基的官能化PFPE的第二涂层,从而在涂层230上形成第二涂层。然而,这导致了涂层的反润湿(dewetting),这在岸台和沟槽之间的边缘处造成涂层材料的不期望堆积。该堆积引起额外的不期望的表面形貌变化。

图3C示出根据本发明的方法在第一涂层230上方涂敷并固化第二涂层240之后的DTM盘。第二涂层240是非官能化PFPE。优选地,非官能化PFPE为具有高分子重量(大于约70000)的非官能化极性PFPE,以在盘的旋转期间增加粘性和对抛离的抵抗力。优选的非官能化PFPE是Z。Z具有以下结构:

F3C-O-[CF2-CF2-O]m-[CF2-O]n-CF3,其中m和n是约4或5,Z通过四氟乙烯的光致氧化(photooxidation)合成并且是乙烯氧化物和亚甲基氧化物单元的线性、随机共聚物。其它非官能化PFPE包括诸如以商标名称(DuPont SpecialtyChemicals,Deepwater,N.J.)、(Daikin Kogyo Co.Ltd.,日本)售出的那些PFPE以及以Z的名称售出的其它PFPE。非官能化PFPE以约2∶100的体积比溶解在HFE中。然后,具有涂层230的盘浸泡在溶液中5分钟,然后将液态非官能化PFPE暴露到UV照射3分钟。图3C示出在固化之后沟槽212中的涂层240的凹陷R显著小于仅有涂层230的凹陷(图3B)。期望的结果是,岸台210上涂层230和240的组合厚度为约1.5nm且凹陷R小于约4nm。

首先涂敷官能化PFPE,使得在固化之后官能化PFPE聚合物与活性官能端基强烈地交联,该活性官能端基与碳覆层接合,导致牢固的三维网络。

图4是实验结果的曲线图,其示出了对于间隙深度D保持在约30nm的盘,凹陷R作为间隙宽度W的函数。曲线400示出了在固化具有丙烯酸端基的官能化PFPE以形成涂层230之后的凹陷。曲线410示出了在固化非官能化PFPE以在涂层230之上形成涂层240之后的凹陷。曲线示出对于约100nm的间隙宽度来说凹陷减小了约6nm。对于大于30nm的间隙深度,将有更大的改善。

作为本发明的方法中的可选步骤,盘可以经受众所周知的带抛光或擦拭工艺。盘与3mm×5mm的布垫接触地旋转,该工艺也被称为最终带清洗(finaltape clean,FTC)。此带抛光工艺用于去除官能化PFPE在岸台之上过量的堆积。这可以在固化官能化PFPE之前或之后进行。机械接触将导致官能化PFPE在岸台之上的厚度减小,而不会干扰沟槽中的官能化PFPE。

尽管已经参照优选实施例具体示出并描述了本发明,但是本领域技术人员应当理解,可以在形式和细节上进行各种变化而不背离本发明的精神和范围。因此,所公开的发明应被认为仅是示意性的并限定在仅由附加的权利要求书所指定的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号