首页> 中国专利> 具有针对线感应瞬态的瞬态电压抑制设备的开关模式电源以及用于抑制驱动器级中的多余振荡的机制

具有针对线感应瞬态的瞬态电压抑制设备的开关模式电源以及用于抑制驱动器级中的多余振荡的机制

摘要

本发明涉及一种开关模式电源(15),其采用了整流器(20)、变换器(50)和变换器驱动器(60)。所述整流器(20)基于线内电压(V

著录项

  • 公开/公告号CN101496270A

    专利类型发明专利

  • 公开/公告日2009-07-29

    原文格式PDF

  • 申请/专利权人 皇家飞利浦电子股份有限公司;

    申请/专利号CN200780028416.2

  • 申请日2007-07-26

  • 分类号H02M7/217;H02M1/42;H02M1/32;H02M3/158;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人李静岚

  • 地址 荷兰艾恩德霍芬

  • 入库时间 2023-12-17 22:23:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-09-18

    未缴年费专利权终止 IPC(主分类):H02M7/217 授权公告日:20120627 终止日期:20120726 申请日:20070726

    专利权的终止

  • 2012-06-27

    授权

    授权

  • 2009-09-23

    实质审查的生效

    实质审查的生效

  • 2009-07-29

    公开

    公开

说明书

技术领域

本发明总体上涉及用于线内(in-line)电压应用的任何类型的开关模式电源。本发明特别涉及被利用于线内电压应用的开关模式电源的瞬态电压保护和MOSFET驱动保护,具体来说涉及一种采用双开关降压-升压变换器的开关模式电源。

背景技术

图1示出了本领域中已知的开关模式电源10。开关模式电源10采用了:整流器20,其具有瞬态电压抑制设备21(例如一个或多个变阻器);变换器30,其具有电子开关设备31(例如降压拓扑、升压拓扑或降压-升压拓扑);以及变换器驱动器40。在电源10的正常线状态下,整流器20响应于被施加到该处的线内电压VLN而生成未经调节的经过整流的电源电压VRS,又通过来自变换器驱动器40的一个或多个驱动电压VDR来控制电子开关设备31,从而把经过整流的电源电压VRS变换成经过调节的DC总线电压VDC。在电源10的异常线状态下,瞬态电压VTR被附加地施加到整流器20,瞬态电压抑制设备21将由此导通以便抑制经过整流的电源电压VRS,从而防止瞬态电压VTR对电子开关设备31造成损坏。

例如,图2示出了作为开关模式电源10的双开关降压升压形式的开关模式电源11。开关模式电源11的整流器12包括被显示为熔丝F1、变阻器V1、电感器L1、电感器L2、电容器C1、变阻器V2、整流二极管桥D1-D4及整流器输出电容器C2(例如235nF)的标准拓扑,其响应于被施加在开关模式电源11的输入线INT与中性线NEU之间的线内电压VLN而在整流器输出电容器C2两端生成经过整流的电源电压VRS

开关模式电源11的双开关降压升压变换器13包括被显示为MOSFET开关Q1、二极管D6、电感器L3、MOSFET开关Q2、二极管D5、电阻器R5(例如0.45Ω)以及变换器输出电容器C3(例如47μF)的标准拓扑,其用于把经过整流的电源电压VRS变换成变换器输出电容器C3两端的经过调节的DC总线电压VDC。开关模式电源11的功率因数校正(“PFC”)驱动器14包括被显示为PFC控制器U1(例如L6561)、电阻器R1(例如1Ω)、隔直流电容器(blocking capacitor)C4(例如22μF)以及变压器T的标准拓扑,其中所述变压器T具有初级变压器绕组T1-A、次级变压器绕组T1-B以及次级变压器绕组T1-C。用于MOSFET开关Q1的驱动电路包括次级绕组T1-B以及电容器C5(例如100μF)、二极管D7和电阻器R3(例如2.2kΩ)。用于MOSFET开关Q2的驱动电路包括次级绕组T1-C以及电容器C6(例如100μF)、二极管D8和电阻器R4(例如2.2kΩ)。

变阻器V1和V2防止施加在整流器12上的瞬态电压VTR(图1)导致损坏MOSFET开关Q1。具体来说,考虑到获得单位功率因数,由PFC驱动器14通过对应的驱动电压VDR1和VDR2同时在导通状态与非导通状态之间切换MOSFET Q1和Q2。当在输入线INT与中性线NEU之间初始地施加线电压VLIN而把MOSFET Q1和Q2初始地切换到导通状态时,在电容器C2两端生成的经过整流的电源电压VRS初始地被施加在电感器L3两端。当MOSFET Q1和Q2随后被切换到非导通状态时,电感器L3的电流将流经二极管D5和D6以便对所述变换器输出电容器C3进行充电,从而在变换器输出电容器C3两端生成DC总线电压VDC。随后,考虑到获得单位功率因数,按照调节变换器输出电容器C3两端的DC总线电压VDC的方式由PFC驱动器14通过对应的驱动电压VDR1和VDR2在导通状态与非导通状态之间切换MOSFET Q1和Q2。

对于开关模式电源11,变阻器V1和V2被用于通过箝位在整流器输出电容器C2两端生成的经过整流的电源电压VRS来抑制经过整流的电源电压VRS。例如,在480Vac的输入线电压VLN下,560Vac的变阻器V1和V2被用于箝位在电容器C2两端生成的经过整流的电源电压VRS。变阻器V1和V2的一个缺点在于,当流经变阻器V1和V2的电流改变时,变阻器V1和V2的箝位电压也发生改变。因此,例如,对于560Vac,在响应于施加到整流器12的瞬态电压VTR(图1)而流经变阻器V1和V2的50安培的电流下,变阻器V1和V2将具有1400Vdc的箝位电压。因此,在理想情况下,MOSFET开关Q1必须具有高于1400Vdc的耐受电压。但是出于经济和制造原因,MOSFET开关Q1通常将具有1000Vdc的耐受电压。在这种情况下,在瞬态电压VTR被施加到整流器12时,MOSFET开关Q1两端的电压将高于其耐受电压,因此MOSFET开关Q1和Q2易于由于被施加到整流器20的瞬态电压VTR而受到损坏。

再次参照图1,在变换器驱动器40的受控振荡状态下,每一个驱动电压VDR在其量值和占空比方面都受到控制,以便于从经过整流的电源电压VRS到DC总线电压VDC的所期望的变换。相反,在变换器驱动器40的自由振荡状态下,每一个驱动电压VDR在其量值和占空比方面不受控制,因此MOSFET Q1和Q2易于由于被施加到整流器20的任何电压而受到损坏。

例如,在图2中示出的PFC驱动器14中,如果PFC控制器U1出于任何原因(例如接通/关断过渡或文件测试)被中断或无法操作,则PFC控制器U1的输出端被短接到地。结果,隔直流电容器C4和初级变压器绕组T1-A开始在频率f=1/(2.π.(LT1-A.CC4)1/2)下自由振荡,其中LT1-A是初级变压器绕组T1-A的电感,CC4是隔直流电容器C4的电容。在所述自由振荡的开头,隔直流电容器C4两端的电压作为负电压被施加到初级变压器绕组T1-A。在所述变压器的次级侧,该负电压接通二极管D7和D8,从而对电容器C5和C6进行充电。随着所述自由振荡继续,所述变压器的初级侧的电压从负增大到零,从而电容器C5和C6两端的电压变为高于对应的次级变压器绕组T1-B和T1-C的电压。其结果是二极管D7和D8被关断,从而电容器C5和C6通过对应的电阻器R3和R4放电。由于电容器C5和C6的放电速率低于对应的次级变压器绕组T1-B和T1-C处的电压升高的速率,因此电容器C5和C6与对应的次级变压器绕组T1-B和T1-C次级绕组之间的电压差在MOSFETQ1和Q2的栅极端子处产生一个正电压。结果,如果在输入端子IN与中性端子NEU之间存在任何电压,则有可能对MOSFET Q1和Q2造成损坏。

此外,变压器绕组T1-A、T1-B和T1-C可能随着所述变压器的自由振荡继续而饱和。如果是这样的话,初级侧的电压从负增大到零的速率将提高,从而进一步保持MOSFET Q1和Q2的栅极端子处的正电压。同样地,如果在输入端子IN与中心端子NEU之间存在任何电压的话,则有可能对MOSFET Q1和Q2造成损坏。

发明内容

本发明为开关模式电源提供新颖且独特的瞬态电压保护和MOSFET驱动保护,以便克服开关模式电源10(图1)(特别在其被具体实现为开关模式电源11(图2)时)的缺点。

在本发明的一种形式中,开关模式电源包括:整流器,其适于基于线内电压生成经过整流的电源电压;以及变换器,其与所述整流器进行电通信以便把所述经过整流的电源电压变换成DC总线电压。所述变换器包括瞬态电压抑制设备,其适于响应于所述开关模式电源的异常线状态而抑制所述经过整流的电源电压。

在本发明的第二种形式中,开关模式电源包括:整流器,其适于基于线内电压生成经过整流的电源电压;变换器驱动器,其适于生成一个或多个驱动电压;以及变换器,其与所述整流器和所述变换器驱动器进行电通信,以便基于所述(多个)驱动电压把所述经过整流的电源电压变换成DC总线电压。所述变换器驱动器包括自由振荡抑制设备,其适于响应于所述变换器驱动器的自由振荡而抑制所述(多个)驱动电压。

通过结合附图阅读下面对本发明的各实施例的详细描述,本发明的上述和其他形式以及本发明的各种特征和优点将变得显而易见。所述详细描述和附图仅仅用于说明本发明而不是对其进行限制,本发明的范围由所附权利要求书及其等效表述限定。

附图说明

图1示出了本领域中已知的开关模式电源的一个实施例的方框图;

图2示出了本领域中已知的图1中所示的开关模式电源的一个实施例的示意图;

图3示出了根据本发明的开关模式电源的一个实施例的方框图;

图4示出了根据本发明的瞬态电压抑制设备的第一实施例的示意图;

图5示出了根据本发明的瞬态电压抑制设备的第二实施例的示意图;

图6示出了根据本发明的自由振荡抑制设备的第一实施例的示意图;以及

图7示出了根据本发明的自由振荡抑制设备的第二实施例的示意图。

具体实施方式

参照图3,本发明的开关模式电源15采用了可选地具有瞬态电压抑制设备21的整流器20、具有电子开关设备51(例如降压拓扑、升压拓扑或者降压-升压拓扑)和瞬态电压抑制设备(例如一个或多个变阻器)的变换器50以及具有自由振荡抑制设备61的变换器驱动器60。在电源15的正常线状态下,整流器20响应于被施加到该处的线内电压VLN而生成未经调节的经过整流的电源电压VRS,又通过来自变换器驱动器60的一个或多个驱动电压VDR来控制电子开关设备51,从而把经过整流的电源电压VRS变换成经过调节的DC总线电压VDC。在电源10的异常线状态下,瞬态电压VTR被附加地施加到整流器20,瞬态电压抑制设备52将首先由此导通以便抑制经过整流的电源电压VRS,从而防止瞬态电压VTR对电子开关设备51造成损坏。在变换器驱动器60的自由振荡状态下,自由振荡抑制设备61将抑制从变换器驱动器60到电子开关设备51的所述驱动电压。

在实践中,本发明在开关模式电源15的结构配置方面不强加任何限制或任何约束。因此,下面对于如图4-7中所示的开关模式电源15的各构成实施例的描述在本发明的发明性原理方面并不限制开关模式电源15的结构配置范围。

参照图4,本发明的瞬态电压抑制设备16采用电连接到整流器输出电容器C2和变换器输出电容器C3的二极管D9与变阻器V3的串联连接。在该实施例中,可以如图2中所示的那样从整流器12中省略变阻器V2。

根据下面的本发明的瞬态电压保护原理[1]和[2],变阻器V3有条件地把整流器输出电容器C2两端的经过整流的电源电压VRS箝位成低于MOSFET开关Q1的耐受电压VQ1WS

VDC+VCLAMP<VQ1WS             [1]

VDC+VUNCLAMP>VRSPK           [2]

其中,VCLAMP是变阻器V3在额定电流下的箝位电压,VUNCLAMP是变阻器V3的关态(stand off)电压,VRSPK是经过整流的电源电压VRS在整流器12(图2)的正常线状态下的峰值电压。

在操作中,二极管D9被用于在电源15的异常线状态下在导通状态下驱动变阻器V3,并且被用于在电源15的正常线状态下在非导通状态下驱动变阻器V3。本发明的瞬态电压保护原理[1]确保在电源15的异常线状态下整流器输出电容器C2两端的经过整流的电源电压VRS将被导通的变阻器V3箝位在MOSFET开关Q1的耐受电压VQ1WS以下。本发明的瞬态电压保护原理[2]确保在电源15的正常线状态下变阻器V3处于非导通状态下。

参照图5,提供瞬态电压感测设备17以便补充由瞬态电压抑制设备16提供的对MOSFET开关Q1的瞬态电压保护。瞬态电压感测设备17包括与整流器输出电容器C2电并联的电阻器R6(例如1.1MΩ)和电阻器R7(例如2.2kΩ)的串联连接。电容器C7(例如30pF)与电阻器R7电并联。齐纳二极管D10和二极管D11的串联连接被电连接到电阻器R6与R7的串联连接的中点以及PFC控制器U1(图2)的传感器输入端。

在该实施例中,根据下面的本发明的瞬态电压保护原理[2]和[3],变阻器V3有条件地把整流器输出电容器C2两端的经过整流的电源电压VRS箝位成低于MOSFET开关Q1的耐受电压VQ1WS

VDC+VUNCLAMP>VRSPK           [2]

VCLAMP<VQ1WS                 [3]

在操作中,二极管D9同样被用于在电源15的异常线状态下在导通状态下驱动变阻器V3,并且被用于在电源15的正常线状态下在非导通状态下驱动变阻器V3。本发明的瞬态电压保护原理[3]确保MOSFET开关Q1两端的电压不会在电源15的异常线状态下超过MOSFET开关Q1的耐受电压VQ1WS。本发明的瞬态电压保护原理[2]同样确保在电源15的正常线状态下变阻器V3处于非导通状态下。

更具体来说,在电源15的正常线状态下,经过整流的电源电压VRS低于耐受电压VQ1WS。相反,在诸如雷击浪涌(lighting surge)之类的异常线状态下,经过整流的电源电压VRS将升高。当经过整流的电源电压VRS接近耐受电压VQ1WS时,电容器C7两端的电压将高于齐纳二极管D10的耐受电压VD10WS,因此齐纳二极管D10将导通,并且将有电流经由二极管D10和D11流向PFC控制器U1。结果,PFC控制器U1将把MOSFETQ1和Q2驱动到非导通状态,从而节点N1与N2之间的电感器L3两端的电压将浮动。

当经过整流的电源电压VRS升高到高于耐受电压VQ1WS时,所述MOSFET开关Q1通常将开始雪崩。但是在这种情况下,由于其负载是非常小的二极管D6和MOSFET开关Q1的寄生电容,因此MOSFET开关Q1的雪崩能量非常小。节点N1和N2处的电压将升高。但是在节点N1与N2之间的电压超过DC总线电压VD0之前,变阻器V3将由于原理[3]而被驱动到导通状态。因此,MOSFET开关Q1将绝不会经由二极管D5雪崩到变换器输出电容器C3,而这种雪崩将会相对较大。此外,经过整流的电源电压VRS将被箝位到VDC+VCLAMP,从而整流器输出电容器C2的能量将通过二极管D9和变阻器V3被转移到变换器输出电容器C3。一旦该能量转移把经过整流的电源电压VRS降到低于耐受电压VQ1WS时,流经二极管D10和D11的电流就会停止,从而PFC控制器U1将重新启动驱动电压VDR1和VDR2

参照图6,本发明的自由振荡抑制设备18采用了:与二极管D7和电阻器R3(例如10kΩ)电并联的齐纳二极管D12与电阻器R8(例如10kΩ)的串联连接;把二极管D12与电阻器R8的串联连接的中点电连接到NPN晶体管Q3的基极端子的电阻器R9(例如10kΩ);与二极管D7和电阻器R3电并联的电阻器R10(例如2kΩ)与NPN晶体管Q3的串联连接;以及与二极管D7和电阻器R3电并联的电阻器R11(例如68Ω)与NPN晶体管Q4的串联连接,其中NPN晶体管Q4的基极端子电连接到电阻器R10与NPN晶体管Q3的串联连接的中点。可选的电容器C8(例如470pF)把NPN晶体管Q4的基极端子电连接到NPN晶体管Q4的发射极端子。

自由振荡抑制设备18还采用了:与二极管D8和电阻器R4(例如10kΩ)电并联的二极管D13与电阻器R12(例如10kΩ)的串联连接;把二极管D13与电阻器R12的串联连接的中点电连接到NPN晶体管Q5的基极端子的电阻器R13(例如10kΩ);与二极管D8和电阻器R4电并联的电阻器R14(例如2Ω)与NPN晶体管Q5的串联连接;以及与二极管D8和电阻器R4电并联的电阻器R15(例如68Ω)与NPN晶体管Q6的串联连接,其中NPN晶体管Q6的基极端子电连接到电阻器R14与NPN晶体管Q5的串联连接的中点。可选的电容器C9(例如470pF)把NPN晶体管Q6的基极端子电连接到NPN晶体管Q6的发射极端子。

在操作中,驱动电压VDR1和VDR2在正常的高驱动状态期间高于对应的二极管D12和D13的齐纳电压,从而NPN晶体管Q3和Q5被驱动到导通状态,而NPN晶体管Q4和Q6被驱动到非导通状态。在该高驱动状态下,电阻器R10和R14的电阻值应当被选择成足够大于电阻器R3和R4的电阻值,从而使得设备18将不会给驱动电压VDR1和VDR2带来负面影响。

在驱动电压VDR1和VDR2的正常的低驱动状态下,MOSFET Q1和Q2的对应栅极端子GTQ1和GTQ2处的驱动电压VDR1和VDR2接近于零,从而NPN晶体管Q3和Q5被驱动到非导通状态;NPN晶体管Q4被驱动到导通状态,从而NPN晶体管Q4以及电阻器R10和R11被作为负载添加到MOSFET开关Q1的栅极端子GTQ1;NPN晶体管Q6被驱动到导通状态,从而NPN晶体管Q6以及电阻器R14和R15被作为负载添加到MOSFET开关Q2的栅极端子GTQ2。该额外的负载是用来帮助把MOSFET Q1和Q2快速驱动到非导通状态。在该正常的低驱动状态期间,等于隔直流电容器C4两端的电压的一个负电压被施加到初级变压器绕组T1-A,从而次级变压器绕组T1-B和T1-C两端的负电压等于对应的电容器C5和C6两端的电压,以便防止电容器C5和C6放电。

如果PFC控制器U1出于任何原因(例如接通/关断过渡或文件测试)被中断或无法操作,则所述变压器的初级侧的自由振荡或者所述变压器的饱和将导致所述变压器的初级侧和次级侧处的电压都从负升高到零。但是由R11和R15引入的所述额外负载(例如100欧姆或更低)将对电容器C5和C6快速放电,从而消除MOSFET开关Q1和Q2的对应栅极端子GTQ1和GTQ2处的正电压,以便防止MOSFET Q1和Q2被驱动到导通状态。

参照图7,本发明的自由振荡抑制设备18’采用了二极管D12、电阻器R8-R11、NPN晶体管Q3和Q4以及设备17(图6)的可选的电容器C8。对于设备18’,使用缓冲器19和具有初级变压器绕组T2-A及次级变压器绕组T2-B的变压器T2以替代变压器T1(图6)。具体来说,缓冲器19采用电连接到NPN晶体管Q7的基极端子和PNP晶体管Q8的基极端子的电阻器R1(例如22Ω)。NPN晶体管Q7的集电极端子电连接到电源电压VCC,PNP晶体管Q8的集电极端子电连接到PFC控制器U1的接地引脚GND。

电阻器R16(例如10Ω)电连接NPN晶体管Q7的发射极端子与PNP晶体管Q8的发射极端子,二极管D12与二极管D13的串联连接电连接到电源电压VCC和PFC控制器U1的接地引脚GND。电容器C4电连接到电阻器R16、PNP晶体管Q8的发射极端子以及二极管D12与二极管D13的串联连接的中点。初级变压器绕组T2-A电连接到电容器C4和PFC控制器U1的接地引脚GND。次级绕组T2-B电连接到电容器C5和MOSFET开关Q1的源极端子STQ1

对于MOSFET开关Q2,电阻器R17(例如100Ω)与电阻器R18(例如47Ω)的串联连接电连接到PFC控制器U1的GD引脚和MOSFET开关Q2的栅极端子GTQ2。PNP晶体管Q9的基极端子电连接到电阻器R7与R8的串联连接的中点。PNP晶体管Q9的集电极端子电连接到MOSFET开关Q2的源极端子STQ2

在操作中,PFC控制器U1和设备18’关于驱动MOSFET开关Q1执行与PFC控制器U1和设备18(图6)类似的功能,其中的不同之处在于,所述保护缓冲器19防止PFC控制器U1受到从MOSFET开关Q1到设备18’的任何受到破坏的信号的影响。另一方面,MOSFET开关Q2直接由PFC控制器U1驱动,但是其具有针对从MOSFET开关Q1到设备18’的任何受到破坏的反馈的相同的保护。

参照图3-7,本领域技术人员将认识到本发明的许多优点,其中包括(但不限于)对开关模式电源的改进的瞬态电压保护和MOSFET驱动保护。此外,基于图4和5中示出的示例性降压-升压变换器,本领域技术人员还将认识到如何把本发明的发明原理应用于根据本发明的其他形式的开关模式电源。

虽然在这里所公开的本发明的实施例当前被视为优选的,但是在不偏离本发明的精神和范围的情况下可以做出许多改变和修改。在所附权利要求书中表明了本发明的范围,落在其等效表述的含义和范围内的所有改变都意图被包括在其中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号