首页> 中国专利> 灰度级电压解码器及包括灰度级电压解码器的数模转换器

灰度级电压解码器及包括灰度级电压解码器的数模转换器

摘要

一种灰度级电压解码器包括第一解码单元和第二解码单元,其中第一解码单元包括行块。每个行块接收多个灰度级电压其中之一,并响应于通过沿列方向形成的数据输入线提供的数字图像数据的第一若干位确定是否输出所接收的灰度级电压。依据第一若干位的相同值来输出所接收的灰度级电压的行块相邻排列。第一解码单元选择部分灰度级电压以输出所选择的灰度级电压。第二解码单元响应于数字图像数据的第二若干位,从第一解码单元所选择的灰度级电压中选择一个,并输出所选择的灰度级电压。

著录项

  • 公开/公告号CN101369406A

    专利类型发明专利

  • 公开/公告日2009-02-18

    原文格式PDF

  • 申请/专利权人 三星电子株式会社;

    申请/专利号CN200810171468.1

  • 发明设计人 崔伦竞;

    申请日2008-05-21

  • 分类号G09G3/36;G09G3/20;G02F1/133;

  • 代理机构北京市柳沈律师事务所;

  • 代理人钱大勇

  • 地址 韩国京畿道

  • 入库时间 2023-12-17 21:27:57

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-11-21

    授权

    授权

  • 2010-07-07

    实质审查的生效 IPC(主分类):G09G3/36 申请日:20080521

    实质审查的生效

  • 2009-02-18

    公开

    公开

说明书

技术领域

本发明涉及提供灰度级电压,更具体地,涉及一种用于显示设备的灰度级电压解码器和包括该灰度级电压解码器的数模转换器。

背景技术

显示设备将数字图像数据转换为模拟图像数据,并在显示面板的多个像素中显示转换后的图像数据。目前,几乎所有的电子设备,诸如计算机、电视或各种移动设备等都包括这种显示设备。人们正在进行各种研究来减小显示设备中一般由集成电路实现的驱动电路的尺寸。

图1是说明公知显示设备的框图。

参考图1,显示设备包括数据驱动器110、扫描驱动器120和液晶显示器(LCD)面板130。数据驱动器110包括数模转换器111。数模转换器111将与数字图像数据IDATA对应的灰度级电压提供给液晶显示器面板130中的像素。数模转换器111可以包括灰度级电压解码器。灰度级电压解码器可以接收灰度级电压,依据数字图像数据IDATA的像素数据选择灰度级电压之一,并输出所选择的灰度级电压。灰度级电压解码器在显示设备中占据了相对大的空间。

图2是说明显示设备的传统灰度级电压解码器的框图。假定图2中一个像素数据相应于六位。

依据6位数字图像数据(即一个像素数据),灰度级电压解码器200从64个灰度级电压中选择1个,以输出所选择的灰度级电压。参考图2,显示设备的灰度级电压解码器200可以具有分级结构来减小芯片尺寸。灰度级电压解码器200包括第一解码单元210和第二解码单元220。

第一解码单元210响应于数字图像数据的低三位DS1来选择一些灰度级电压,并输出所选择的灰度级电压。第一解码单元210包括行块RW11到RW88。每个行块接收灰度级电压V0到V63其中之一,并响应于数字图像数据的低三位DS1来输出所接收的灰度级电压。

第二解码单元220接收由第一解码单元210所选择的灰度级电压,响应于数字图像数据的高三位DS2来从所选择的灰度级电压中选择1个,并输出所选择的1个灰度级电压,该灰度级电压为模拟信号OUT。

图3是示出了由NMOS晶体管实现的图2中所示的灰度级电压解码器200的电路图。

参考图3,包含在图2中所示的灰度级电压解码器200中的行块RW11到RW88中的每一个都可由NMOS晶体管实现。这些NMOS晶体管可以串联耦合在第一解码单元210的每个行块中。每个NMOS晶体管通过栅极端子接收数字图像数据D0、D0B、D1、D1B、D2、D2B、D3、D3B、D4、D4B、D5和D5B中的一位,它们代表了数字图像数据的低三位DS1。

图4是示出了包括在作为集成电路实现的第一解码块210中的行块的电路图。

在图4所示的传统灰度级电压解码器的部分中,相邻行块RW11和RW12可以响应于数字图像数据的不同位来操作。这样,即使当某些行块不受数字图像数据的某些位影响时,输入线DL0到DL5也需要通过所有行块,以便向相邻的其它行块提供数字图像数据的某些位。因而,伪(dummy)晶体管MND插入在激活晶体管MNA之间,激活晶体管实际上响应于数字图像信号来执行开关操作。在形成伪晶体管MND时,伪晶体管MND的源级端子和漏级端子被合并以形成短路。依据设计规则,在通过激活晶体管MNA1到MNA6的输入线DL1到DL5和空闲空间之间,由于没有伪晶体管的集成电路的实现需要更多间隔,因此插入伪晶体管。

不执行开关操作的伪晶体管占据了大量的电路面积。

发明内容

因此,提供本发明的示例性实施例以基本上避免由于现有技术的局限性和缺陷所导致的一个或多个问题。

本发明的示例性实施例提供了通过重新排列行块来消除伪晶体管从而减小了集成电路的尺寸的灰度级电压解码器。

本发明的示例性实施例提供了通过重新排列行块来消除伪晶体管从而减小了集成电路的尺寸的数模转换器。

在本发明的示例性实施例中,灰度级电压解码器包括第一解码单元和第二解码单元。第一解码单元选择部分灰度级电压,以输出所选择的灰度级电压。第一解码单元包括行块。每个行块接收灰度级电压其中之一,并响应于数字图像数据的第一若干位来确定是否输出所接收的灰度级电压。数字图像数据通过沿列方向形成的数据输入线来提供。响应于该第一若干位的相同值来输出所接收的灰度级电压的行块相邻排列。第二解码单元响应于数字图像数据第二若干位来选择由第一解码单元所选择的灰度级电压当中的一个,并输出所选择的灰度级电压。

每个行块都包括开关,用于响应于数字图像数据的第一若干位来确定是否输出所接收的灰度级电压。

开关可串联耦合。每个开关可响应于数字图像数据的第一若干位中的一位被操作。

每个开关包括MOS晶体管,且其栅极端子耦合到数据输入线其中之一,以接收数字图像数据的第一个若干位中的一位,该MOS晶体管通过源级端子和漏级端子中的第一个端子来接收灰度级电压。该MOS晶体管可以通过源级端子和漏级端子中的第二个端子来输出所接收的灰度级电压。

每个行块可以包括串联耦合的MOS晶体管,它们响应于第一若干位被导通或关断。所有MOS晶体管可以相应于与伪晶体管区分开的激活晶体管。

可分开放置行块,以使得行块被划分成至少两列线形状。

在本发明的示例性实施例中,显示设备的数模转换器包括灰度级电压发生器、第一解码单元和第二解码单元。灰度级电压发生器包括串联耦合的电阻器。灰度级电压发生器通过使用多个电阻器依次对参考电压进行分压来产生灰度级电压。第一解码单元选择部分灰度级电压,以输出所选择的灰度级电压。第一解码单元包括行块。每个行块接收该灰度级电压其中之一,并响应于数字图像数据的第一若干位来确定是否输出所接收的灰度级电压。数字图像数据通过沿列方向形成的数据输入线来提供。依据第一若干位的相同值来输出所接收的灰度级电压的行块相邻排列。第二解码单元响应于数字图像数据的第二若干位来选择第一解码单元所选择的灰度级电压中的一个,并输出所选择的灰度级电压。

因此,显示设备的灰度级电压解码器和包含该灰度级电压解码器的数模转换器可减小电路尺寸。

附图说明

通过结合附图的下述描述,可以更详细地理解本发明的示例性实施例。

图1是示出传统显示设备的框图。

图2是示出显示设备的传统灰度级电压解码器的框图。

图3是示出图2中所示的由NMOS晶体管实现的传统灰度级电压解码器的电路图。

图4是示出包含在由集成电路实现的传统灰度解码器的第一解码块中的行块的电路图。

图5是示出依据本发明示例性实施例的灰度级电压解码器的框图。

图6是示出图5中所示的灰度级电压解码器的第一解码单元中的由NMOS晶体管实现的行块组的电路图。

图7是示出依据本发明示例性实施例的用于减小列方向上的长度的灰度级电压解码器的框图。

图8A和图8B是示出依据本发明示例性实施例的数模转换器的框图。

具体实施方式

将参考附图详细描述本发明的示例性实施例,附图中显示了本发明的示例性实施例。但是,本发明可以不同的形式来实现,并且不应该被理解为局限于这里阐述的示例性实施例。此外,提供这些实施例是为了使本公开全面和完整,并且向本领域技术人员充分传达本发明的范围。本申请中,相似的参考数字始终指示相似的元件。

图5是示出依据本发明示例性实施例的灰度级电压解码器的框图。

参考图5,灰度级电压解码器500包括第一解码单元510和第二解码单元520。灰度级电压解码器500具有分级结构。通过将灰度级电压解码器500分级实现为分开的解码单元510和520,以使得可以省略执行相同功能的活动元件,从而可以减小集成电路的尺寸。

在图5中,为了便于描述,假定一个像素数据对应于6位。图5中的灰度级电压解码器500响应于6位数字图像数据来输出64个灰度级电压中的一个作为模拟信号。与数字图像数据的低三位对应的第一若干位DS1被提供给第一解码单元510。与数字图像数据的高三位对应的第二若干位DS2被提供给第二解码单元520。第一解码单元510响应于数字图像数据的第一若干位DS1来从64个灰度级电压中选择8个灰度级电压,并输出所选择的8个灰度级电压。第二解码单元520响应于数字图像数据的第二若干位DS2来从第一解码单元510提供的8个灰度级电压中选择一个灰度级电压,并输出所选择的灰度级电压OUT。

可以依据示例性实施例修改灰度级电压的数目和数字图像数据的位数。例如,当数字图像数据包括6位红色、6位绿色及6位蓝色,且使用64个灰度级电压来代表每种颜色时,显示设备可显示218种颜色,如在灰度级电压解码器500中所示的。在一个示例性实施例中,当8位数字图像数据用于分别表示具有256(也就是说28)个灰度级电压的红色、绿色和蓝色时,显示设备可以显示224种颜色。

第一解码单元510包括行块组511、512到517、518。第一行块组511包括行块R11到R18,第二行块组512包括R21到R28,第三行块组(未示出)包括R31到R38,第四行块组(未示出)包括R41到R48,第五行块组(未示出)包括R51到R58,第六行块组(未示出)包括R61到R68,第七行块组517包括R71到R78,第八行块组518包括R81到R88。在本发明示例性实施例的描述中,每个行块组包括相邻排列的行块,并响应于数字图像数据的第一若干位DS1的相同值来同时输出所接收的灰度级电压。

每个行块接收灰度级电压V0-V63中的一个,并响应于数字图像数据的第一若干位DS1来输出所接收的灰度级电压。

依据数字图像数据的第一若干位DS1的相同值,第一行块组511中包括的所有行块R11到R18同时输出所接收的灰度级电压。这样,依据数字图像数据的第一若干位DS1的相同值来输出所接收的灰度级电压的行块相邻排列。例如,仅当数字图像数据的第一若干位DS1对应于“111”时,在图5中的第一行块组511中相邻排列的行块R11到R18才输出所接收的灰度级电压。仅当数字图像数据的第一若干位DS1对应于“110”时,在第二行块组512中相邻排列的行块R21到R28才输出所接收的灰度级电压。这样,仅当数字图像数据的第一若干位DS1对应于“000”时,在第八行块组512中相邻排列的行块R81到R88才输出所接收的灰度级电压。

在图2中示出的传统灰度级电压解码器200的第一解码单元210中,当数字图像数据的第一若干位具有不同的值时,相邻行块可以输出所接收的灰度级电压。这样,相邻行块中的开关的排列是不同的。因而,如前所述,传统的灰度级电压解码器需要伪晶体管。然而,在本发明的一个示例性实施例中,由于相邻排列的行块由第一若干位DS1的相同值来控制,因此灰度级电压解码器不需要伪晶体管。

第二解码单元520响应于第二若干位DS2来从由第一解码单元510所选择的灰度级电压中选择一个,以输出所选择的灰度级电压作为模拟信号OUT。

图6是示出图5中所示的灰度级电压解码器500的第一解码单元510中的由NMOS晶体管实现的行块组511的电路图。

参考图6,第一行块组接收通过沿列方向形成的数据线DL0、DL2和DL4提供的数字图像数据的第一若干位DS1的相同位D0、D1和D2。

相邻排列在第一行块组511中的行块R11到R18分别接收灰度级电压V7、V15、V23、V31、V39、V47、V55和V63,并响应于相同位D0、D1和D2来确定是否输出所接收的灰度级电压。为了确定是否输出所接收的灰度级电压,行块R11到R18中的每个可以响应于数字图像数据的相同位D0、D1和D2来切换输出所接收的信号。

开关可由如图6中所示的NMOS晶体管来实现。例如,第一行块R11包括3个NMOS晶体管MN0、MN1和MN2。这3个NMOS晶体管MN0、MN1和MN2串联耦合。这3个NMOS晶体管MN0、MN1和MN2的栅极端子分别耦合到数据输入线DL0、DL2和DL4。这3个NMOS晶体管MN0、MN1和MN2每个都通过每个栅极端子接收第一若干位的每一位D0、D1和D2,从而确定是否输出所接收的灰度级电压。

在依据本发明示例性实施例的灰度级电压解码器500中,接收第一若干位的相同位D0、D1和D2的所有行块R11到R18都相邻排列,以便依据相同位D0、D1和D2的相同值来输出所接收的灰度级电压。这样,相邻行块中所包含的开关可以相同的配置来实现。

在图4所示的传统灰度级电压解码器中,相邻行块可接收数字图像数据的不同位。这样,即使当某些行块不受数字图像数据的某些位影响时,输入线DL0到DL5也需要通过所有的行块,以便向位于相邻位置的其它行块提供数字图像数据的某些位。这样,需要在实际上执行开关操作的激活晶体管之间插入伪晶体管,以使得输入线DL0到DL5通过激活晶体管之间的空间。

在图6中示出的依据本发明的示例性实施例的灰度级电压解码器中,相邻行块可以接收通过相同的位线提供的数字图像数据的第一若干位的相同值。不必考虑将数字图像数据提供给不受数字图像数据的某些位影响的某些行块的输入线的空间。不需要伪晶体管来通过不相关的输入线,这样可减少集成电路的尺寸。更具体地,可以通过去除伪晶体管来减小集成电路的行方向的长度。

此外,由于耦合到一个输入线的晶体管的数目减少了,从而驱动输入线的电平转换器的负载电容也可以降低。这样,动态电流和由被称为接地跳动所引起的误操作可被减少。

输入线可以包括用于在逻辑低状态时导通晶体管的反相输入线和用于在逻辑高状态时导通晶体管的同相输入线。当第一若干位DS1相应于“111”时,第一行块组511通过3个非反转输入线DL0、DL2和DL4来接收第一若干位DS1的每一位,以便导通所有的晶体管。但是,诸如图5中示出的第二行块组512到第八行块组518的其它行块组可以通过不同组合的输入线来接收第一若干位DS1。例如,当第一若干位相应于“110”时,第二行块组512可以通过2个非反转输入线和1个反转输入线来接收第一若干位DS1的每一位,以便导通所有的晶体管。当第一若干位DS1相应于“000”时,图5中的第八行块组518可以通过3个反转输入线接收第一若干位DS1的每一位,以便导通所有的晶体管。可以依据各种示例性实施例修改用于将第一若干位DS1提供给行块组511到518的输入线的组合的配置。

图7是示出依据本发明示例性实施例的用于减小列方向长度的灰度级电压解码器的方块图。

参考图7,包含在图5所示的第一解码单元510中的行块组511到518中的一些行块组515、516、517和518可以与其它行块组511、512、513和514分开布置。换句话说,行块组511到518可以被划分为两个不同的列线形状,如图7中所示。图7所示的灰度级电压解码器的列方向长度小于图5所示的灰度级电压解码器的列方向长度。依据本发明的示例性实施例,行块可被分开排列为三个或更多的列线形状,以便进一步减小列方向的长度。

图8A和8B是示出依据本发明示例性实施例的数模转换器的框图。

参考图8A,数模转换器包括第一解码单元510、第二解码单元520和作为灰度级电压发生器的电阻器阵列530。

第一解码单元510和第二解码单元520与图5或图7中所示的第一解码单元和第二解码单元相似。参考图5和图7的描述,第一解码单元510和第二解码单元520可减小集成电路的尺寸。电阻器阵列530产生提供给第一解码单元510的64个灰度级电压。实现为电阻器阵列530的灰度级电压发生器包括串联耦合的电阻器(未示出),用于依次对参考电压进行分压来产生不同的灰度级电压,这是本领域技术人员所公知的。

参考图8A,电阻器阵列530形式的灰度级电压发生器产生64个灰度级电压。第一解码单元510依据数字图像数据的低三位DS1选择8个灰度级电压。第二解码单元520依据数字图像数据的高三位DS2选择1个灰度级电压,以输出所选择的灰度级电压。

参考图8B,电阻器阵列630形式的灰度级电压发生器产生256个灰度级电压。第一解码单元610依据数字图像数据的低四位DS1选择16个灰度级电压。第二解码单元520依据数据图像数据的高四位DS2选择1个灰度级电压,以输出所选择的灰度级电压。

图8A和8B所示的灰度级电压数和数字图像数据的位数以及数字图像数据的低位和高位的划分是示例性的,可以依据不同的示例性实施例来进行修改。

如前所述,显示设备的灰度级电压解码器和包括该灰度级电压解码器的数模转换器可以通过重新排列行块来去除伪晶体管,从而减小电路尺寸。

此外,显示设备的灰度级电压解码器和包括该灰度级电压解码器的数模转换器可减少耦合到一个输入线的晶体管的数目,从而减小驱动输入线的电平转换器的负载电容。从而,可以减小动态电流,以及可以避免由称为接地跳动所引起的误操作。

尽管已对本发明的示例性实施例以及它们的优点进行了详细描述,但是应当理解,在不脱离本发明的范围的情况下,可以对本发明进行各种变化、替换以及修改。

相关申请的交叉引用

本申请要求于2007年5月21日向韩国知识产权局(KIPO)递交的第2007-0049028号韩国专利申请的优先权,其全部内容通过引用而合并于此。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号