首页> 中国专利> 用于酸气涤气工艺的聚烷撑亚胺和聚烷撑丙烯酰胺盐

用于酸气涤气工艺的聚烷撑亚胺和聚烷撑丙烯酰胺盐

摘要

本发明涉及烃基取代和未取代的聚乙烯亚胺和聚丙烯酰胺盐吸收组合物,其可用于处理酸性气体混合物的工艺中。

著录项

  • 公开/公告号CN101257968A

    专利类型发明专利

  • 公开/公告日2008-09-03

    原文格式PDF

  • 申请/专利权人 埃克森美孚研究工程公司;

    申请/专利号CN200680029403.2

  • 发明设计人 王正宇;迈克尔·希什金;

    申请日2006-08-01

  • 分类号B01J20/00;B01D69/00;B01D71/06;C08K5/17;D02G3/00;C08L61/20;C08L79/04;C07C7/00;C07C7/20;C01B17/16;

  • 代理机构中原信达知识产权代理有限责任公司;

  • 代理人郭国清

  • 地址 美国新泽西州

  • 入库时间 2023-12-17 20:45:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-22

    未缴年费专利权终止 IPC(主分类):B01J20/00 授权公告日:20110511 终止日期:20160801 申请日:20060801

    专利权的终止

  • 2011-05-11

    授权

    授权

  • 2008-10-29

    实质审查的生效

    实质审查的生效

  • 2008-09-03

    公开

    公开

说明书

发明背景

技术领域

本发明涉及吸收组合物和利用所述吸收组合物从含有气态酸性组 分的气体混合物中选择性吸收一种或多种气态酸性组分的方法。

背景技术

在本领域中,用胺溶液处理气体和液体,如含有酸性气体包括CO2, H2S,CS2,HCN,COS和氧及C1~C4烃的硫衍生物的混合物,以除去这 些酸性气体是公知的。所述胺通常作为吸收塔中的含胺水溶液与所述 酸性气体和液体接触,所述胺水溶液与酸性流体逆流接触。

通常,用胺溶液处理尤其含有CO2和H2S的酸性气体混合物可同 时除去大量的CO2和H2S。例如,在通常称作“胺水溶液工艺”的这 样一种工艺中,使用相对浓的胺溶液。这种工艺的最近改进涉及使用 如USP 4,112,052中所述的位阻胺,以得到酸性气体如CO2和H2S的几 乎完全去除。这类工艺可被用于其中CO2和相关气体的分压较低的情 况。另一种经常用于特定应用的工艺涉及胺与物理吸收剂的结合使用, 通常称作“非水溶剂工艺”,所述的特定应用是其中CO2的分压极高 和/或其中存在许多酸性气体的情况。对该工艺的改进涉及使用位阻胺 和有机溶剂作为所述物理吸收剂,如在USP 4,112,051中所述。

然而,通常希望处理含有CO2和H2S的酸性气体混合物以从所述 混合物中选择性除去H2S,从而最小化CO2的去除。H2S的选择性去除 在分离的酸气中产生相对高的H2S/CO2比,这简化了利用Claus工艺 H2S向元素态硫的转化。

通常仲胺和叔胺水溶液与CO2和H2S的反应可由如下的通式表 示:

其中各个R是相同或不同的有机基团,并可由羟基取代。上述反 应是可逆的,从而CO2和H2S的分压在决定上述反应发生的程度方面 是重要的。

尽管选择性的H2S去除可应用于低H2S/CO2比的多种气体处理操 作,包括来自页岩热解、炼厂气和天然气的烃气体处理,它特别希望 被用于其中的H2S分压比CO2的相对低的气体的处理中,因为胺从后 者类型的气体中吸收H2S的能力非常低。具有相对低的H2S分压的气 体例如包括:由煤的气化制得的合成气,精练厂中遇到的硫工厂尾气 和低焦燃料气,其中重质渣油被热转化成为较低分子量的液体和气体。

尽管已知伯胺和仲胺的溶液如一乙醇胺(MEA),二乙醇胺(DEA), 二丙醇胺(DPA),和羟基乙氧乙基胺(DGA)可吸收CO2和H2S气体二 者,它们没有被证明对于排除CO2优选吸收H2S是特别令人满意的, 因为胺很容易与CO2反应形成氨基甲酸盐。

在仲氨基醇中,二异丙醇胺(DIPA)是相对独特的,在于它单独或 与物理性溶剂如环丁砜一起被工业化应用,用于从含有CO2和H2S的 气体中选择性除去H2S,但必须保持相对短的接触时间,以利用上文等 式2和4中所示与CO2的反应速度相比H2S与胺的更快反应。

1950年,Frazier and Kohl,Ind.and Eng.Chem.,42,2288(1950)提 出了叔胺、甲基二乙醇胺(MDEA)相对于CO2具有高度的H2S吸收选择 性。这种较强的选择性归因于与H2S的快速化学反应相比,CO2与叔 胺相对慢的化学反应。然而,由于其对于H2S的负载能力有限和其在 低压下降低H2S含量至一定程度的能力有限,而这对于例如处理由煤 气化制得的合成气是必要的,MDEA的工业应用受到了限制。

近来,Shell的英国专利公开2,017,524A公开了在高于MDEA溶 液的负载水平下,二烷基单烷醇胺特别是二乙基单乙醇胺(DEAE)的水 溶液具有较高的H2S去除选择性和能力。然而,即使DEAE对于工业 中频繁遇到的低H2S负载也并非非常有效。同样,DEAE的沸点为161 ℃,这样,其特征在于是低沸点的、相对高挥发性的氨基醇。这种高 挥发性在大多数涤气条件下导致大量的材料损失和相应的经济性损 失。

美国专利4,405,581;4,405,583和4,405,585公开了使用空间受阻严 重的胺化合物用于在CO2存在情况下选择性除去H2S。与甲基二乙醇 胺(MDEA)的水溶液相比,空间受阻严重的胺在高H2S负载下产生高得 多的选择性。

USP 4,487,967公开了在高温和压力下,在氢化催化剂存在下通过 使伯氨基化合物与聚链烯基醚二醇反应而用于选择性制备空间受阻严 重的仲氨基醚醇的催化合成方法。

USP 4,665,195公开了在高温和压力下,在氢化催化剂存在下通过 使(a)一种或多种非环或杂环氨基化合物与(b)一种或多种聚链烯基醚二 醇或聚链烯基氨基醚醇反应而制备二-氨基-聚链烯基醚的催化合成方 法。

在USP 4,405,583中公开了BTEE组合物和由叔丁基胺和二-(2-氯 代乙氧基)-乙烷的合成。然而,BTEE水溶液的问题在于在再生条件(约 110℃)下的相分离。USP 4,471,138中公开了EEETB作为新的组合物, 并可由叔丁基胺和氯代乙氧基乙氧基乙醇制备。水溶液中的EEETB可 用于在CO2存在下选择性除去H2S。然而BTEE/EEETB混合物比 EEETB产生更好的选择性和对于H2S具有更高的能力。在再生条件下 所述混合物不会产生相分离,即该混合物克服了BTEE的相分离问题。 如美国专利4,405,581和4,405,585所述,与由空间受阻严重的胺如乙 氧基乙醇-叔丁基胺(EETB)所观察到的相比,所述BTEE/EEETB混合物 还得到了对于H2S的更高选择性。

USP 4,417,075教导了一类具有下式的二仲氨基醚:

其中R1和R8各自独立地选自:含1-8个碳原子的伯烷基、和含 2-8个碳原子的伯羟烷基、含3-8个碳原子的仲烷基和仲羟烷基、含4-8 个碳原子的叔烷基和叔羟烷基,R2,R3,R4,R5,R6和R7各自独立地选自: 氢、C1-C3烷基和羟烷基,前提是当R1和R8是伯烷基或羟烷基时R2,R3, R6和R7是C1-C4烷基或羟烷基,且当R1和R8是仲烷基时R2或R3和 R6和R7至少之一是C1-C3烷基或羟烷基,m,n和p是2-4的正整数, a是0或1-10的正整数。这些化合物可用于从含有CO2和H2S的气体 混合物中选择性除去H2S。

USP 4,894,178教导了具有下式的两种空间受阻严重的胺的混合 物:

其中x是2-6的整数,且所述第一胺与第二胺的重量比范围为0.43∶ 1~2.3∶1。该混合物可在一步法合成中通过聚链烯基醚二醇、 HO-(CH2CH2O)x-CH2CH2-OH的催化叔丁胺化而制备。例如,可通过三 乙二醇的催化叔丁胺化得到双(叔丁基氨基乙氧基)乙烷(BTEE)和乙氧 基乙氧基乙醇叔丁胺(EEETB)的混合物。

附图说明

图1是说明用于从含有H2S和CO2的气态物流中选择性除去H2S 的吸收再生单元的图解流程图。

发明概述

本发明涉及未取代或烃基取代的聚烷撑亚胺和聚烷撑丙烯酰胺盐 及其混合物和它们在用于酸性气体混合物处理工艺中的用途。

发明详述

已经证明并发现未取代或烃基取代的聚烷撑亚胺和聚烷撑丙烯酰 胺盐可用于酸性气体混合物的处理工艺中。

本发明未取代或烃基取代的聚烷撑亚胺和聚烷撑丙烯酰胺盐通常 由下式表示:

其中Rs相同或不同,并选自H、C1-C9烷基、C3-C9支链烷基、环 状、环烷基、烷基环基、C6-C9芳基、芳基烷基或烷基芳基、其羟基取 代的衍生物,优选H或C1-C4烷基;

x,y和z各自是至少为1的整数,因为所述材料均是水溶性的则无 上限,优选1~200;

Q是1~6的整数,优选1~4,更优选1,盐是碱性盐(pH≥8), 例如,NaOH,KOH,Zn(OH)2,Mg(OH)2,Ca(OH)2,NR4OH,其中R如上 定义,W是不会影响吸收剂的整体碱性的端基。

上述的吸收剂对于从气态混合物中除去一种或多种气态酸性组分 例如H2S表现出高选择性,所述混合物包括这种气态酸性组分和气态 非酸性组分和CO2,并即使在再生之后也保持了它们的高选择性和负 载能力。

所述吸收剂用于从通常为气态的混合物中选择性吸收气态酸性组 分(优选H2S),所述混合物含有气态酸性组分(优选H2S)和CO2, 包括:

(a)使所述通常为气态的混合物与吸收溶液接触,所述吸收溶液的 特征在于能够选择性地从所述混合物中吸收一种或多种气态酸性组 分,优选H2S;

(b)至少部分地再生含有吸收的气态酸性组分(如H2S)的所述吸 收溶液;和

(c)通过如步骤(a)中所述进行接触,重复利用所述再生溶液用于 气态酸性组分(优选H2S)的选择性吸收。

优选通过加热和汽提、并更优选通过用蒸气加热和汽提进行所述 再生步骤。

这里使用的术语“吸收溶液”包括但不限于其中氨基化合物溶于 选自水或物理吸收剂或其混合物的溶剂中的溶液。例如,在USP 4,112,051中描述了物理吸收剂溶剂(与作为化学吸收剂的氨基化合物 相对而言),其全部公开内容此处引入作为参考,其包括:如脂族酸 酰胺、N-烷基化吡咯烷酮、砜、亚砜、二醇和其单醚和二醚。本文所 述优选的物理吸收剂是砜,最特别是环丁砜。优选的液体介质包括水。

主要取决于使用的特定氨基化合物和采用的溶剂体系,所述吸收 溶液的氨基化合物浓度通常为约0.1~6摩尔/升总溶液,并优选1~4 摩尔/升。主要取决于采用的氨基化合物类型,如果所述溶剂体系是水 和物理吸收剂的混合物,使用的物理吸收剂的有效量通常可在0.1~5 摩尔/升总溶液之间变化,并优选0.5~3摩尔/升。氨基化合物的浓度对 于使用的具体化合物具有显著依赖性,这是因为增大氨基化合物的浓 度可降低吸收溶液的碱度,从而不利地影响其对于H2S去除的选择性, 特别是如果在所述氨基化合物具有将决定在上述给定范围内的最大浓 度水平的特定水溶液溶解度的情况下。从而对于确保满意的结果,保 持适于各特定氨基化合物的适当浓度水平是重要的。

本发明的溶液可包括各种常用于选择性气体去除工艺的添加剂, 例如,消泡剂、抗氧化剂、腐蚀抑制剂等。这些添加剂的量通常在它 们的有效范围内,即有效量。

本文所述的氨基化合物还可与其他氨基化合物作为共混物混合。 所述各氨基化合物的比例可显著不同,例如,1~99wt%本文所述的氨 基化合物。

在决定本文所述氨基化合物的H2S去除效率中最重要的三个特征 是“选择性”、“负载”和“容量”。说明书通篇中使用的术语“选 择性”由如下的摩尔比分数定义:

液相中(H2S的摩尔数/CO2的摩尔数)/

气相中(H2S的摩尔数/CO2的摩尔数)

该分数越高,所述吸收溶液对于气体混合物中的H2S选择性越高。

术语“负载”是指以气体的摩尔数/胺的摩尔数表示的物理溶解和 化学结合在所述吸收溶液中的H2S和CO2气体的浓度。最好的氨基化 合物是表现出高达相对高负载水平的良好选择性的那些。本发明实践 中使用的氨基化合物通常在0.1摩尔的“负载”下具有基本不小于10 的“选择性”,优选在0.2或更高的H2S和CO2摩尔数/氨基化合物摩 尔数下“选择性”基本不小于10。

“容量”定义为在所述吸收步骤的最后吸收溶液中负载的H2S摩 尔数减去在所述解吸步骤的最后吸收溶液中负载的H2S摩尔数。高容 量使得可减少被循环的胺溶液的量和在再生过程中使用较少的热量或 蒸气。

本文的酸性气体混合物须包括H2S,可任选包括其他气体如CO2, N2,CH4,H2,CO,H2O,COS,HCN,C2H4,NH3等。通常这种气体混合物 存在于燃烧气体、精练厂气体、民用燃气、天然气合成气、水煤气、 丙烷、丙烯、重质烃气等。这里,当所述气态混合物是这样得到的气 体时所述吸收溶液特别有效,所述气体例如来自:页岩油干馏炉,煤 的液化或气化,用蒸气液化重质油,空气/蒸气或氧/蒸气,重质渣油向 较低分子量液体和气体的热转化如流化焦化器、Flexi焦化器或延迟焦 化装置,或硫工厂尾气清除操作。

本发明的吸收步骤一般包括使通常为气态的物流与吸收溶液在任 何适当的接触容器中接触。在这种工艺中,可利用常规方法使所述含 有H2S和CO2的通常为气态的混合物与吸收溶液密切接触,其中所述 气态混合物中的H2S待被选择性除去,所述常规方法如用例如环形料 或筛板装填的塔或容器或鼓泡反应器。与CO2相比,也将优选除去其 他酸性气态组分。

在实践本发明的常见方式中,通过将所述通常为气态的混合物进 料到吸收塔的底部、同时将新鲜的吸收溶液进料到塔的顶部区域进行 所述吸收步骤。释放大部分H2S的所述气态混合物从塔的顶部逸出, 含有选择性吸收的H2S的负载吸收溶液从接近塔底部或在其底部离开。 优选,在所述吸收步骤中吸收溶液的入口温度范围为约20℃~约100 ℃,更优选约30℃~约60℃。压力可大幅变化;吸收器内可接受的压 力为5~2000psig,优选20~1500psig,最优选25~1000psig。所述接 触在使得H2S可被所述溶液选择性吸收的条件下进行。将吸收条件和 设备设计为使得可最小化液体在吸收器内的驻留时间以减少CO2的吸 收,同时保持气体混合物与液体的足够驻留时间以吸收最大量的H2S 气体。需要被循环以得到给定的H2S去除程度的液体量将取决于所述 氨基化合物的化学结构和碱度和进料气体中的H2S分压。在相同吸收 条件下,具有低分压的气体混合物(如在热转化工艺中遇到的那些) 将比具有较高分压的气体(如页岩油干馏炉气体)需要更多的液体。

用于选择性除去H2S相的工艺的常见步骤包括:在含有多个塔板 的塔中,在低温如低于45℃下,和在至少约0.3英尺/秒(基于“活化” 或松动的塔板表面)的气体速度下,通过含H2S和CO2的气态混合物 与氨基化合物溶液的逆流接触选择性吸收H2S,取决于气体的操作压 力,所述板式塔的接触塔板少于20,例如通常使用4-16块塔板。

在使所述通常为气态的混合物与吸收溶液接触之后,接触溶液变 为由H2S饱和或部分饱和的,可至少部分地再生所述溶液以使得其可 被循环回吸收器内。与吸收一样,可在单独的液相中进行再生。可通 过在所述容器的顶部以常规方式完成所述吸收溶液的再生或解吸,所 述常规方式如降低溶液压力或升高温度至吸收的H2S可被闪蒸掉的点 处,或使得所述溶液旁路进入到用于所述吸收步骤中的类似结构的吸 收容器内,并使惰性气体如空气或氮气或优选蒸气向上通过所述容器。 在再生步骤中所述溶液的温度范围应为约50℃~约170℃,优选约80 ℃~约120℃,所述再生溶液的压力范围应为约0.5~约100psia,优选 1~约50psia。所述吸收溶液在被清除掉至少一部分H2S气体之后,可 被循环回到吸收容器内。根据需要可加入补充的吸收剂。

在优选的再生技术中,将富H2S的溶液送至再生器,所述再生器 其中通过由所述溶液的再沸产生的蒸气对所述吸收组分进行汽提。闪 蒸槽和汽提塔中的压力通常为1~约50psia,优选15~约30psia,且温 度范围通常为约50℃~170℃,优选约80℃~120℃。当然,汽提塔和 闪蒸温度将取决于汽提塔压力,从而在约15~30psia的汽提塔压力下, 吸收过程中的温度将为80℃~约120℃。所述待再生溶液的加热可非 常适于通过用低压蒸气间接加热的方式实现。然而,也可使用蒸气的 直接注入。

在实践本文整个工艺的一种实施方式中,如图1所示,将待纯化 的气体混合物通过线路1引入气-液逆流接触塔2的底部,所述接触塔 包括底部3和顶部4。根据需要,所述顶部和底部可通过一个或多个填 充床隔开。上述的吸收溶液被通过管5引入到塔的顶部。所述流向塔 底部的溶液遇到逆流流动的气体并优先溶解H2S。释放了大部分H2S 的气体通过管6离去,用于最终应用。所述主要含有H2S和一些CO2的溶液流向塔的底部,在该处其被通过管7释放出来。然后,由任选 的泵8将所述溶液泵送通过置于管7内的任选的热交换器和冷却器9, 这使得来自再生器12的热溶液与来自吸收塔2的较冷溶液交换热量用 于节约能量。所述溶液通过管7进入到闪蒸槽10中,闪蒸槽10配备 有排出至线路13的线路(未图示),然后通过线路11引入到再生器 12的顶部,其配备有若干板并对所述溶液中携带的H2S和CO2气体进 行解吸。该酸性气体通过管13被传送入冷凝器14中,其中对来自所 述气体的水和胺溶液进行冷却和冷凝。然后,所述气体进入分离器15 中,在其中进行进一步的冷凝。通过管16将所述冷凝溶液返回分离器 12的顶部。含有H2S和一些CO2的冷凝剩余气体通过管17移出用于 最终处理(例如,送至出口或焚烧炉或将H2S转化成为硫的设备,如 Claus单元或Stretford转化单元(未图示))。

当所述溶液向下流动通过再生器12并通过管18在所述再生器的 底部离开以转移到再沸器19的同时,溶液释放处大多数其含有的所述 气体。装配有外部热源(如通过管20注入的蒸气和通过第二管(未图 示)排出的冷凝物)的再沸器19蒸发掉部分的该溶液(主要是水)以 从其中排出更多H2S。排出的H2S和蒸气经由管21被返回到所述再生 器12的底部,并通过管13排出以进入气体处理的冷凝阶段。仍留在 所述再沸器19中的溶液通过管22取出,在热交换器9中冷却,并经 由泵23(任选的,如果压力足够高的话)的作用通过管5引入到吸收 塔2内。

通常,在通过本发明工艺处理之后,H2S∶CO2摩尔比为1∶10的来 自用于重质渣油热转化设备的待处理气态蒸气、或者H2S∶CO2摩尔比 小于1∶10的Lurgi煤气将产生H2S∶CO2摩尔比约为1∶1的酸性气体。本 文的所述工艺可与另一种H2S选择性去除工艺结合使用;然而,优选 独立进行本发明的工艺,因为所述氨基化合物自身在H2S的优先吸收 方面极为有效。

试验步骤

1.利用氮∶二氧化碳∶硫化氢为89∶10∶1的试验气体混合物在35℃在 0.15M吸收剂水溶液上进行吸收试验2小时。

2.在与试验气体混合物的相同流速下,在85℃在流动N2中进行2 小时吸收。

表1.

  化合物   分子量   选择性   负载(%)   容量(%)   选择性   吸收   EETB(USP4405585)   161.24   15.4   16.3   60   13.3   Bis-SE(USP4405583)   216.36   16.7   28.2   80   25.2   聚乙烯亚胺   42x+86y   85.5   7.3   57   102.8   聚丙烯酰胺   71.08z   4.51   --   --   --   聚丙烯酰胺-KOH盐   71.08z   77.3   10.1   71.3   112.4

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号