首页> 中国专利> 用于消散杂散光的光纤配置

用于消散杂散光的光纤配置

摘要

本发明提供一种用于消散杂散光的光纤配置。形成光学传输光纤包括设置在保护性的聚合物外涂层下面的相对低折射率、相对薄的外包层。沿着该光纤中的内包层传播的杂散光将折射入薄外包层(通过正确选择折射率值)。外包层的薄尺寸也许杂散光以受控的逐渐的方式“泄漏”进入外涂层,从而降低与杂散光存在相关的涂层的受热。本发明的光纤还可弯曲以协助将杂散光移入涂层中。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-09-28

    授权

    授权

  • 2010-04-21

    实质审查的生效 IPC(主分类):G02B6/036 申请日:20080202

    实质审查的生效

  • 2008-08-20

    公开

    公开

说明书

技术领域

本发明涉及一种在基于光纤的激光器、放大器或光组合器应用中用于处理杂散光存在的光纤,尤其涉及一种包括设置在内包层与外涂层之间的薄外包层的光纤,该薄外包层用于容纳和处理在内层包层中存在的任何光(泵浦和/或信号),并且以受控方式消散这种杂散光以降低光纤外涂层的热量。

背景技术

在包括高能通信系统、用于打印机的光源、用于医疗光学的激光器以及类似应用的众多类型光学应用中,例如激光器、放大器以及光组合器的包层-泵浦光纤器件都是十分重要的。典型的包层-泵浦光纤包括信号纤芯以及多层包层。典型地,环绕纤芯的内包层为大横截面积(与纤芯相比)和高数值孔径(NA)的二氧化硅包层。内包层通常为非圆形的以确保内包层的模式呈现与纤芯之间良好的重叠。外涂层通常由低折射率聚合物构成。纤芯的折射率比内包层的折射率大,而内包层的折射率比外涂层的折射率大。

包层-泵浦光纤的主要优点在于它可在单模光纤纤芯中将从低亮度光源来的光转变为高亮度的光。由于内包层的大横截面积和高数值孔径,从例如二极管阵列的低亮度光源来的光可被耦合至内包层中。在包层-泵浦激光器或放大器中,纤芯掺杂有例如镱(Yb)或铒(Er)的稀土。在包层中的光与纤芯相互作用并且被稀土掺杂物吸收。如果光信号通过泵浦纤芯,则该光信号将被放大。可选地,如果提供光反馈(例如具有布拉格(Bragg)光栅光共振腔),则包层-泵浦光纤将用作工作在反馈波长的激光振荡器。

图1示出示例的现有技术的包层-泵浦光纤1,具有纤芯2、内(泵浦)多模包层3以及外涂层4。如图1所示,内包层3呈现比纤芯2较低的折射率,使得沿着纤芯2传播的光信号L仍然容纳在纤芯2中。相似地,如图所示,外涂层4将泵浦光P容纳在内包层3的边界之内。根据包层-泵浦的设置(arrangement),包含泵浦光P的射线周期地贯穿纤芯2,以便被其中的活性材料吸收,从而产生或放大光信号L。值得注意的是,由于内包层3是多模的,除在图1中由箭头示出的射线之外的许多射线也可在内包层3中传播。

阻止充分利用包层-泵浦光纤器件潜力的困难在于将足够多数量的低亮度光源有效地耦合至内包层。在1999年1月26日授予D.J.DiGiovanni等人专利权的发明名称为“Tapered Fiber Bundles for Coupling Light Into and Out ofCladding-Pumped Fiber Devices”的美国专利5,864,644中描述了解决上述问题的建议的方案。在DiGiovanni等人的设置中,使用锥形光纤束将从多个光源来的光耦合至包层-泵浦光纤中,此锥形光纤束是将各个光纤分组为紧密封装的形式并且加热聚集的光纤至可使光纤束收缩成锥形结构的温度来形成的。随后将锥形体融合接续至包层-泵浦光纤。图2描述了这种DiGiovanni等人提出的现有技术方案的示例的实施例,其中示出了多个束泵浦光纤5分散的环绕包含纤芯6的光纤。如图所示,整个光纤束7被熔化并且沿着部分8锥形化为单输出包层-泵浦光纤9。如在这里所描述的,执行光纤束的锥形化来增大耦合至包层-泵浦光纤9端部的泵浦光的强度。由于多模泵浦区域的NA比泵浦光纤的NA大很多,光纤束的锥形化可在保持多模泵浦区域的角度容许(angularacceptance)范围内时增大光学泵浦强度。

尽管DiGiovanni等人的锥形光纤束已经显示出极大提高将多个光信号耦合至光纤放大器、激光器或光组合器中的效率,由在系统中的“杂散光”的存在所引起的问题仍未解决。已经发现杂散光是从例如增益光纤中的放大的自发发射(ASE)、未吸收的或散射的泵浦光、以及从纤芯中散射出并且进入内包层中的信号光的多个不同光源产生的。当图1的现有技术的设置能够以小的衰减并且不加热光纤的方式传输杂散光时,如果杂散光不是始终容纳在内包层3的边界内,则杂散光可导致毁坏性的加热。如果包层光的NA以扰动(perturbation)(例如锥形)增大至超过内包层3与外涂层4之间的NA,则可出现杂散光从包层中漏泄。在这种情况下,包层光折射进入在其中被吸收的外涂层4并且产生不需要数量的局部加热。杂散光还可在包层-泵浦光纤的终端点折射入外涂层4,例如在连接至输出光纤(这种光纤通常具有高折射率外涂层)的点或是在沿着将光纤弯曲至足以将光耦合入包层的角度的光纤的任何点。

图3描述杂散光与终端条件相关的上述情况,在这个例子中,在图1的包层-泵浦光纤1与输出光纤11之间的接续点S。如图所示,在包层-泵浦光纤1的终端剩余的未吸收的/散射的泵浦光进入输出光纤11中并且折射入高折射率聚合物外涂层13。由于聚合物外涂层13的光学吸收比玻璃的光学吸收大很多,绝大部分的光都被涂层13所吸收并且转化为热量。如果这种热量足够局部化,则光纤会被烧毁或是对经受毁坏性故障的点的损坏。除了存在未吸收的泵浦光之外,信号光也可在光纤1的终端从纤芯区域2散射出,因此信号光沿着内包层15传播并且也可折射入高折射率包层13中而产生额外的热量。

虽然加热可在两束不同的光纤之间的接续位置(如图3中所示的)出现,由于导致光散射的轻微瑕疵,在相同光纤之间的接续处也会产生热量。沿着光纤的各种其它类型的扰动也会导致沿着光纤的杂散光出现的增加并且因此会潜在地使局部加热光纤的问题复杂化。由于在放大器应用中光能等级可能是高的,最好逐渐地消散能量,因此避免光纤或是任何相关光学部件的局部受热。

现有技术试图解决上述问题,典型地涉及使用沿着传输路径上散布的“吸收”光纤的部分,其中这些部分包括选择性吸收种类,例如稀土离子,浓缩足以提供期望的吸收选择性。在2004年6月3日授予B.J.Ainslie等人的美国专利6,574,406和由L.A.Reith等人申请并在2004年9月9日公布的美国专利申请2004/0175086公开了上述原理的两种不同设置。

虽然这些设置提供一定程度的杂散光处理,但是提供上述处理能力的光纤的选择部分的使用限制其可用性。例如,如果新的接续加入到光纤,或是在新的位置引入弯曲,则吸收光纤部分不可能被正确定位从而消散额外的杂散光。此外,需要仔细控制光纤部分的尺寸以确保以充分逐渐的方式消散能量。

因此,在本领域中仍然需要能够处理在光纤中出现的杂散光,从而降低光纤的加热和/或由于杂散光出现的其它故障模式。

发明内容

本发明解决了现有技术中存在的需求,本发明涉及一种配置用于可控制地消散杂散光的光纤,尤其涉及在内包层与光纤外(聚合物)涂层之间添加薄外包层来容纳从内包层折射出的光并且沿着光纤外涂层的延伸部以受控方式消散该光。

根据本发明,形成的光学传输光纤包括设置为环绕内包层的相对薄的外包层,因此捕获和容纳杂散光(包括剩余的泵浦光和/或折射的信号光)。有限厚度的外包层容许杂散光沿着外包层传播,并以受控方式“泄漏”或“通过隧道”进入外涂层。在优选实施例中,定义外涂层的厚度不大于10μm(或者甚至更佳的为5μm)。通过强制杂散光沿着外涂层的延伸部消散,将会基本上消除聚合物外涂层的局部受热,防止热引起的光纤严重故障。

形成的薄外包层具有小于内包层的折射率(为了提高在内包层中的反射),其中外包层可具有相对于内包层和外涂层的折射率的阶梯-折射率或是渐变-折射率分布。

在一个实施例中,可在外包层中或是在内外包层之间的界面处形成多个散射或吸收点,从而有利于杂散光从内包层移动至外包层。

本发明的一个方面,在涉及杂散光的热处理的实际上基于光纤设置中可使用包括薄(“易泄漏的”)的外包层。例如,光纤放大器、基于光纤的激光器、激光组合束都产生可能成为问题的极大量的杂散光能量。此外,环境情况(例如光纤需要限制成弯曲位置,或是在不同光纤段之间的接续处)可增加杂散光的存在。在任何上述情况下,紧靠基于聚合物的光纤外涂层包括的薄外包层将可控制地管理沿着外涂层的延伸部分的杂散光的消散。

在接下来的讨论中并且参照附图可以清楚地理解本发明的上述和其它实施例和特征。

附图说明

现在请参照下列附图:

图1是示例的现有技术的包层-泵浦光纤的侧面图;

图2是示例的现有技术的输入至包层-泵浦光纤的锥形光纤束的侧面图;

图3是在包层-泵浦光纤与传输光纤之间的接续位置的侧面图,该侧面图描述在接续处产生杂散光的可能情况;

图4包含对现有技术的锥形光纤束的更详细的描绘,描述将反向传播杂散光引入光纤束;

图5是图4中的现有技术的锥形光纤束的光学/热学照片,描述由于杂散光的存在所引起的信号光纤的局部受热的产生;

图6是根据本发明形成的示例的锥形光纤束的侧面图,包括在信号光纤中含有薄外包层的“热处理光学传输光纤”,以便沿着外涂层可控制地消散杂散光;

图7是根据本发明形成的示例的热处理光学传输光纤的横截面图;

图8是描述图7中的本发明的光纤的折射率的分布图;

图9是作为光纤弯曲半径的函数的光学损耗的曲线图,描述使用受控光纤弯曲协助去除和消散杂散光;

图10是用于收集图9的曲线的数据的示例的本发明的光纤的折射率分布图;

图11是根据本发明形成的示例的激光组合器的侧面图,每根光纤包括薄外包层以便消散杂散光;以及

图12是在图11的激光-传播光纤与输出光纤之间的接续位置的剖视图,描述可导致在系统中产生杂散光的大量的间隙空间(在光纤纤芯之间)。

具体实施方式

在图4中示出示例的现有技术的锥形光纤束10,在这个例子中描述从与光纤束10熔合的包层-泵浦光纤12重新进入光纤束10中的反向散射杂散光的传播。光纤束10被描绘包括多根泵浦光纤14以及信号光纤16。使用本领域公知的方法,光纤束10绝热地逐渐变细直至在位置F其外径与包层-泵浦光纤12的外直径匹配,随后两根光纤熔化接续在一起。信号光纤16包括纤芯区域17(纤芯区域可为单模或多模),纤芯区域17被相对大直径(例如125μm)的包层18包围。泵浦光纤14包括相对大的二氧化硅纤芯13(例如105μm)和薄(例如10μm)的低折射率包层15。如同上面所讨论的,包层18的折射率小于纤芯区域17的折射率,从而将传播信号光限制在沿该纤芯的光纤轴上。

众所周知的是,甚至少量的杂散光可引起锥形光纤束10的温度的剧烈升高,导致灾难性的故障。如上所述,杂散光由包括信号光纤16中的ASE、与反向传播泵浦光源(在图4中以“反向”箭头表示)相关的无吸收的泵浦光P和/或信号光纤16的纤芯散射到外面的信号光的一个或多个光源所产生的。图5包括描绘这种原理的光学/热学照片,其中杂散光的存在是由使用耦合进入形成光纤束的每根光纤的反向传播信号所引起的。通过分离这些光纤并且利用热照相机监视这些光纤的温度,热图像的中心内的白点清楚地显示出信号光纤16中的极高温度。

还发现,例如在图5的照片中所示的,信号光纤与泵浦光纤之间的产生的温度差可归因于泵浦光纤所使用的特定包层结构。特别地,再次参考图4,耦合进入传统的信号光纤16中的反向行进的光将进入环绕包层18中,并且随后被导入外层聚合物涂层19中。由于聚合物具有强的光吸收,上述光将迅速地转化为不期望的热能。另一方面,进入泵浦光纤14中的光大部分被二氧化硅纤芯13所捕捉并且导向在二氧化硅纤芯13与低折射率包层15之间的玻璃界面。因此,泵浦光纤中的反向传播光与叠置的聚合物发生小的相互作用,并且不会产生大量的热量。因此,根据本发明,通过增加额外的包层可降低与沿着信号光纤传播的杂散光相关的热量从而处理沿光纤长度方向上的光能量分布。

图6描绘根据本发明形成的锥形光纤束,其中信号光纤30特别地设置为包括薄(即“易泄漏的”)的低折射率外包层,该外包层用于去除沿着内包层传播的杂散光并且沿着外涂层的延伸部分可控地泄漏这些杂散光。如下所讨论的,这种泄漏(或隧道)效应可通过弯曲该光纤来增强。图6中示出的泵浦光纤14与包括在图4的现有技术结构中的光纤基本相同。

图7包含根据本发明形成的示例的热处理的、高能信号光纤30的横截面图。如图6和图7所示的,热处理的高能信号光纤30包括纤芯区域32、相对大的截面面积的内包层34、薄外包层36(其中薄外包层36具有小于内包层34的折射率,为恒定值折射率或是梯度折射率值)、以及包覆外包层36的聚合物涂层38(涂层38具有大于内包层34的折射率)。图8包含本发明的这个特定实施例的示例的光纤30的折射率分布(未标尺度)。

如上所述,薄外包层36起到捕获并且引导任何杂散光的作用,无论是剩余泵浦光或是折射的信号光,并且阻止这些光直接地与聚合物涂层38的局部区域相互作用并使此局部区域受热。由于有目的地形成相对薄(例如,厚度小于10微米,或甚至为5微米)的外包层36,因此当光沿着外包层36传播时,杂散光将会逐渐泄漏/通过隧道进入聚合物涂层38中。实际上,通过保持外包层36的厚度小于10μm,杂散光将沿隧道通过外包层36,使得光能随后沿着外涂层38的延伸部分逐步地分布。

如上所述的,通过弯曲光纤可加强从薄包层36进入聚合物涂层38的隧道化。特别地,如图9的曲线图中所示的,当本发明的光纤的弯曲直径减小时,此结构具有更大的损耗。如图10的相关折射率分布图中所示的,图9的曲线是具有105μm的纤芯直径、114μm的外包层直径以及250μm的外涂层直径的光纤所产生的。在内包层与外包层之间的折射率的差值(Δn)大约为0.0167,并且外涂层为具有高于内包层折射率的常规的紫外光(UV)固化丙烯酸酯涂层。纤芯完全充满了光,并且在各个弯曲直径下监测通过量。如图9中所示的,通过改变弯曲直径可“调谐”光的损耗率。值得注意的是,甚至在较大的弯曲直径,光损耗也显示为非零。由于外包层36的薄尺寸,可执行弯曲而不对在纤芯区域32中的信号传播带来影响。

在大多数的实施例中,内包层34与外包层36之间的NA应该介于大约0.15至0.33的范围内。因此,利用这些值,外包层36可包括小于10μm的厚度并且提供足够的弯曲损耗而不干扰在纤芯区域32中传播的信号光。外包层36可包括玻璃或是聚合物材料。包层36还可形成包括在其光束或在其内表面的散射点(例如,矾土粉末或结晶的聚合物),从而有利于从内包层34中去除光能并且沿聚合物涂层38的能量分布。涂层38可在应用于在制造过程期间的光纤,或应用在随后当封装光纤时,在随后使用散热膏或胶粘环氧。

虽然上述讨论针对于在锥形光纤束的信号光纤中的热处理问题,但是应该懂得,在由于吸收光而产生热量的的其它基于光纤的光设置中也出现类似的热处理问题。例如,光纤接续和光纤弯曲均为公知的可给系统引入杂散光的结构。在这些例子中,因此,可使用包含薄的低折射率的外包层的相似构造的高能信号光纤来方便去除这些杂散光并且沿着外涂层的延伸部分消散光。当然,已经研制出激光组合器的设置,通过锥形化将与独立光源相关的多根光纤组合成光纤束并且作为一组提供至较大纤芯传输光纤的输入。图11描述一种这样的激光组合器,包括沿着每根激光输入光纤附加的薄外包层,从而根据本发明提供杂散光的热处理。

参考图11,表示激光组合器40包括通过锥形化设置组合成大的多模纤芯光纤42的多根信号光纤30(表示为30-1、30-2以及30-3)的。每根输入信号光纤30包含例如从光纤激光器来的单模光那样的高亮度、低NA的光。一种上述激光组合器40的期望应用是与材料处理相关,存在高的相似性,绝大部分的光(例如从熔铸的金属表面的反射)作为杂散光被反射回到信号光纤束中。当到达光纤30的光纤束的入口时,一部分杂散光将进入单独的纤芯32之间的间隙空间(参见图12关于示例的多纤芯和在这样的激光传播光纤束中的大间隙空间的描述)并且被导入环绕的包层区域34。因此,利用如上所述的相同方式,通过增加外包层36捕获杂散光将与外聚合物涂层38受热相关的问题最小化,并且沿着聚合物涂层38的延伸部分逐步地消散这些光。

当然,应该懂得,上述的实施例仅是可以提供本发明原理的应用的众多可行的特定实施例中的一些实施例的描述。在不脱离由本发明申请中所附的权利要求书所限定的本发明的精神和范围的情况下,本领域的技术人员可以作出许多和其它的各种设置。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号