首页> 中国专利> 有传感器发热器和带有分流坝及安装在传感器上游的减压槽的空气轴承面的磁头

有传感器发热器和带有分流坝及安装在传感器上游的减压槽的空气轴承面的磁头

摘要

用于信息存储器件的磁头包括新颖的ABS和有发热元件的传感器。该ABS包括在第一平面内有表面的传感器衬垫。该ABS也包括减压槽,该减压槽距离第一平面向下至少凹进0.1微米并且有不超过滑动件全部长度的四分之一的上游宽度。该减压槽直接设置在传感器衬垫上游并且连续横跨传感器衬垫的全部宽度。该ABS也包括分流坝,该分流坝有位于第一平面内的坝表面。该坝表面连续横跨传感器衬垫的全部宽度。该坝表面直接设置在减压槽上游,并且一般位于负压腔的下游。

著录项

  • 公开/公告号CN101183532A

    专利类型发明专利

  • 公开/公告日2008-05-21

    原文格式PDF

  • 申请/专利权人 西部数字(弗里蒙特)公司;

    申请/专利号CN200710168026.7

  • 申请日2007-11-02

  • 分类号G11B5/60(20060101);G11B21/21(20060101);

  • 代理机构11245 北京纪凯知识产权代理有限公司;

  • 代理人赵蓉民

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 20:06:53

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-04-06

    授权

    授权

  • 2010-01-06

    实质审查的生效

    实质审查的生效

  • 2008-05-21

    公开

    公开

说明书

技术领域

【0001】本发明一般涉及信息存储器件的领域,更特别地涉及用于这种器件的空气轴承滑动件。

背景技术

【0002】信息存储器件用于找回和/或存储计算机和其它消费电子器件中的数据。磁性硬盘驱动器是信息存储器件的一个实例,该器件包括一个或多个能够读写的磁头,但是其它信息存储器件也包括磁头——往往包括不能写的磁头。

【0003】典型的硬盘驱动器包括头盘组件或磁头集合(HDA)和附在HDA的盘片驱动底托上的印刷电路板(PCB)。现在参考图1,头盘组件100包括至少一个盘片102(例如磁盘、磁光盘或光盘)、用于旋转盘片的主轴电机104和磁头臂组件(HSA)106。主轴电机代表性地包括安装并夹住盘片的转动毂、附在毂上的磁体以及定子。不同的定子线圈选择性地被激励来形成可以拉/推磁体的电磁场,并因而旋转毂。主轴电机毂的旋转导致安装的盘片旋转。印刷电路板组件包括电子器件和固件来控制主轴电机的旋转和控制HAS的位置,以及在盘片驱动器和它的主机间提供数据传输通道。磁头臂组件106代表性地包括致动器、至少一个磁头悬架组件(HGA)108,该磁头悬架组件108包括磁头和软电缆组件110。

【0004】在盘片驱动器工作时,致动器必须旋转以将磁头定位到邻近盘片上所需信息的轨道。该致动器包括枢接轴承衬套112来促进这个旋转定位。一个或多个致动器臂从致动器机体伸展出。致动器线圈114相对致动器臂由致动器机体支承。致动器线圈被配置成和HAD内的一个或多个固定磁体相作用,代表性地是一对,来形成音圈马达。印刷电路板组件提供并控制电流,该电流通过致动器线圈并引起作用于致动器上的扭矩。代表性地碰撞挡块被用来限制致动器在特定的方向上的旋转,并且代表性地掣子被用来阻止在盘片驱动器不工作时致动器旋转。

【0005】在磁性硬盘驱动器中,磁头代表性地包括被称为“滑动件”的机体,该机体在其尾端携带了一个磁性传感器。该磁性传感器代表性地包括记录器和读取元件。该磁性传感器的记录器可以是纵向或垂直设计,而磁性传感器的读取元件可以是电感的或磁阻的。在磁性硬盘驱动器中,传感器代表性地被动压空气轴承支承在非常靠近磁盘的位置。当马达旋转磁盘时,动压空气轴承被形成在磁头滑动件的空气轴承表面和磁盘表面间。空气轴承在传感器位置的厚度一般称为“航高(flying height)”。

【0006】磁性硬盘驱动器不仅是能够利用空气轴承滑动件的信息存储器件形式。例如,空气轴承滑动件也能用于光学信息存储器件来定位一个镜子和物镜从而将激光聚焦在盘片介质的表面上,该盘片介质不必是磁性的。

【0007】航高是影响信息存储器件性能的一个关键参数。因而,在传统工程“权衡(trade-off)”中的每个极端间,名义航高作为小心的妥协被代表性地选择。如果航高过高,则传感器到/从盘片表面写和/或读信息的能力就会退化。因此,航高的降低能够促进存储在盘片表面数据面密度的理想的增加。然而,在滑动件和盘片表面之间的空气轴承不能够被全部消除,因为空气轴承用于将摩擦和磨损(滑动件和盘片表面之间的)降低到可接受水平。名义航高的过度降低会使盘片驱动器的摩擦学性能退化到盘片驱动器的寿命和可靠性不能被接收的地步。

【0008】盘片驱动器设计者能够提高达到上述“权衡”中可接受妥协的希望的一种方法是,提高盘片驱动器的复杂性以便动态地控制航高。这样,附加磁头部件和/或盘片驱动部件,例如传感器发热器,被包括并且被有效地控制,以便仅当磁头读或写时航高能够被临时降低。当磁头不读或写时,它可以“飞(fly)”得比名义航高稍高来改善摩擦学性能。这样的对于航高的有效控制有时称为“动态航高(dynamic flying height)”控制(也叫做“DFH”)。

【0009】如果通过在传感器附近磁头的热膨胀,传感器加热器被用来实现DFH控制,则这个热膨胀也能临时地并且局部地改变空气轴承设计。然而,航高并因此在传感器或物镜和盘片表面间的间隔均强烈地依靠空气轴承表面的设计。在空气轴承表面设计上临时的并且局部的改变能够通过反抗传感器发热器的效果来阻碍DFH控制。

【0010】因而,技术所需的是空气轴承设计,该设计对热膨胀不敏感来实现DFH控制,该热膨胀与传感发热器的使用有关。

发明内容

用于磁性硬盘驱动器或其它信息存储设备的磁头包括新颖的气浮轴承表面和有发热元件的传感器。新颖的气浮轴承表面包括在第一平面内有主表面的前衬垫和邻近前衬垫的负压腔。该负压腔包括从第一平面向下凹进的表面。所述气浮轴承表面也包括限制了传感器衬垫全部宽度的传感器衬垫。该传感器衬垫包括传感器的正面并且包括位于第一平面内的表面。所述气浮轴承表面也包括减压槽,该减压槽沿第一平面凹进至少0.1微米,并且有不超过滑块全部长度四分之一的上游宽度。该减压槽被直接设置在传感器衬垫的上游并且连续地横跨传感器衬垫的全部宽度。所述气浮轴承表面也包括分流坝,该分流坝有位于第一平面的坝表面。该坝表面连续横跨传感器衬垫的全部宽度。该坝表面被直接设置在减压槽上游并且一般在负压腔下游。

附图说明

【0011】图1所示为现有硬盘驱动信息存储器。

【0012】图2为根据本发明的具体实施例的磁头的空气轴承表面图(不必要按比例)。

【0013】图3为图2所示磁头的横截面图,沿图2中A-A指明的横截面的平面。为了清楚,图3中仅显示靠近空气轴承表面的横截面区域,并且阶梯高度不是按比例的而是相当夸张的以便能容易辨识。

【0014】图4为根据本发明另一个具体实施例的磁头的空气轴承表面图(不必要按比例)。

【0015】图5为图4中磁头的横截面图,沿图2中B-B指明的横截面的平面。为了清楚,图5中仅显示靠近空气轴承表面的横截面区域,并且阶梯高度不是按比例的而是相当夸张的以便能容易辨识。

发明的详细描述

【0016】现在参考图2,磁头200包括至少能从盘片上读取信息的传感器202。在某些实施例中,传感器202是埋入式薄膜磁性传感器,该传感器包括电感的记录器和磁阻的读取元件。在这样的实施例中,磁阻元件可以是巨磁阻元件(GMR)或隧穿磁阻元件(TMR)。在这样的实施例中,记录器可以是垂直磁道记录(PMR)记录器。图2的传感器202也包括发热元件例如电阻线路,电流可以被强加通过该电阻线路。这样的发热元件的实例在本领域中是被公知的(例如,见Hamann等人的美国专利申请10/452,553)。

【0017】磁头200也包括滑动件204,该滑动件204代表性地由例如氧化铝-碳化钛的陶瓷材料制成。滑动件204包括空气轴承表面206,该表面可以通过蚀刻或离子铣削形成在滑动件204的表面,并且有几何形状,该几何形状可以由掩模的使用来限定。磁头200也包括尾边缘208和前边缘210。

【0018】图2和图3所示的具体实施例中,空气轴承表面206包括深腔216和218。在图2和图3所示的具体实施例中,深腔216包括浅腔220,而深腔218包括浅腔222。在工作时,浅腔220和222能够在空气轴承表面206和邻近盘片的表面之间产生负压区。该负压可以用于降低航高对高度变化的灵敏感度。

【0019】图2和图3所示的具体实施例中,空气轴承表面206也包括两个前衬垫212和214,该前衬垫相应地靠近并且在深腔216和218的上游。术语“上游(upstream)”在这里仅用来定义一个方向来帮助形容在空气轴承表面206上的相关位置,并且不需要任意流(stream)的出现或存在。例如,“上游”可以理解成指的是空气轴承表面206上的方向范围,该方向一般指向远离尾边缘208并且朝向前边缘210。如此,在盘片驱动器应用中,上游方向最后一般将相反于邻近旋转磁盘表面的运动。上游方向将是上述范围内的方向。术语“下游”在此作为“上游”的反义词使用。

【0020】对于每一个上游方向,空气轴承表面206定义了垂直于该上游方向的横轴。例如,对于平行于空气轴承表面206并平行于图2指明的A-A横截面平面的零倾斜的上游方向,空气轴承表面定义了平行于前边缘210或尾边缘208(即,正交于该上游方向)的相应横轴。当然,零倾斜的上游方向也在此被考虑。

【0021】两个前衬垫212、214相应地被浅腔220和220隔离,并且浅腔220和222自己被纵向隔板216隔离。在某些实施例中,纵向隔板216有在50微米到滑动件长度一半范围内的最大长度。

【0022】每一个前衬垫212和214均包括主表面,该主表面不会凹进并且代替地建立一个空气轴承表面数据平面(在下文中作为第一平面被提及)300,平行于第一平面300的其它表面的凹进可以从所述平面300开始测量。在工作时,前衬垫212和214能够在空气轴承表面206和邻近盘片的表面之间形成一个正压的区域,导致滑动件呈正向俯仰姿态。每一个深腔216和218均在平面330内包括一个表面,该表面从第一平面300向下凹进了一个深腔的凹进深度370。该深腔的凹进深度优选的但不必在2微米到5微米的范围内。每一个浅腔220和222均在中间平面320内有一个表面,该表面位于第一平面300和深腔平面330之间,并且沿第一平面300向下凹进一个浅腔凹进深度360。例如,浅腔凹进深度360优选的但不必在0.5微米至1.5微米范围内。

【0023】图2和图3所示的具体实施例中,前衬垫212和214通过前坝276连接,该前坝276阻止微粒污染物进入空气轴承、产生正压并且协助在浅腔220和222中造成负压。前衬垫212和214也相应地包括前增压阶梯224和226。每一个前增压阶梯224和226均在平面310内有一个表面,该表面位于第一平面300和中间平面320之间。平面310沿第一平面300向下凹进了一个增压阶梯凹进深度350。在工作时,前增压阶梯224和226能够在前衬垫212、214和相应地邻近盘片的表面之间产生正压。增压阶梯凹进深度350优选的但不必在0.1微米到0.3微米的范围内。

【0024】也在图2和图3所示的具体实施例中,空气轴承表面206也包括布置在中心腔228上游的中部腔坝272和274。中部腔坝272在平面320内有一个表面,而中部腔坝274在平面310内有一个表面。此外,中部腔坝272是用来对抗磁头接近盘片内直径时的倾斜空气流入的,而中部腔坝274是用来对抗磁头靠近盘片外直径时的不同倾斜的空气流入的。因为相比中部腔坝274而言中部腔坝272沿第一平面300向下凹进更深,因此相对于中部腔坝274而言中部腔坝272趋向于更容易允许气流进入中心腔228。凹进深度的不同能够被空气轴承设计者用来降低航高对磁头相对于下方旋转盘片的径向位置的变化的敏感度,假定在盘片外直径附近进入的气流有更高的速率而在盘片内直径附近进入的气流有更低的速率。如果空气轴承设计者有利地选择使用中部腔272和274来降低航高对磁头相对于下方旋转盘片的径向位置的变化的敏感度,那么空气轴承设计者将有更大的自由来设计空气轴承206的下游特征,例如以降低空气轴承对工作高度、所施加的偏压力和扭矩、和/或滑动件204的冠或拱形曲率的变化的敏感度。

【0025】图2和图3所示的具体实施例中,空气轴承表面206也包括尾衬垫242和244,该尾衬垫不沿第一平面300向下凹进。在工作中,尾衬垫242和244能够在空气轴承表面206和邻近盘片的表面之间生成正压区域,这能帮助维持在传感器202位置处的所需航高。例如,图2和图3的实施例中,尾衬垫242和244造成两个高压区域,包括在磁头正常工作时通过空气轴承表面产生的最大压力。

【0026】图2和图3的实施例中,增压阶梯表面350设置在尾衬垫242和244的上游。增压阶梯表面250包括位于平面310内的一个表面。例如,该阶梯表面可以沿第一表面300向下凹进了一个增压阶梯凹进深度350,该凹进深度350在0.1微米到0.3微米的范围内。增压阶梯表面250也可以包括或可以不包括比平面310凹进更深的前表面270。例如,前表面270可以位于平面320内。

【0027】在工作时,增压阶梯表面250能够增大尾衬垫242、244和邻近盘片的表面之间的正压。这个增大的增压可以减少尾衬垫242和244所需的表面面积。通过部分限制气流来向尾衬垫242和244加压,尾衬垫侧面部分246和248能够增强增压阶梯表面250的性能。

【0028】图2和图3的实施例包括与传感器202正面一体的传感器衬垫232。图2中的每一个尾衬垫242和244设置成距离传感器衬垫232有相对的横向间隔,其中每一个相对横向间隔在10至25微米范围内。

【0029】传感器衬垫232上游,空气轴承206包括分流坝240,该分流坝240包括并连接尾衬垫242和244,并且包括在第一平面300内的坝表面。每一个尾衬垫242和244均包括位于第一平面300内的坝表面部分。该坝表面与传感器衬垫232分隔开一个上游距离,该上游距离不大于滑动件全部长度的四分之一。例如,一个号称“毫微”波形系数的滑动件长度的四分之一近似500微米,一个号称“微微”波形系数的滑动件长度的四分之一近似250微米,而一个号称“毫微微”波形系数的滑动件长度的四分之一近似200微米。优选地上游分隔至少10微米。坝表面跨度至少是沿横轴测量的传感器衬垫232的全部宽度。分流坝240能够使来自中心腔228的气流分流,使之面向尾衬垫242和244并且远离传感器202。

【0030】图2和图3的实施例中,包括尾衬垫242、244分流坝240与尾衬垫侧面部分246和248共同形成尾中心增压结构,该结构有字母“W”的一般形状。例如,分流坝240可以被认为是字母“W”的中心顶点,尾衬垫242和244包括字母“W”的底部点,而尾衬垫侧面部分246和248可以被认为是字母“W”的外侧。在这点上,与“W”的底部点相比,“W”的中心顶点更向上游延伸。

【0031】图2和图3的空气轴承206也包括减压槽230,该减压槽230分隔了传感器衬垫232和分流坝240,以及分隔了传感器衬垫232和尾衬垫242、244。在这个实施例中,减压槽230被直接设置在传感器衬垫232上游。这个可以从图2中看出,因为这里画的减压槽230被配置邻近传感器232并且在传感器232上游。减压槽230也连续横跨沿平行于横轴测量的传感器衬垫232的至少全部宽度。减压槽230优选地从第一平面300向下凹进足够深来基本减弱来自尾衬垫242和244的传感器衬垫232的增压。例如,图2和图3的实施例中,减压槽230被描绘成在中间平面320内有一个表面。可选择地,减压槽可以在平面300或平面310内有一个表面。可选择地,减压槽230可以在一个平面内有一个表面,该平面不和平面310、320或330共面(但是沿第一平面300向下凹进了至少0.1微米),但是为了制造过程简化,这不是优选的。这四个实例中的任意一个中,减压槽230沿第一平面300向下凹进至少0.1微米。

【0032】减压槽230任选但优选成形为基本沿由激励发热元件而产生的等温膨胀的轮廓。等温膨胀的一个轮廓是在传感器上或围绕传感器的一个轨迹或区域,其中围绕传感器的材料(代表性地通常为氧化铝或氧化铝-碳化钛)向邻近盘片的表面扩展了由于激励发热元件而产生的相等量。减压槽可以被认为基本沿等温膨胀的轮廓,如果例如穿过减压槽的轮廓不横过减压槽。

【0033】在某些实施例中,空气轴承表面206也可以包括两个浅侧面腔252和254,该侧面腔252和254相应地在深腔216和218的下游。每一个浅侧面腔252和254均在平面320内有一个表面。在工作时,浅侧面腔252和254可以用和浅腔220和222非常一样的方式产生负压,并因而转换净负压后部的有效中心(朝向滑动件的尾边缘)。这样的转换能有助于在工作中动态隔离开滑动件和盘片表面。两个浅侧面腔252和254向后延伸来包括区域280。区域280可以包括一个表面,该表面比平面320沿第一平面300向下凹进更深,因为两个浅侧面腔252和254设置在代表性地包括陶瓷材料氧化铝-碳化钛的滑动件204的主体上,而包括区域280的区域282包括代表形地是氧化铝的涂层材料。在浅侧面腔252、254和区域280的制造过程中,氧化铝代表性地比其它氧化铝-碳化钛有更快的蚀刻速度。

【0034】图2和图3的实施例中,空气轴承表面206也包括侧面衬垫256、258,每一个侧面衬垫相应地横向被间隔离开尾衬垫侧面部分246和248。每一个侧面衬垫256、258均包括位于第一平面300内的主表面。侧面衬垫256包括包括在平面310内有一个表面的侧面增压阶梯260。侧面衬垫258包括在平面310内有一个表面的侧面增压阶梯264。侧面衬垫256、258包括相应地尾侧面阶梯262、266。尾侧面衬垫262、266沿第一平面300向下凹进以便位于平面310内,来确保它们不包括空气轴承表面206的最低航高尽管在工作时有潜在的非零旋转角。希望的是,空气轴承表面206的最低航高更靠近传感器202出现。

【0035】现在参考图4,磁头400包括能至少从盘片读取信息的传感器402。图4的传感器402也包括例如电阻线路的发热元件,电流可以被驱动通过该电阻线路。

【0036】磁头400也包括滑动件404,该滑动件404代表性地由例如氧化铝-碳化钛的陶瓷材料制成。滑动件404包括空气轴承表面406,该空气轴承表面406可以通过蚀刻或离子铣削在滑动件404表面形成,并且有几何形状,该几何形状可以通过掩模来限定。磁头400也包括尾边缘408和前边缘410。

【0037】图4和图5所示的具体实施例中,空气轴承表面406包括浅腔420。在工作时,浅腔420能够在空气轴承表面406和邻近盘片的表面之间生成负压区域。该负压可以用于降低航高对高度变化的敏感度。

【0038】图4和图5所示的具体实施例中,空气轴承表面406也包括两个前衬垫412、414,所述两个前衬垫邻近浅腔420并被浅腔420分隔。每一个前衬垫412、414均包括一个主表面,该主表面不凹进并且代替地确定了空气轴承表面数据平面(在此作为第一平面被提及)300,平行于第一平面300的其它平面的凹进深度可以从平面300处开始测量。在工作时,前衬垫412、414能在空气轴承表面406和邻近盘片的表面之间产生正压区域,导致滑动件呈现一个正向倾斜姿态。深中心腔428在平面330内有一个表面,平面330沿第一平面300向下凹进了一个深腔凹进深度370。该深腔凹进深度优选的但不必在2微米到5微米的范围内。浅腔420在中间平面320内有一个表面,中间平面320位于第一平面300和深腔平面330之间,并且沿第一平面300向下凹进一个浅腔凹进深度360。例如,该浅腔凹进深度360可以在0.5微米到1.5微米的范围内。

【0039】图4和图5所示的具体实施例中,前衬垫412和414通过前坝476被连接在一起,该前坝476阻止颗粒污染物进入该空气轴承、产生正压并且协助在浅腔420内制造负压。前衬垫412和414也相应地包括前增压阶梯424和426。每一个前增压阶梯424、426均在平面310内有一个表面,该平面310位于第一平面300和中间平面320之间。平面310沿第一平面300向下凹进一个增压阶梯的凹进深度350。在工作时,前增压阶梯424、426能够在前衬垫412、414和相应的邻近盘片的表面之间产生正压。

【0040】图4和图5的具体实施例中,空气轴承表面406也包括不沿第一平面300向下凹进的尾衬垫442和444。在工作时,尾衬垫442和444能够在空气轴承表面406和邻近盘片的表面之间产生正压区域,这可以帮助维持在传感器402的位置处的所需航高。例如,图4和图5的实施例中,尾衬垫442、444制造了两个高压区域,包括在磁头正常工作时由空气轴承表面产生的最大压力。

【0041】图4和图5的实施例中,增压阶梯表面450设置在尾衬垫442和444的上游。增压台阶表面450包括位于平面310内的表面。例如,该阶梯表面可以沿第一表面300向下凹进一个增压阶梯的凹进深度350,该凹进深度350在0.1微米到0.3微米的范围内。在工作时,增压阶梯表面450能够增大在尾衬垫442、444和邻近盘片的表面之间的正压力。这样的增大的增压可以减少尾衬垫442、444所需的表面面积。通过部分限制气流来向尾衬垫442和444加压,尾衬垫侧面部分446和448能够增强增压阶梯表面450的性能。

【0042】图4和图5的实施例包括与传感器402正面一体的传感器衬垫432。图4中的每一个尾衬垫442和444均被配置成距离传感器衬垫432有相对的横向间隔,其中每一个相对横向间隔在10至25微米范围内。

【0043】位于传感器衬垫432上游的空气轴承406包括分流坝440,该分流坝440包括并连接尾衬垫442和444,并且包括在第一平面300内的坝表面。每一个尾衬垫442和444包括位于第一平面300内的坝表面部分。该坝表面与传感器衬垫432分隔开一个上游距离,该上游距离不大于滑动件全部长度的四分之一。例如,一个号称“毫微”波形系数的滑动件长度的四分之一近似500微米,一个号称“微微”波形系数的滑动件长度的四分之一近似250微米,而一个号称“毫微微”波形系数的滑动件长度的四分之一近似200微米。优选地上游分隔至少10微米。坝表面跨度是沿横轴测量的传感器衬垫432的至少全部宽度。分流坝440能够使来自中心腔428的气流分流,使之面向尾衬垫442和444并且远离传感器402。

【0044】图4和图5的实施例中,包括尾衬垫442、444分流坝440与尾衬垫侧面部分446和448共同形成尾中心增压结构,该结构有字母“W”的一般形状。例如,分流坝440可以被认为是字母“W”的中心顶点,尾衬垫442和444包括字母“W”的底部点,而尾衬垫侧面部分446和448可以被认为是字母“W”的外侧。在这点上,与“W”的底部点相比,“W”的中心顶点更向上游延伸。

【0045】图4和图5的空气轴承406也包括减压槽430,该减压槽430分隔了传感器衬垫432和分流坝440,以及分隔了传感器衬垫432和尾衬垫442、444。减压槽430被直接配置在传感器衬垫432上游,并且连续横跨平行于横轴测量的传感器衬垫432的至少全部宽度。减压槽430优选地从第一平面300向下凹进足够深来基本减弱来自尾衬垫442和444的传感器衬垫432的增压。例如,图4和图5的实施例中,减压槽430被描绘成在中间平面320内有一个表面。可选择地,减压槽可以在平面300或平面310上有一个表面。可选择地,减压槽430可以在一个平面内有一个表面,该平面不和平面310、320或330共面(但是沿第一平面300向下凹进了至少0.1微米),但是为了制造过程简化,这不是优选的。这四个实例中的任意一个中,减压槽430沿第一平面300向下凹进至少0.1微米。减压槽430任选的但优选成形为基本沿由激励发热元件而产生的等温膨胀的轮廓。如果减压槽430延伸进入涂层材料区域482,那么会比平面300沿第一平面300向下凹进更深,因为涂层材料(例如氧化铝)可以比滑动件材料(例如氧化铝-碳化钛)蚀刻速度更快(例如,近似快30%)。

【0046】图2和图3的实施例中,空气轴承表面206也包括侧面衬垫456和458,每一个侧面衬垫相对于尾衬垫侧面部分446和448有横向的间隔。每一个侧面衬垫456和458包括位于第一平面300内的主表面。侧面衬垫456包括在平面310内有一个表面的侧面增压阶梯460。侧面衬垫458包括在平面310内有一个表面的侧面增压阶梯464。

【0047】在上述说明中,参考其中特别的具体实施例,本发明被描述,但是本领域的技术人员将认识到此外本发明不被限制。可以预料到,上述发明的不同特征和方面可以单独或结合使用,并且可以用于这里描述之外的环境或应用。因此,说明和附图可以被看作是说明性的和可效仿的而不是限制性的。这里使用的术语“包括”“包含”和“有”有意的作为开放式术语被理解。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号