首页> 中国专利> 曝光装置和使用该曝光装置的半导体器件制造方法

曝光装置和使用该曝光装置的半导体器件制造方法

摘要

当用多个激光器进行半导体膜的退火时,各个激光辐照区域之间的距离是不同的。在该步骤之后,当根据预先在基板上所形成的标记进行光刻步骤时,并没有对用激光使之结晶的那部分进行适当的曝光。通过将激光辐照步骤中所获得的激光辐照区域作为标记,便可通过步进电机使曝光位置与激光辐照区域中的大晶粒尺寸区域相一致进行曝光。通过利用在大晶粒尺寸区域和弱结晶区域之间散射光强是不同的这一事实,便可检测出大晶粒尺寸区域和弱结晶区域,由此确定曝光的位置。

著录项

  • 公开/公告号CN101088144A

    专利类型发明专利

  • 公开/公告日2007-12-12

    原文格式PDF

  • 申请/专利权人 株式会社半导体能源研究所;

    申请/专利号CN200580044198.2

  • 发明设计人 田中幸一郎;山本良明;

    申请日2005-12-21

  • 分类号H01L21/027;H01L21/20;H01L21/336;H01L29/786;

  • 代理机构上海专利商标事务所有限公司;

  • 代理人李玲

  • 地址 日本神奈川县

  • 入库时间 2023-12-17 19:32:51

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-12-07

    未缴年费专利权终止 IPC(主分类):H01L21/027 授权公告日:20120328 终止日期:20171221 申请日:20051221

    专利权的终止

  • 2012-03-28

    授权

    授权

  • 2008-02-13

    实质审查的生效

    实质审查的生效

  • 2007-12-12

    公开

    公开

说明书

技术领域

本发明涉及一种在激光结晶化步骤之后在光刻步骤中对通过激光结晶化步骤所形成的具有大尺寸晶粒的晶体区域进行精确曝光处理的方法,还涉及用于进行该处理步骤的曝光装置。此外,本发明涉及通过进行该处理而制造出的半导体器件及其制造方法。

背景技术

目前,在基板上制造薄膜晶体管(下文中被称为TFT)的技术进步很快,并且在有源矩阵显示器中的应用和开发也在不断推进。特别是,与使用常规非单晶半导体膜的TFT相比,使用多晶半导体膜的TFT具有更高的电子场效应迁移率(也被称为迁移率);因此,可以进行高速的工作。一般在基板外部的驱动电路中所进行的像素控制已尝试改成在与像素相同的基板上所形成的驱动电路中进行。

同时,关于半导体器件所用的基板,从成本方面看,与单晶半导体基板相比,玻璃基板更有前途。玻璃基板在耐热方面较差并且通过加热很容易变形;因此,若采用在玻璃基板上的多晶半导体膜来形成TFT,就应该采用激光退火的方法使半导体膜结晶化,从而避免玻璃基板的热变形。

与利用辐射加热和传导加热的退火方法相比,激光退火的特点在于能够显著减少处理时间,通过选择性地或局部地加热半导体基板或半导体膜可以减小对基板的热损伤。

本文中所使用的术语“激光退火”是指用于使半导体基板或半导体膜上所形成的非晶层或损伤层重新结晶的技术以及用于使基板上所形成的非晶半导体膜结晶的技术。另外,也包括应用于半导体基板或半导体膜表面改性或平整化的技术。

用于激光退火的激光振荡器可按振荡方法大致分为脉冲振荡和连续振荡两类。近年来,已发现与像准分子激光器这样的脉冲激光振荡器相比,在使用像Ar激光器或YVO4激光器等连续波激光振荡器(也被称为CW激光器)的情况下,半导体膜在结晶过程中所形成的晶体的晶粒尺寸很大。在使用激光束辐照的情况下,利用光学系统使激光束变形以便在受辐照的面中呈线形,并且相对于受辐照的面移动该激光束的发射位置来发射。该方法因其高产率而在工业应用中颇有优势。

本文所使用的术语“线形”并不是指严格意义上的“线条”,而是指具有长宽比高的矩形或椭圆(例如,其长宽比为10或更大,100到10000更佳)。

因此,当半导体膜中的晶体晶粒尺寸变得较大时,则进入用该半导体膜所形成的TFT沟道区域中的晶粒边界的数目就会增大并且迁移率也会增加,因此它可以用于开发具有更高性能的器件。因此,连续波激光振荡器吸引了更多的注意力。

在本说明书中,在半导体膜中形成大晶粒尺寸晶体的区域被称为大晶粒尺寸区域,而在半导体膜中形成小晶粒尺寸晶体的区域被称为弱结晶区域。用于半导体膜的激光退火常常是波长介于可见光区域到紫外光区域之间的激光束。这是因为半导体膜对能量的系数效率较高。然而,常用的固体CW(连续波)激光器所振荡出的基波波长是从红到近红外这一范围的波长区域。因此,采用一种利用非线性光学元件将其波长转换成处于可见光区域中的谐波的方法。通常可利用非线性光学元件将基波转换成谐波来产生可见光,并且该光线可用于半导体膜的退火。

例如,可将波长为532nm和功率为10W的CW激光器所振荡出的激光束转变成在长轴方向上为30微米和在短轴方向上为10微米的线形光束。在使用该线形光束沿短轴方向进行扫描并使半导体膜结晶的情况下,一次扫描所获得的大晶粒尺寸区域的宽度约为200微米。因此,为了对基板整个表面进行激光结晶处理,就必须通过移动线形光束的扫描位置来进行激光退火,所移动的距离为沿着长边方向一次线形光束扫描所获得的大晶粒尺寸区域的宽度。此外,如果使用多个激光器同时对基板上不同区域发射激光来进行退火的话,则可以进一步提高效率。

经过用CW激光器对半导体膜进行的结晶步骤,形成了与大晶粒尺寸区域相分开的弱结晶区域。在线形光束两边能量较弱的部分中,形成了上述弱结晶区域。因此,弱结晶区域形成于插入大晶粒尺寸区域的两边之中。当在包括弱结晶区域的部分中形成半导体元件时,形成了其特征比大晶粒尺寸区域中所形成的半导体元件要差的对象。TFT的常规制造方法如下:将基板上所形成的半导体膜设为受辐照的面,并且在该半导体膜上形成标记等,然后进行激光辐照,使得在形成半导体膜的半导体元件的部分中没有形成的弱结晶区域可形成大晶粒尺寸区域。因此,就需要精准地确定将要用激光辐照的位置。为此,采用了一种用于控制辐照位置的方法,该方法提供用于辐照面的标记(它是一个标准),用CCD照相机检测该标记,并且用计算机进行图像处理。在激光结晶步骤之后,该标记被用于确定光刻步骤中的曝光位置。

发明内容

在将激光退火用于工业的情况下,通过用多个激光器对基板上的不同区域同时进行辐照从而实现退火,便可提高产量。

然而,在通过使用多个激光器并且将基板上所形成的半导体膜用作辐照区域从而进行激光退火的步骤中,很难使由多个激光器获得的激光辐照区域之间的距离完全相同。

图3A示出了通过使用三个固态激光器301、302和303对基板304上的非晶半导体膜305进行激光退火的示例。A和B分别是固态激光器301和302之间的距离以及固态激光器302和303之间距离,很难使A和B完全相同。通常,这些距离稍有不同。在这种状态下,当通过固态激光器301到303所发出的激光束并且使非晶膜305上所形成的光束束斑306作对应扫描来进行退火时,C和D(都是相邻两个激光辐照区域309之间的距离)也是不同的。

接下来,进行光刻步骤,用于形成具有期望形状的半导体膜。在光刻步骤中,根据基板上所形成的标记307进行曝光。换句话说,如果C和D(它们都是彼此相邻的两个激光辐照区域309之间的距离)相同,则用曝光光源308进行曝光。在图3B中,虚线表示与激光辐照区域309相对应的区域,标号310表示曝光的区域。在该步骤中,对未结晶的区域进行曝光,或者存在着尽管已结晶但却没有曝光的区域。换句话说,由于结晶区域形成于未与期望区域对齐的部分之中,所以半导体元件有可能形成于弱结晶区域中。例如,在弱结晶区域中形成TFT的情况下,该TFT的特性比大晶粒尺寸区域中所形成的TFT的特性要差。结果,这是不利的,因为TFT在特性方面有变化。

本发明的目的是提供一种曝光装置以及利用该曝光装置的半导体器件制造方法,其中该曝光装置能够消除弱结晶区域和曝光区域之间未对齐的情况并且可以确定地对结晶区域(即,结晶区域中的大晶粒尺寸区域)进行曝光。

本发明的特征是,在激光结晶化步骤之后所进行的光刻步骤中,通过将激光结晶化步骤中所获得的激光辐照区域用作标记并且使曝光光源的曝光位置与该激光辐照区域中的大晶粒尺寸区域相一致,来进行曝光。通过根据大晶粒尺寸区域来调节曝光光源的位置,不管大晶粒尺寸区域在哪,都可以确定地进行曝光。

为了确定用曝光光源开始曝光的位置,有必要检测大晶粒尺寸区域(下文中被称为激光辐照区域)在用激光振荡器进行结晶化的区域中的位置。关于这种检测,可利用激光辐照区域中所包括的两种区域(即,大晶粒尺寸区域和弱结晶区域)之间的特性差异。

单模(TEM00)CW激光的强度分布是高斯型,其中激光束的强度从中心到边缘越来越弱。因此,在能量上,光束束斑的边缘部分较弱并不足以获得大晶粒尺寸晶体。因此,采用CW激光器使半导体膜结晶化,会在CW激光辐照所形成的激光辐照区域中形成大晶粒尺寸区域和弱结晶区域。

图4是图3A和3B所示激光辐照区域的放大示意图,它示出了在对基板400上的半导体膜401进行激光辐照之后的状况。大晶粒尺寸区域402的表面比较平整。另一方面,在弱结晶区域403的表面上会形成凹陷/凸起,其高度等价于半导体膜400的厚度。如图4所示,在具有凹陷/凸起的表面上,光线被凹陷/凸起散射;因此,当光线发射到大晶粒尺寸区域402和弱结晶区域403上时,散射光的强度是不同的。通过利用该特性便可检测到激光辐照区域的边缘。另外,当通过将激光辐照区域的边缘部分用作标记从而确定曝光光源的曝光位置时,就没有必要单独形成标记;因此,形成标记的步骤可以省略。

例如,使用下面的方程式将基板表面上的凹陷/凸起与光损耗关联起来。

Loss=1-exp[-(4πσ cos(θ)/λ)2]    [数字1]

事实上,可用具有能区分凹陷/凸起与平整部分的波长的光来检测凹陷/凸起部分和平整部分,即,该光所具有的波长能够揭示在凹陷/凸起部分和平整部分之间光损耗的明显差异。

本发明包括下面的实施方式。

本发明的一个方面包括:光源,用于向辐照表面发射光线且该辐照表面具有多个光散射光强不同的区域;传感器,用于接收辐照表面所反射的光;用接收到的光来获得散射强度的装置;根据散射强度来检测多个区域的装置;以及曝光光源,通过使曝光光源与多个区域中的一个任意区域的位置相一致来进行曝光。

本发明的另一个方面包括:光源,用于向辐照表面发射光线且该辐照表面具有多个光反射强度方面不同的区域;传感器,用于接收从辐照表面所反射的光;用接收到的光来获得散射强度的装置;根据反射强度来检测多个区域的装置;以及曝光光源,通过使曝光光源与多个区域中的一个任意区域的位置相一致来进行曝光。

本发明的上述结构具有一个特点,即,光源所发出的光是蓝光或其波长比蓝光更短的光。注意到,激光器或LED都可以形成光源。

本发明的上述结构具有一个特点,即,光源、传感器和曝光光源彼此集成在一起。

本发明的上述结构具有一个特点,即,传感器包括CCD的光检测器、光电二极管、光电晶体管、光子IC、光电倍增管或CMOS传感器。上述传感器中所包括的光检测器可以是一个,或者可以是按线形或平面形所排列的多个光检测器。

本发明的上述结构具有一个特点,即,还包括按预定周期发光的装置以及可检测与发光周期同步的反射光的装置。

本发明的上述结构具有一个特点,即还包括用于对接收到的反射光的数据进行二元化处理、具有密度差异的边缘检测处理、Sobel处理、均值处理或中值处理的装置。

本发明的另一个方面具有一个特点,通过向基板上的半导体膜发射激光形成多个各自光散射强度不同的区域,并且接收向基板发射光线时所获得的反射光;随后,利用所接收到的反射光来获得散射强度;然后,利用所获得的散射强度来检测上述多个区域;此外,通过使曝光光源与上述多个区域中的一个任意区域相一致来进行曝光。

根据本发明的上述结构,当发出蓝光或其波长比蓝光更短的光时,会在所获得的散射强度中产生差异;因此,可以更精确地指定位置。

本发明的另一个方面具有一个特点,通过向基板上的半导体膜发射激光形成多个各自光散射强度不同的区域,并且接收向基板发射光线时所获得的反射光以便于测量反射强度;随后,利用所获得的反射强度来检测上述多个区域;然后,通过使曝光光源与上述多个区域中的一个任意区域相一致来进行曝光。

根据本发明的上述结构,当发出蓝光或其波长比蓝光更短的光时,会在所获得的反射强度中产生差异;因此,可以更精确地指定位置。

根据本发明的上述结构,可以使用蓝光、其波长比蓝光更短的激光器或LED。

根据本发明的上述结构,可以控制曝光光源的位置,同时通过发射蓝光或其波长比蓝光更短的光来检测多个各自光散射强度不同的区域。通过同时进行曝光光源的位置控制和多个各自光散射强度不同的区域的检测,就可以较高的产量来进行曝光。

根据本发明的上述结构,可以使用诸如CCD、光电二极管、光电晶体管、光子IC、光电倍增管或CMOS传感器等光检测器。另外,可以对所获得的数据进行二元化处理、具有密度差异的边缘检测处理、Sobel处理、均值处理或中值处理。

根据本发明的上述结构,当以预定周期发射光线并且检测到只与该周期同步的反射光时,就可以在没有光的边缘影响的条件下顺利地检测大晶粒尺寸区域。

根据本发明,可以获得下列优点。第一,不需要形成标记,因为可以利用大晶粒尺寸区域作为标记来进行光刻。换句话说,通常为形成标记所单独需要的步骤可以省略。

第二,不管大晶粒尺寸区域在哪儿都可以确定地进行曝光,因为是根据大晶粒尺寸区域来进行曝光光源的曝光。换句话说,大晶粒尺寸区域对应于暴露的区域;因此,可以在该区域中制造TFT。因此,各TFT都具有高的性能,并且性能变化也减少了。

附图说明

在附图中:

图1A和1B是示出本发明实施模式的示图;

图2A和2B是示出本发明实施模式的示图;

图3A和3B是示出现有技术的示图;

图4是解释说明光在大晶粒尺寸区域和弱结晶区域中的散射和反射的示图;

图5是示出表面凹陷/凸起和散射强度之间关系的示图;

图6A-6C是示出本发明的一个模式的示图;

图7A-7C是示出本发明的一个模式的示图;

图8A-8D是解释说明利用本发明制造半导体器件的方法的示图;

图9A-9C是解释说明利用本发明制造半导体器件的方法的示图;

图10A-10D是解释说明利用本发明制造半导体器件的方法的示图;

图11A-11C是解释说明利用本发明制造半导体器件的方法的示图;

图12是解释说明利用本发明所制造的显示器外形的示图;

图13是解释说明利用本发明所制造的显示器外形的示图;

图14A-14D是解释说明一种利用本发明制造半导体器件的方法的示图;

图15A-15E是解释说明一种利用本发明制造半导体器件的方法的示图;

图16A-16C是解释说明一种利用本发明制造半导体器件的方法的示图;

图17A和17B是解释说明一种利用本发明制造半导体器件的方法的示图;

图18是解释说明利用本发明所制造的显示器外形的示图;

图19是解释说明利用本发明所制造的显示器外形的示图;

图20是解释说明利用本发明所制造的显示器外形的示图;

图21A-21F是解释说明利用本发明所制造的显示器外形的示图;

图22A和22B是解释说明利用本发明所制造的显示器外形的示图;

图23A和23B是示出基板图形的替代照片,各个基板都具有采用激光辐照结晶化的半导体膜并且都采用白光来辐照的;

图24A和24B是示出基板图形的替代照片,各个基板都具有采用激光辐照结晶化的半导体膜并且都采用白光来辐照的;

图25A-25C是解释说明一种利用本发明制造半导体器件的方法的示图;

图26A-26D是解释说明一种利用本发明制造半导体器件的方法的示图;

图27A-27D是解释说明一种利用本发明制造半导体器件的方法的示图;

图28A-28C是解释说明一种利用本发明制造半导体器件的方法的示图;

图29A和29B是解释说明使用本发明的半导体器件的示意图;

图30A-30D是解释说明利用本发明制造薄膜集成电路的方法的示图;

图31A-31D是解释说明利用本发明制造薄膜集成电路的方法的示图;

图32A和32B是解释说明利用本发明制造薄膜集成电路的方法的示图;

图33A和33B是解释说明利用本发明制造薄膜集成电路的方法的示图;

图34A和34B是解释说明利用本发明制造薄膜集成电路的方法的示图;

图35A和35B是解释说明利用本发明制造薄膜集成电路的方法的示图;

图36A-36D是解释说明对半导体膜在接受光的图像进行图像处理的示图的替代照片;

图37A和37B是解释说明用于照射半导体膜的方法实例的示图;以及

图38A-38C是解释说明用于照射半导体膜的方法实例的示图。

具体实施方式

参照附图详细描述本发明的各实施模式。然而,本领域的技术人员很容易理解,在不背离本发明的目的和范围的情况下可以按各种方式来修改本文所揭示的实施方式和细节。因此,应该注意到,下文所给出的实施模式的描述不应该被解释成限制本发明。

在本实施模式中,解释了一种将使用CCD的照相机用作检测方法的方法。用波长较短的单色光(未示出)来辐照半导体膜,以便于用CCD照相机检测来自大晶粒尺寸区域和弱结晶区域的散射光。通过识别所检测到的散射光,来检测大晶粒尺寸区域的位置。在弱结晶区域的表面上,存在着凸起部分并且其高度等价于半导体膜的膜厚度;因此,所发射的光被散射。散射光的强度很高。另一方面,与弱结晶区域相比,大晶粒尺寸区域具有较高的平整性;因此,散射光的强度较低。

图5示出了表面粗糙度和散射损耗之间的关系。通过将入射角θ、表面粗糙度σ和波长λ代入上述方程式便可获得散射损耗。入射角相对于辐照表面是0度。弱结晶区域的凸起部分的高度约为30nm,大晶粒尺寸区域的凸起部分的高度约为5纳米;则弱结晶区域的表面粗糙度设为30纳米,大晶粒尺寸区域的表面粗糙度设为5纳米。

在图5中,水平轴表示波长(nm),垂直轴表示散射损耗(%)。散射强度越高,散射损耗越高。因此,图5示出了与大晶粒尺寸区域相比弱结晶区域在散射强度方面很高。然而,根据所发出的光的波长很难获得对比度。

例如,在使用红光的情况下(其波长约为650-780纳米),上述两个区域的散射强度之间没有多少差别。因此,在这种情况下,很难用CCD照相机来检测弱结晶区域和大晶粒尺寸区域。另一方面,在使用蓝光的情况下(其波长为450-490纳米),可以获得比红光大两倍以上的对比度。因此,可以想像能够检测出弱结晶区域和大晶粒尺寸区域。

因此,发明人进行了如下实验:在白光和蓝光分别从垂直于基板的方向上发出完成半导体膜的激光结晶化的状态下,通过拍摄照片来判断大晶粒尺寸区域的反射光强与弱结晶区域的反射光强之间是否有差异。图23A-24B示出了其结果。当从垂直于具有许多凹陷/凸起的弱结晶区域的方向上发出光线并且拍下垂直于基板方向上的反射光时,它看起来是暗的,因为基板表面上的散射使反射光减少了。相反,在具有少量凹陷/凸起的大晶粒尺寸区域中,它看起来是明亮的,因为被反射的光增多了。图23A和23B是通过从垂直于基板的方向上发出白光并拍下垂直于基板方向的反射光所获得的照片。图23A是对激光辐照区域内整体具有大晶粒尺寸晶体的样品拍下的照片,而图23B是对在激光辐照区域的两侧存在弱结晶区域的样品拍下的照片。在这种情况下,不能发现在激光辐照区域的边缘部分(弱结晶区域)和中心部分(大晶粒尺寸区域)之间对比度的明显差异;因此,预期很难区分出大晶粒尺寸区域和弱结晶区域。另一方面,图24A和24B是通过从垂直于基板的方向上发出蓝光所拍下垂直于基板的方向上的反射光所获得的照片。图24A是对激光辐照区域内整体具有大晶粒尺寸晶体的样品拍下的照片,而图24B是对在激光辐照区域的两侧存在弱结晶区域的样品拍下的照片。可以看出,能够发现在激光辐照区域的边缘部分(弱结晶区域)和中心部分(大晶粒尺寸区域)之间对比度的明显差异。

因此,根据本实验,揭示了通过使用蓝光便可以更容易地检测出大晶粒尺寸区域和弱结晶区域,因为与白光相比蓝光可以获得更高的对比度。R(红色)G(绿色)B(蓝色)三种颜色与白光混在一起,并且可以用三种颜色中的蓝色来进行检测;因此,可以想像,在白光中,因其它长波长的存在很难进行检测。因此,最好使用比蓝光波长更短的波长来检测大晶粒尺寸区域。

然而,随着波长变短,来自微小凹陷/凸起的散射强度增大了。如图5所示,当波长太短时,会减小弱结晶区域与大晶粒尺寸区域的对比率;因此,可以使用其波长能够区分弱结晶区域和大晶粒尺寸区域的光。在本实施模式中,用蓝光照射半导体膜,以便于使用CCD照相机来检测弱结晶区域和大晶粒尺寸区域。

图1A和1B示出了实际过程的概况。首先,制备具有非单晶半导体膜102的基板101。然后,进行激光结晶化步骤,其中非单晶半导体膜102是辐照表面。在激光结晶化步骤中,使用像YAG激光器或YVO4激光器这样的多个固态激光器,以便有效地进行结晶化。通过使用光学系统使各激光束的光束束斑在辐照表面上变形为线形光束束斑106,并且使该光束在线形光束束斑106的短边方向上扫描从而进行激光退火。根据该步骤,通过使用多个激光器进行激光辐照,形成了多个激光辐照区域103。

在激光辐照步骤之后,形成抗蚀剂以便进行光刻步骤。在该光刻步骤中,与用于曝光的光源105集成在一起的CCD照相机104从基板的一边以垂直于光束束斑扫描方向的方向一点点地向垂直于光束束斑扫描方向的方向移动,同时用蓝光从抗蚀剂上方照射非单晶半导体膜102以便确定曝光光源105的曝光开始位置。然后,CCD照相机104接收非单晶半导体膜102所反射的蓝光,并且将所接收到的光的数据输出到信息处理器(比如计算机)。在信息处理器中,通过利用大晶粒尺寸区域107和弱结晶区域108中散射光的对比率很高这一事实,来指定大晶粒尺寸区域107和弱结晶区域108的位置。注意到,抗蚀剂的材料并不受特别地限制,只要蓝光能够透射抗蚀剂且达到大晶粒尺寸区域107和弱结晶区域108能够彼此区分开的程度即可。

另外,通过使用6A-6C所示的方法,便可以检测大晶粒尺寸区域601和弱结晶区域602。如图6A所示,X方向表示测量散射光的方向,且Y方向表示激光辐照的方向。注意到,X方向垂直于Y方向。光603变形为线形或矩形,并且向基板604发射,使得光603的横截面方向平行于Y方向,并且具有平面形状的CCD照相机605接收同时反射的光,由此测量散射光。图6B示出了在某一时刻X方向的坐标为X1处Y方向上的散射光的数据。用信息处理器对上述Y方向的散射光数据求平均,由此计算出坐标X1处的散射强度。此外,光603和CCD照相机605朝着X方向移向基板604,由此测量散射光。图6C示出了如此获得的散射光数据,在X方向上各个位置处沿Y方向对其求过平均。

根据该数据,图6C中的(2)所对应的大晶粒尺寸区域601可以与图6C中的(1)和(3)所对应的弱结晶区域602区分开。通过使用该方法,与向半导体膜发射光603时用CCD照相机来接收反射光从而测量散射光的情况相比,可以更精确地区分开大晶粒尺寸区域601和弱结晶区域602。

在已检测到大晶粒尺寸区域时,就停止移动曝光光源105和CCD照相机104以及停止用蓝光辐照,然后,开始用曝光光源进行曝光。该曝光可以始于由集成了曝光光源的CCD照相机所检测到的大晶粒尺寸区域107的那个位置,因此,可以使大晶粒尺寸区域107确定地对应于弱结晶区域108。

在如此完成一个激光辐照区域的曝光之后,通过用CCD照相机104和曝光光源105来检测大晶粒尺寸区域,从而以相似的方式对相邻激光辐照区域进行曝光。通过重复一系列操作,基板101的整个表面的大晶粒尺寸区域107都可以得到确定地曝光。

尽管在本实施模式中是通过获得散射强度来检测大晶粒尺寸区域的位置,但是也可以通过反射光的强度来检测该大晶粒尺寸区域的位置。

[实施方式1]

在本实施方式中,解释了通过使用单独提供的激光器来检测大晶粒尺寸区域和弱结晶区域的示例。

首先,按与实施模式1相同的方式在基板201上形成非单晶半导体膜202。然后,如图2A所示,通过将非单晶半导体膜202用作辐照表面,来进行激光辐照,从而形成激光辐照区域203。

接下来,形成抗蚀剂,并且检测激光辐照区域203中的大晶粒尺寸区域204以确定进行光刻步骤的位置。在本实施方式中,使用激光器205和光传感器206。注意到,该抗蚀剂只需要能够透射激光205且达到能够使大晶粒尺寸区域204和弱结晶区域207彼此区分开的程度即可。

如实施模式1所解释的那样,激光205的波长需要能够检测大晶粒尺寸区域204和弱结晶区域207。在本实施方式中,可以使用波长约为300-400纳米的激光器,例如,XeCl准分子激光器(308nm)、XeF准分子激光器(351nm)、氮激光器(337nm)等。在使用另一种激光器的情形中,通过使用非线性光学元件转换出波长约为300-400纳米的谐波。若不使用激光器,则可以使用蓝光二极管(氮化镓(405纳米))。

光传感器206用于接收由非单晶半导体膜202反射的光。为了使大晶粒尺寸区域204与弱结晶区域207区分开来,最好使用其接收光量和输出具有较佳线性度的光传感器。作为此处使用的光传感器206,可以给出光电二极管、光电晶体管、光IC等。光传感器206并不限于此,CCD、CMOS传感器、光电倍增管等都可以使用。

此外,通过遮住光传感器206周围的光(环境光),便可以精确地检测大晶粒尺寸区域204和弱结晶区域207。结果,可以使用一种内嵌光传感器206的光调制型光传感器。

参照附图7A-7C,解释使用相同内容的方法。首先,辐照表面702被设置为用激光振荡器701相对于各预定周期而输出的激光来进行照射。具体来讲,通过使用像将脉冲激光器用作激光振荡器701的方法或在激光的光路上设置一个相对于各预定周期而开关的狭缝703的方法等方法,周期性地用激光辐照该辐照表面702。图7A示出了使用一个相对于预定周期进行开关的狭缝的示例。光传感器704接收由辐照表面702反射的光。光传感器704具有图7B所示的结构,并且提供有使用光电二极管、光电晶体管、光IC等的光检测器705以及高通滤波器706,它用于提取只与发射到辐照表面上的光的周期相同步的反射光。如图7C所示,通过高通滤波器706之后,便可以从包括环境光708在内的数据中只提取反射光的数据。此处所获得的反射光的数据可由输出端707输出。图7C中的(1)是通过高通滤波器706之前的数据的示例,而图7C中的(2)是通过高通滤波器706之后的数据的示例。通过提供高通滤波器706,弱结晶区域和大晶粒尺寸区域之间的差异变得更明显,并且可以很容易进行检测。

通过使用这些手段,以与实施模式1所示方法相同的方式来检测大晶粒尺寸区域。在本实施方式中,如图7A所示,观察镜面反射光。当光发射到弱结晶区域时,发射光被散射,因为弱结晶区域的表面具有凸起部分且其高度等价于半导体膜的厚度。因此,散射光的强度较高,而镜面反射光的强度下降了。另一方面,发射到大晶粒尺寸区域的大部分光都以镜面方式反射,因为大晶粒尺寸区域具有比弱结晶区域要高的平整性;因此,散射光强较低,而镜面反射光强增大了。因此,如图5和7C所示,大晶粒尺寸区域的散射强度不同于弱结晶区域的散射强度。因此,可以获得高对比并可以进行检测。

在检测到大晶粒尺寸区域之后,用图2A和2B所示的曝光光源208进行曝光。按与上述实施模式相同的方式,激光器205、光传感器206和曝光光源208彼此集成在一起。另外,尽管激光是以相对于辐照表面的一个角度发出的,但是辐照方向并不限于角度。激光还可以垂直于辐照表面的方向发出。

因此,曝光是针对基板整个表面中的大晶粒尺寸区域进行的,并且此后还进行了各种步骤,由此可以在大晶粒尺寸区域中制造出TFT。

通过使用本发明,可以使曝光光源的曝光位置与通过激光辐照形成的大晶粒尺寸区域相一致。因此,(1)不再需要标记,并且不再需要形成标记的步骤;(2)当使用已曝光的半导体膜制造半导体器件时,半导体器件的特性很好并且特性变化减少了,因为可以根据大晶粒尺寸区域来进行曝光。

本实施方式可以与上述实施模式和另一个实施方式自由组合。尽管本实施方式中示出了用激光器来检测大晶粒尺寸区域和弱结晶区域的示例,但是本发明并不限于激光器,并且上述实施模式中所使用的蓝光也是可以使用的。

尽管在本实施方式中大晶粒尺寸区域的位置是通过获得散射强度而进行检测的,但是大晶粒尺寸区域的位置也可以用反射光强来进行检测。

[实施方式2]

在本实施方式中,参照附图解释了利用本发明所制造的p沟道TFT和n沟道TFT来制造CMOS晶体管的工艺。

图8A示出了用多个激光辐照装置相对于基板800上所形成的非晶半导体膜802进行激光辐照之后的状态。此后,将解释从沿本图中虚线A-B所截取的横截面看到的制造工艺。

如图8B所示,在具有绝缘表面的基板800上形成了基膜801。在本实施方式中,作为此处所使用的基板,可以使用由硼硅酸钡玻璃、硼硅酸铝玻璃等制成的玻璃基板,还可以使用石英基板、陶瓷基板、不锈钢基板等。此外,尽管由合成树脂(典型的合成树脂有丙烯酸或塑料,比如PET(聚乙烯对苯二甲酸酯)、PES(聚醚砜树脂)或PEN(聚乙烯二甲酸酯))构成的基板往往具有比其它基板要低的耐热温度,但是若该基板可以承受该步骤的工艺处理则可以使用由合成树脂形成的基板。

设置基膜801的目的是防止基板800中所包括的像Na这样的碱土金属或碱金属扩散到半导体中并防止对半导体元件的特性造成不利的影响。因此,基膜由绝缘膜构成,比如氧化硅膜、氮化硅膜、或含氧的氮化硅膜,这种绝缘膜可以抑制碱土金属和碱金属向半导体中扩散的过程。基膜801可以具有单层或叠层结构。在本实施方式中,通过等离子体CVD方法(化学汽相沉积)形成了厚度为10-400纳米的含氧的氮化硅膜。

在将含少量碱金属或碱土金属的基板(比如玻璃基板或塑料基板)用作基板800的情形中设置基膜可以有效地防止杂质的扩散。然而,当使用石英基板(该基板不会导致杂质扩散的严重问题)时,便无需设置基膜801了。

接下来,用已知的方法(溅射方法、LPCVD方法、等离子体CVD方法等)在基膜801上形成厚度约为25-100纳米(30-60纳米较佳)的非晶半导体膜802。硅、硅锗等都可以用作本文所用的非晶半导体。在本实施方式中使用了硅。在使用硅锗的情形中,锗的浓度最好处于约0.01-4.5%(原子百分比)的范围中。

接下来,通过使用图8C所示的激光退火装置,用激光束803进行辐照从而使非晶半导体膜802结晶。在本实施方式中,激光束803是从CW陶瓷YAG激光器中发出的。通过将多种掺杂剂(比如Nd和Yb)添加到陶瓷YAG激光晶体中,便实现了多波长振荡。该激光器基波的中心波长处于1030-1064纳米的范围中,并且振荡波长的半高全宽约为30纳米。通过激光振荡器内的非线性光学晶体,将该基波转换成二次谐波。该二次谐波的中心波长介于515-532纳米的范围中,且半高全宽约为15纳米。激光束利用柱面透镜804会聚后再发射。

除了上述激光振荡器以外,可以使用包括蓝宝石、YAG、陶瓷YAG、陶瓷Y2O3、KGW、KYW、Mg2SiO4、YLF、YVO4或GdVO4等晶体的激光振荡器,在上述这些晶体中掺有从Nd、Yb、Cr、Ti、Ho或Er中选出的一种或多种。最好使用掺有多种掺杂剂的激光晶体,以便于增宽振荡波长范围。一些激光器可以用一类掺杂剂振荡出多个波长,像Ti:蓝宝石激光器。激光803通过已知的非线性光学元件转换成谐波。尽管在本实施方式中激光束803通过非线性光学元件而转换成二次谐波,但是除二次谐波以外的谐波也是可用的。

通过使用上述方法,可形成沿扫描方向连续生长晶粒的大晶粒尺寸区域805和弱结晶区域806。注意到,在图8A中,激光辐照是沿Y方向进行的。即,在图8C中,激光辐照是沿垂直于纸面的方向进行的。

之后,在图8D中,在形成抗蚀剂831之后,按与实施模式或实施方式1相同的方式,从抗蚀剂831的上方向通过激光束辐照而形成的弱结晶区域806和大晶粒尺寸区域805发射其波长比蓝光或激光807之一要短的光,并且测量反射光808,由此获得散射的光强。光807可以是激光。注意到,抗蚀剂831的材料等并不受到特别限制,只要蓝光能够透射抗蚀剂831且达到大晶粒尺寸区域805和弱结晶区域806能够彼此区分开的程度即可。大晶粒尺寸区域805的位置是通过该散射光的测量结果来检测的。当曝光光源、光807的光源和用于观察反射光808的传感器彼此集成在一起时,可以使曝光光源的位置与大晶粒尺寸区域805相一致,同时进行上述测量。

如果曝光光源的位置与大晶粒尺寸区域805的位置相一致,则可以根据大晶粒尺寸区域的位置来进行曝光。此外,曝光用的抗蚀剂831模压成期望的形状,以便于使用模压好的抗蚀剂831作为掩模来进行蚀刻,由此形成了具有岛状的半导体膜809(图9A)。形成绝缘膜810,以便覆盖该岛形半导体膜(图9B)。

通过热氧化方法、等离子体CVD方法或溅射方法,可以形成栅极绝缘膜810。例如,栅极绝缘膜810可以层叠膜构成,包括:通过热氧化方法所获得的厚度为5纳米的氧化硅膜和通过CVD方法所获得的厚度为10-15纳米的含氮的氧化硅膜,两者可通过改变气体而获得。薄膜可以通过改变气体而连续形成。

栅极绝缘膜810的材料并不限于上述材料,栅极绝缘膜810的材料可以是:(1)氧化硅膜,含氧的氮化硅膜,含氮的氧化硅膜,氮化硅膜,或这些膜的层叠膜;(2)高介电常数材料(也被称为高k材料),比如氧化钽、氧化铪(HfO2)、氮氧化铪硅(HfSiON)、氧化锆(ZrO2)、氧化铝(Al2O3),或者稀土氧化物,比如氧化镧(La2O2)。

接下来,导电膜形成于栅极绝缘膜810上并且按期望的方式定形从而形成图9C所示的栅极电极811和812,下文会进行概述。首先,栅极绝缘膜810上所形成的导电膜可以用具有导电性的材料构成。作为该材料,可以使用:选自金(Au)、银(Ag)、铜(Cu)、铂(Pt)、铝(Al)、钼(Mo)、钨(W)、或钛(Ti)中的元素;或以这些元素作主要成分的合金材料或化合物。此外,可以使用这些材料的层叠材料。尽管在本实施方式中使用了W(钨)和TaN(氮化钽)的层叠膜,但是也可以使用依次层叠Mo(钼)、Al(铝)、Mo所构成的导电膜或依次层叠Ti(钛)、Al、Ti所构成的导电膜。特别是,在用上述高介电常数材料(高k材料)构成栅极绝缘膜810的情况下,可以减少栅极电极的耗尽和流入大量的电流,从而可以实现功耗更低的半导体元件。

然后,形成用于导电膜图形化的抗蚀剂掩模。首先,采用旋涂等方法用光刻胶来涂敷导电膜,并且进行曝光。接下来,对该光刻胶进行热处理(预烘培)。预烘干的温度设为50-120℃的范围,这低于随后进行的后烘培的温度。在本实施方式中,加热温度设为90℃,而加热时间设为90秒。

接下来,通过将显影溶液滴到抗蚀剂上或从其上方的喷涂喷嘴中喷出显影溶液,使曝光后的抗蚀剂显影。

之后,进行所谓的后烘培,即在125℃下对显影后的光刻胶进行180秒的热处理,从而去除残余在抗蚀剂掩模中的湿气,同时提高耐热的稳定性。通过这些步骤,形成了抗蚀剂掩模。通过使用这种抗蚀剂掩模,对导电膜进行蚀刻,从而形成栅极电极811和812。

作为另一个方法,可以使用微滴喷射方法(典型的有打印方法或喷墨方法,此类方法能够将材料喷射到预定的位置),从而在栅极绝缘膜810上直接形成栅极电极811和812。

将导电材料溶解或分散到介质中,由此形成了待喷射的具有导电性的液态物质。作为此处可以使用的导电材料,可以使用:选自金(Au)、银(Ag)、铜(Cu)、铂(Pt)、铝(Al)、铬(Cr)、钯(Pd)、铟(In)、钼(Mo)、镍(Ni)、铅(Pd)、铱(Ir)、铑(Rh)、钨(W)、镉(Cd)、锌(Zn)、铁(Fe)、钛(Ti)、锆(Zr)、钡(Ba)中的至少一种元素;或这些金属的合金。溶剂可以是有机溶剂,例如,像乙酰丁基乙酸酯或乙酸乙酯这样的酯;像异丙醇或乙醇这样的醇;丁酮或丙酮。

合成物的粘性是300cp或更小,以防止干燥并有利于从喷射出口喷射出该合成物。可以根据溶剂和预期目标适当地调节该合成物的粘性和表面张力。

之后,在形成p沟道TFT的部分覆盖抗蚀剂813,该抗蚀剂813在栅极电极811或栅极电极812用作掩模时使用,并且将N型导电性的砷(As)或磷(P)引入到该部分。通过该过程,形成源极区域814和漏极区域815(图10A)。相似的是,通过用抗蚀剂816覆盖形成有n沟道TFT的部分并将p型杂质硼(B)引入该部分,便形成了源极区域817和漏极区域818(图10B)。

然后,在栅极电极811和812的侧壁上,形成侧壁819和820。例如,通过CVD方法在基板的整个表面上形成由氧化硅构成的绝缘膜。可以通过进行与绝缘膜有关的各向异性蚀刻来形成侧壁(图10C)。

然后,如图10D所示,用抗蚀剂821覆盖将要成为p型TFT的部分,并且引入赋予n型导电性的离子以形成LDD区域824。注意到,赋予N型导电性的离子是以比上述步骤更高的剂量来引入的。相似的是,如图11A所示,用抗蚀剂822覆盖将要成为N型TFT的部分,并且引入赋予P型导电性的离子以形成LDD区域823。此外,在该步骤中,形成P型导电性的离子是以比上述步骤更高的剂量引入的。

如上所述,在完成杂质引入之后通过激光退火、灯退火或炉退火来进行处理,以激活所引入的杂质并恢复因杂质引入而对晶格造成的损伤。

根据上述步骤,p沟道TFT 825和n沟道TFT 826可以形成于同一块基板上。

接下来,如图11B所示,形成绝缘膜827,作为那些TFT的保护膜。通过等离子体CVD方法或溅射方法,形成了100-200纳米厚的氮化硅膜或含氧的氮化硅膜的单层或层叠结构的绝缘膜827。在将含氧的氮化硅膜与含氮的氧化硅膜组合在一起的情况下,这些膜可以通过改变气体而连续形成。在本实施方式中,通过等离子体CVD方法,形成了100纳米厚的含氮的氧化硅膜。通过提供绝缘膜827,可以获得阻挡效果,挡住了各种离子杂质和空气中的氧、湿气等的入侵。

接下来,进一步形成绝缘膜828。此处,可以使用:有机树脂膜,比如聚酰亚胺、聚酰胺、BCB(苯并环丁烯)、丙烯酸、或硅氧烷(该物质的骨架结构由硅和氧键构成,且在该物质的结构中硅与氟、脂族烃和芳香烃中的至少一种键合);无机夹层绝缘膜(含硅的绝缘膜,比如氮化硅或氧化硅);低k(低介电常数)材料;等等。因为形成绝缘膜828的主要目的在于使因玻璃基板上所形成的TFT所导致的凹陷/凸起能够松弛并平整化,所以最好将平整性优越的膜用于绝缘膜828。

此外,通过光刻方法使栅极绝缘膜810以及绝缘膜827和828图形化,从而形成到达源极区域814和817以及漏极区域815和818的接触孔。

接下来,由导电材料构成导电膜,并且通过使导电膜图形化来形成引线829。之后,形成绝缘膜830作为保护膜,由此完成图11C所示的半导体器件。

本发明关于制造半导体器件的方法并不限于上述TFT的制造过程。本实施方式示出了制造CMOS晶体管的工艺。然而,在基板上形成N型TFT和P型TFT中的一种或两种的情形中,可以使用本发明。尽管在本实施方式中制造了交错的TFT,但是本发明并不限于此,并且在制造反向交错TFT的情形中也可以使用本发明。

在用激光束进行结晶化步骤之前,可以提供利用催化元素的结晶化步骤。作为催化元素,可以使用镍(Ni)、锗(Ge)、铁(Fe)、钯(Pd)、锡(Sn)、铅(Pb)、钴(Co)、铂(Pt)、铜(Cu)、或金(Au)。注意到,结晶化可以按这样一种方式进行,在添加催化元素之后进行热处理以便促进结晶化。或者,也可以忽略热处理。此外,在热处理之后,可以在保持温度的同时进行激光处理。在这些步骤之后,可以利用本发明对大晶粒尺寸区域的部分进行曝光。

利用本发明制造半导体器件的方法可以用于制造集成电路或半导体显示器件的方法。

通过使用本发明,可以使曝光位置与具有高结晶度的大晶粒尺寸区域部分相一致。因此,利用本发明所制造的所有TFT的特性都很好,并且各TFT的特性很均匀。

本实施方式可以与上述实施模式或另一个实施方式自由组合。

[实施方式3]

在本实施方式中,解释了利用另一实施方式所制造的TFT所形成的发光元件的发光器件以及制造发光器件的示例。本实施方式中所解释的发光器件具有这样一种结构,在该结构中,光线是从与具有绝缘表面的基板相对置的基板(在下文中被称为对置基板)中提取出来的;然而,本发明并不限于该结构,并且可以按相似的方式用于其结构为从具有绝缘表面的基板中提取出光线的发光器件,或者可以用于其结构为从具有绝缘表面的基板及其对置基板两侧中提取出光线的发光器件。

图12是发光器件的俯视图,而图13是沿图12的A-A′截取的横截面图。标号1200表示基板。标号1201表示源信号线驱动电路;1202表示像素部分;而1203表示栅极信号线驱动电路,所有这些都用虚线表示。此外,标号1204表示透明密封基板,而1205表示第一密封材料。由第一密封材料1205围绕的内部是用透明的第二密封材料1207来填充的。第一密封材料1205包含用于支撑基板之间间隔的间隙材料。

标号1208表示连接线,用于发送将输入到源极信号线驱动电路1201和栅极信号线驱动电路1203的信号,并且还用于接收来自外部输入端FPC(柔性印刷电路)1209的视频信号或时钟信号。尽管此处只示出了FPC,但是该FPC可能具有附着于其上的印刷线路板(PWB)。

接下来,将参照图13描述横截面结构。尽管驱动电路和像素部分形成于基板1310上,但是源极信号线驱动电路1301和像素部分1302都以驱动电路方式显示。

在源极信号线驱动电路1301中,通过将n沟道TFT 1323和p沟道TFT 1234彼此组合起来形成CMOS电路。此外,用于形成驱动电路的TFT可以由已知的CMOS电路、PMOS电路或NMOS电路构成。尽管本实施方式示出了驱动电路形成于基板上的驱动器集成型,但是本发明并不限于此,并且驱动电路可以形成于基板外部,而非基板之上。此外,使用多晶硅膜作为有源层的TFT的基板并不受到特别限制,并且顶部栅极TFT和底部栅极TFT都是可以应用的。

此外,像素部分1302由多个像素形成,各个像素包括开关TFT 1311、电流控制TFT 1312和第一电极(阳极)1313,该第一电极电连接到电流控制TFT1312的漏极。电流控制TFT 1312可以是n沟道TFT或p沟道TFT;然而,电流控制TFT 1312在连接到阳极的情况下最好是p沟道TFT。此外,最好适当提供存储电容器(未示出)。此处,仅示出了所排列的无限多的像素中的一个像素的横截面结构,并且在一个像素中使用了两个TFT;然而,也可以适当地使用三个或更多TFT。

因为第一电极(阳极)1313与TFT的漏极直接接触,所以期望第一电极(阳极)1313的下层由一种与硅所构成的漏极形成欧姆接触的材料来制成,并且期望将要与含有机化合物的层接触的上层由一种具有高功函数的材料来制成。第一电极(阳极)最好具有4.0eV或更大的功函数。例如,当第一电极由氮化钛膜、以铝为其主要成分的膜、氮化钛膜这三层结构构成时,可以使作为引线的阻抗较低,可以作出有利的欧姆接触,并且第一电极可以充当阳极。此外,第一电极(阳极)1313可以按单层结构来构成,该单层结构由下列构成:ITO(氧化铟锡),ITSO(氧化铟,其中混有原子百分比为2-20%的氧化硅),金(Au),铂(Pt),镍(Ni),钨(W),铬(Cr),钼(Mo),铁(Fe),钴(Co),铜(Cu),钯(Pd),锌(Zn),或金属材料的氮化物(氮化钛等)。或者,第一电极可以是通过层叠三层或更多层而形成的。

此外,在第一电极(阳极)1313的两侧,形成了绝缘体(也被称为触排、隔离壁、阻挡壁、堤防等)。绝缘体1314可以由有机树脂膜或含硅的绝缘膜构成。此处,通过使用正型感光性丙烯酸树脂膜,便可形成具有图13所示形状的绝缘体,以此作为绝缘体1314。

为了有利地进行后续膜形成过程,使绝缘体1314具有弯曲的表面,该曲面在其上边部分或下边部分具有一定的曲率。例如,在使用正型感光性丙烯酸作为绝缘体1314材料的情况下,最好只是绝缘体1314的上边部分具有一弯曲的表面,该曲面具有一定的曲率半径(0.2-3微米)。此外,作为绝缘体1314,可以使用感光之后在蚀刻剂中不可溶解的负型材料或感光之后在蚀刻剂中可溶解的正型材料。

绝缘体1314可以用氮化铝膜、氮氧化铝、以碳为其主要成分的薄膜、或由氮化硅膜构成的保护膜来覆盖。作为用于形成电致发光层1315的材料,给出了低分子量材料、高分子量材料和中等分子量材料(其性质介于高分子量材料和低分子量材料之间)。在本实施方式中,因为电致发光层1315是由汽相沉积方法制成的,所以可使用低分子量材料。当该材料溶解于溶剂中时,可以通过旋涂方法或喷墨方法来涂敷低分子量材料和高分子量材料。此外,不仅可以使用有机材料,还可以使用包括有机材料和无机材料的复合材料。

此外,在第一电极(阳极)1313上选择性地形成了电致发光层1315。例如,在真空度为0.7Pa或更小(最好是1.3×10-2-1.3×10-4Pa)的沉积腔中进行蒸镀。在蒸镀时,通过加热来预先蒸发有机化合物,并且沉积所蒸发的有机化合物从而形成电致发光层1315(电致发光层1315是通过从第一电极层起按顺序地层叠空穴注入层、空穴输运层、发光层、电子输运层和电子注入层从而形成的)。若不使用这样的层叠结构,电致发光层1315可以具有单层结构或混合层结构。此外,第二电极(阴极)1316形成于电致发光层1315上。

作为第二电极1316(阴极),最好使用金属、合金、导电化合物、或及其混合物等,它们都具有低功函数(适当的指示是3.8eV或更小的功函数)。具体来讲,第二电极1316(阴极)可以由下列构成:属于周期表第一族或第二族的元素,即,像Li、Rb或Cs这样的碱金属或像Mg、Ca或Sr这样的碱土金属;包括及其合金,比如Mg:Ag或Al:Li;像LiF、CsF或CaF2这样的化合物;或包括稀土金属(比如Yb)在内的过渡金属。然而,在本实施方式中为了赋予第二电极(阴极)透光性,第二电极是通过使这些金属或含这些金属的合金极薄或者通过使ITO、IZO、ITSO或另一种金属(或合金)层叠在一起而得以形成。

此处,第二电极(阴极)1316是由薄金属膜(其薄膜厚度具有低功函数)和透明导电膜(比如ITO、IZO或ZnO)的层叠所构成的,使得所发出的光穿透第二电极1316。这样,便形成了含第一电极(阳极)1313、电致发光层1315和第二电极(阴极)1316的电致发光元件1318。

在本实施方式中,电致发光层1315是通过依次层叠Cu-Pc(20纳米厚,作为空穴输运层)、α-NPD(30纳米厚,作为第一发光层,具有空穴输运特性)、向CBP(4,4′-N,N′-二咔唑-联苯)中添加了重量百分比为15%的Pt(ppy)acac而得到的物质(20纳米厚,该物质作为第二发光层)和BCP(2,9-二甲基-4,7-联苯-1,10-菲咯啉)(该BCP为30纳米厚,作为电子输运层)而构成的。因为第二电极(阴极)1316采用具有低功函数的金属薄膜,所以此处没必要使用电子注入层(氟化钙)。

如此形成的电致发光元件1318呈现出白色发光。为了实现全部色彩,提供了包括着色层1331和遮光层(BM)1332(此处为了简化没有示出外涂层)的滤色片。

此外,形成透明的保护层1317,以便于密封电致发光元件1318。透明的保护层1317可由第一无机绝缘膜、应力松弛膜和第二无机绝缘膜的层叠所构成。第一无机绝缘膜和第二无机绝缘膜可以是由通过溅射方法或CVD方法而形成的氮化硅膜、氧化硅膜、含氧的氮化硅膜、含氮的氧化硅膜、或以碳为其主要成分的薄膜(例如,DLC膜或CN膜)所构成。这些无机绝缘膜具有对湿气的高阻隔效果;然而,随着无机绝缘膜变得越来越厚,该膜更容易被剥离,因为膜应力增大了。

然而,当应力松弛膜插入第一无机绝缘膜和第二无机绝缘膜之间时,湿气可以被吸收,同时应力可以得到松弛。即使在成膜期间由于任何原因在第一无机绝缘膜中形成了微观的孔(比如针孔),应力松弛膜也能覆盖该孔,并且通过在其上提供第二无机绝缘膜便可以提供对湿气或氧气的高度隔绝效果。

应力松弛膜最好由吸湿材料构成,该材料具有比无机绝缘膜更小的应力。此外,应力松弛膜具有透光特性。此外,含有机化合物(比如α-NPD、BCP、MTDATA、AIq3)的材料膜可以用作应力松弛膜。这些材料膜具有吸湿特性,并且若这些膜很薄则几乎透明。然而,因为MgO、SrO2和SrO具有吸湿特性和透光特性并且可以用汽相沉积方法形成薄膜,所以这些材料可以用于应力松弛膜。

在本实施方式中,通过使用含氮和氩气体中的硅靶而形成的膜,即,对湿气、碱金属等杂质具有高阻隔效果的氮化硅膜用作第一无机绝缘膜或第二无机绝缘膜,通过汽相沉积方法而形成的Alq3薄膜被用作应力松弛膜。最好使透明保护层的总的膜厚度尽可能小,以使所发出的光穿透透明的保护层。

此外,在惰性气体环境中,用第一密封材料1305和第二密封材料1307来粘贴密封基板1304,以便于密封电致发光元件1318。最好使用环氧树脂基树脂作为第一密封材料1305和第二密封材料1307。此外,要求第一密封材料1305和第二密封材料1307是能够尽可能不让湿气或氧气透过的材料。

在本实施方式中,密封基板1304可以是玻璃基板、石英基板、或由FRP(光纤玻璃-加固型塑料)、PVF(聚氟乙烯)、聚酯、丙烯酸等构成的塑料基板。此外,有可能用第三密封材料来密封,以便在用第一密封材料1305和第二密封材料1307粘贴密封基板1304之后覆盖侧面(暴露的表面)。

这样,电致发光元件1318使用第一密封材料1305和第二密封材料1307密封住了,由此完全使电致发光元件1318屏蔽免受外部的影响并且防止促使电致发光层131变差的物质(比如来自外部的湿气或氧气)的侵入。因此,可以获得具有高可靠性的发光器件。

此外,通过将透明的导电膜用作第一电极(阳极)1313,便可以制造双发射类型的发光器件。

本实施方式可以与上述实施模式或另一个实施方式自由组合。此外,不仅使用发光元件的显示器件而且使用液晶的显示器件都可以通过使用本发明结晶化的半导体膜来制造。

[实施方式4]

通过使用本发明所制造的半导体元件,便可以制造各种半导体器件。本实施方式描述了一个制造CPU(中央处理器)的示例以及一个使用TFT构成各种电路的示例,其中TFT作为用本发明制造的半导体器件的示例。

图14A示出了下列状态:在用多个激光辐照装置对基板1400上所形成的非晶半导体膜1402进行激光辐照之后,发射出其波长比蓝光要短的光线以便区分大晶粒尺寸区域和弱结晶区域,并用光检测器1406接收该光线。下面解释从图14A中沿虚线A-B截取的横截面所看到的制造工艺。光检测器1406与蓝光光源结合在一起。如图14B所示,在具有绝缘表面的基板1400上形成了基底绝缘膜1401。例如,基板1400可以是由硼硅酸钡玻璃、硼硅酸铝玻璃等构成的玻璃基板。另外,尽管由丙烯酸或塑料(典型的有PET、PES、PEN)等柔性合成树脂构成的基板往往具有比其它基板要低的耐热温度,但是当由柔性合成树脂制成的基板可以承受制造工艺过程中的工艺温度时也可以使用该基板。

设置基底绝缘膜1401是为了防止碱土金属或碱金属(比如基板1400中所包括的Na)扩散到半导体膜中并防止对半导体元件的特性产生不利的影响。因此,基底绝缘膜由氧化硅、氮化硅、含氮的氧化硅等绝缘膜构成,这些绝缘膜可以抑制碱土金属和碱金属扩散到半导体膜中。

接下来,在基底绝缘膜1401上形成了25-100纳米(最好是30-60纳米)厚的非晶半导体膜1402。非晶半导体可以是硅或硅锗。当使用硅锗时,锗的浓度最好是介于0.01-4.5%(原子百分比)的范围中。此处,形成了66纳米厚的以硅为其主要成分的半导体膜(也被称为非晶硅膜或非晶硅)。

然后,如图14C所示,按与上述实施模式或另一种实施方式相同的方式,用多个激光器1403对非晶半导体膜1402进行激光辐照。通过这种处理使非晶半导体膜1402结晶化,由此形成了大晶粒尺寸区域1404和弱结晶区域1405。激光辐照是沿图14A中的Y方向进行的。

然后,如图14D所示,在非晶半导体膜1402、大晶粒尺寸区域1404和弱结晶区域1405上形成了抗蚀剂1422。然后,为了确定在哪儿进行光刻步骤,从抗蚀剂1422上方沿垂直于非晶半导体膜和具有晶体结构的半导体膜的方向发射出蓝光,并且用光检测器1406来测量被反射的光。通过所获得的反射光来获得该表面的散射光强,以检测大晶粒尺寸区域1404。蓝光能够透射到抗蚀剂1422且达到大晶粒尺寸区域1404和弱结晶区域1405能够彼此区分开的程度。作为光检测器1406,可以使用另一个实施方式中所示的光检测器。光检测器1406与蓝光光源结合在一起。

接下来,如图15A所示,在检测到大晶粒尺寸区域1404的位置之后,使曝光光源1407与大晶粒尺寸区域1404的位置相一致来进行曝光,然后按预定的形状形成抗蚀剂1402,由此通过蚀刻获得了岛形半导体膜1408a-1408c。当曝光光源1407和光检测器1406彼此结合在一起时,可以在测量的同时使曝光光源1407与大晶粒尺寸区域1404相一致。

接下来,根据需要,添加少量杂质元素(比如硼),使作为薄膜晶体管电特性的阈值接近零。

接下来,如图15B所示,形成覆盖岛形半导体膜1408a-1408c的绝缘膜,即所谓的栅极绝缘膜1409。在形成栅极绝缘膜1409之前,用氟酸等冲洗岛形半导体膜的表面。栅极绝缘膜1409是通过热氧化方法、等离子体CVD方法、或溅射方法等由含硅的绝缘膜形成的,厚度为10-150纳米,最好是20-40纳米。

栅极绝缘膜1409并不限于上述材料,该材料可以是:(1)氧化硅膜,含氧的氮化硅膜,含氮的氧化硅膜,氮化硅膜,或这些膜的层叠膜;或者(2)高介电常数材料(也被称为高k材料),比如氧化钽、氧化铪(HfO2)、氧氮化铪硅(HfSiON)、氧化锆(ZrO2)、或氧化铝(Al2O3),或稀土氧化物,比如氧化镧(La2O2)。此外,在将含氧的氮化硅膜与含氮的氧化硅膜的层叠层用作栅极绝缘膜1409的情况下,可以通过改变气体而连续地形成这些膜。

之后,在栅极绝缘膜1409上形成将要成为栅极电极的第一导电膜1410a和第二导电膜1410b。尽管此处栅极电极具有两层结构,但是该栅极电极也可以具有单层结构或三层或更多层的层叠结构。第一和第二导电膜1410a和1410b可以由选自Ta、W、Ti、Mo、Al和Cu中的一种元素或者以这些元素为主要成分的合金材料或化合物材料构成。

接下来,如图15C所示,形成抗蚀剂掩模1411以便蚀刻第一导电膜1410a和第二导电膜1410b。抗蚀剂掩模1411只需要具有锥形边缘部分,并且可以具有扇形或梯形。

接下来,如图15D所示,通过使用抗蚀剂掩模1411,对第二导电膜1410b进行选择性地蚀刻。第一导电膜1410a用作蚀刻阻挡层,使得栅极绝缘膜1409和半导体膜1408a-1408e不被蚀刻。被蚀刻的第二导电膜1410b具有0.2微米或大多1.0微米或者小于1.0微米的栅极长度。

接下来,用图15E所示的抗蚀剂掩模1411来蚀刻第一导电膜1410a。此时,在栅极绝缘膜1409和第一导电膜1410a之间的选择比例很高的情况下对第一导电膜1410a进行蚀刻。在该步骤中,抗蚀剂掩模1411和第二导电膜1410b可以被蚀刻到某种程度且更窄。因此,形成了非常小的栅极电极1410,其栅极长度为1.0微米或小于1.0微米。

接下来,如图16A所示,用氧气灰化或抗蚀剂剥离溶液来去除抗蚀剂掩模1411,然后,适当地形成用于添加杂质的抗蚀剂掩模1412。此处,形成了抗蚀剂掩模1412,以便覆盖将要成为p沟道TFT的区域。

接下来,通过将栅极电极1410用作掩模,在将要成为n沟道TFT的区域中以自对准的方式添加杂质元素磷(P)。此处,在60-80keV的条件下添加磷化氢(PH3)。经这一步骤,在将要成为n沟道TFT的区域中,形成了杂质区域1413a和1413b。

接下来,去除抗蚀剂掩模1412并形成抗蚀剂掩模1414,以便覆盖将要成为n沟道TFT的区域。然后,如图16B所示,通过将栅极电极1410用作掩模,以自对准的方式添加杂质元素硼(B)。经这一步骤,在将要成为p沟道TFT的区域中,形成了杂质区域1415。

接下来,在去除抗蚀剂掩模1414之后,形成用于覆盖栅极电极1410的侧面的绝缘膜,即所谓的侧壁1416a-1416c。通过对用等离子体CVD方法或低压CVD(LPCVD)方法形成的含硅的绝缘膜进行蚀刻,便可以形成侧壁1416a到1416c。

接下来,在p沟道TFT上形成抗蚀剂掩模1417,然后,在15-25keV的情况下添加磷化氢(PH3)以形成高浓度杂质区域,这就是所谓的源极区域和漏极区域。经这一步骤,如图16D所示,通过将侧壁1416a-1416c用作掩模,以自对准方式形成了高浓度杂质区域1418a-1418c。

接下来,通过氧气灰化或抗蚀剂剥离溶液,去除抗蚀剂掩模1417。

此外,通过激光退火、灯退火或炉退火来进行处理,以便激活所引入的杂质并修复引入杂质时对晶格造成的损伤。另外,通过在550℃的氮环境中加热基板,便可以激活杂质区域。

然后,如图17A所示,形成覆盖着栅极绝缘膜1409和栅极电极1410的第一夹层绝缘膜1419。第一夹层绝缘膜1419由含氢的无机绝缘膜(例如,氮化硅膜)构成。

之后,进行了热处理以便于氢化。从夹层绝缘膜1419中所包括的氮化硅膜中发出的氢可使氧化硅膜和硅膜中的不饱和键终结。

接下来,形成覆盖着第一夹层绝缘膜1419的第二夹层绝缘膜1420。第二夹层绝缘膜1420可以由下列材料构成:无机材料(比如氧化硅、氮化硅、或含氧的氮化硅);感光性的或非感光性的有机材料(比如聚酰亚胺、丙烯酸、聚酰胺、聚酰亚胺酰胺、抗蚀剂、或苯并环丁烯);硅氧烷(该物质的骨架结构由硅氧键(硅氧烷键)构成,并且在该结构中硅与氟、脂肪族烃和芳香族中的至少一种键合);或者这些材料的层叠结构。

接下来,在栅极绝缘膜1409、第一绝缘膜1419和第二绝缘膜1420中,形成开口部分,即所谓的接触孔。然后,如图17B所示,形成将要连接到各个杂质区域的引线1421a-1421c。如有必要,同时也形成将要连接到栅极电极的引线。这些引线可以由包含铝、钛、钼、钨、或硅的膜或合金膜构成。另外,这些引线可以由选自镍、钴或铁中的至少一种元素或含碳的铝合金膜构成。

这样,可以形成n沟道薄膜晶体管,它具有可形成低浓度杂质区域的LDD结构并且具有1.0微米或小于1.0微米的栅极长度。此外,还完成p沟道薄膜晶体管,它具有可不形成低浓度杂质区域的所谓的单漏极结构并且具有1.0微米或小于1.0微米的栅极长度。其栅极长度为1.0微米或小于1.0微米的TFT可以被称为亚微秒TFT。因为在p沟道薄膜晶体管中很难出现短沟道效应和因热载流子导致的恶化,所以可以使用单漏极结构。

在本实施方式中,p沟道薄膜晶体管可以具有LDD结构。此外,n沟道薄膜晶体管和p沟道薄膜晶体管可以不具有LDD结构,而具有所谓的GOLD结构,在GOLD结构中低浓度杂质区域覆盖了栅极电极。

由此,可以制造出具有如此形成的薄膜晶体管的半导体器件,在本实施方式中即为CPU。该半导体器件可以在驱动电压5V下以30MHz的工作频率进行高速运行。

接下来,示出了利用本发明所制造的TFT在玻璃基板上形成的CPU的方框图。

图18所示的CPU主要包括位于基板1800上的算术逻辑单元(ALU)1801、ALU控制器1802、指令解码器1803、中断控制器1804、定时控制器1805、寄存器1806、寄存器控制器1807、总线I/F 1808、可重写的ROM 1809和ROM I/F1820。ROM 1809和ROM I/F 1820可以提供到另一个芯片。

图18所示CPU只是一个示例,其中该结构得到简化,并且实际的CPU根据其预期目的而具有各种结构。

通过总线I/F 1808输入到CPU的指令可输入到指令解码器1803并且解码,然后,输入到ALU控制器1802、中断控制器1804、寄存器控制器1807和定时控制器1805。

ALU控制器1802、中断控制器1804、寄存器控制器1807和定时控制器1805基于解码后的指令来进行各种控制。具体来讲,ALU控制器1802产生用于控制算术逻辑单元1801运行的信号。此外,中断控制器1804在CPU的程序执行期间根据来自优先级或掩蔽条件的判断,处理来自外围电路或外部输入/输出设备的中断请求。寄存器控制器1807根据CPU的状况产生寄存器1806的地址并且在寄存器1806中进行读取或写入。

定时控制器1805产生用于控制算术逻辑单元1801、ALU控制器1802、指令解码器1803、中断控制器1804和寄存器控制器1807运行的定时信号。例如,定时控制器1805配有内部时钟发生器以便基于标准时钟信号CLK1(1821)产生内部时钟信号CLK2(1822),并且将该时钟信号CLK2提供给上述各种电路。

在利用本发明形成CPU内所包括的TFT的情况下,通过根据大晶粒尺寸区域确定曝光位置便可以进行光刻步骤;因此,TFT在性能方面是有利的并且在性能方面具有较少的变化。因此,其中结合了TFT的CPU具有有利的品质并且在性能方面具有较少的变化。另外,不需要制造用于光刻步骤的标记;因此,可以用更短的时间来制造CPU。

本实施方式可以与上述实施模式或另一个实施方式自由组合。

[实施方式5]

通过安装利用本发明制造的TFT作为集成一起的IC、存储器或CPU,或者通过用作面板,便可以完成各种电子设备。

这种电子设备包括:照相机,比如数字摄像机或数码相机;反射式投影仪;电视机(显示器);护目镜式显示器(头戴式显示器);导航系统;声音再现设备(音频);移动终端(移动计算机、移动电话、移动游戏机、电子书等);游戏机;配有记录介质的图像再现设备(具体来讲,具有CPU和显示器的器具,可以再现像DVD或硬盘驱动器(HDD)等记录介质中所记录的信息,并且可以显示图像);等等。

在下文中,参照附图,解释了利用本发明制造的电子设备之一的移动电话。

图19示出了显示面板1901和印刷引线板1902组合在一起的模块。显示面板1901配有:像素部分1903,其中将发光元件设置在各个像素中;第一扫描线驱动电路1904;第二扫描线驱动电路1905;以及信号线驱动电路1906,用于将视频信号提供给所选的像素。用于显示面板的元件并不限于发光元件,还可以使用液晶元件。

印刷引线板1902配有:控制器1907;中央处理单元(CPU)1908;电源电路1910;语音处理电路1911;发送/接收电路1912等。印刷引线板1902和显示面板1901是通过柔性引线板(FPC)1913而连接的。在印刷引线板1913中,可以提供电容器元件、缓冲电路等,以防止电源电压和信号中的噪声以及信号的慢边缘。控制器1907、语音处理电路1911、存储器1909、CPU 1908、电源电路1910等可以通过COG(玻璃上的芯片)方法安装在显示面板1901上。可以通过COG方法来减小印刷引线板1902的尺寸。

通过为印刷引线板1902而设置的接口(I/F)部分1914来输入/输出各种控制信号。为了在印刷引线板1902和天线之间发送和接收信号,在印刷引线板1902上设置天线端口1915。

图20是图19所示模块的方框图。该模块包括VRAM 1916、DRAM 1917、闪存1918等作为存储器1909。将要显示在面板上的图像数据存储在VRAM1916中,图像数据或音频数据存储在DRAM 1917中,并且各种程序都存储在闪存1918中。

电源电路1910提供电力以便操作显示面板1901、控制器1907、CPU 1908、语音处理电路1911、存储器1909和发送/接收电路1912。根据面板的规范,电源电路1910可以采用电流源来提供。

CPU 1908具有控制信号发生电路1920、解码器1921、寄存器1922、算术电路1923、RAM 1924、CPU 1908的接口1919等等。通过接口1919所输入到CPU 1908的各种信号保存在寄存器1922中,然后,再输入到算术电路1923、解码器1921等。算术电路1923基于所输入的信号进行算术运算,并且指定各种指令所发送到的地方。同时,对输入到解码器1921的信号进行解码,并输入到控制信号发生电路1920。控制信号发生电路1920基于所输入的信号产生包括各种指令的信号,并且将该信号发送到由算术电路1923指定的地方,特别是存储器1909、发送/接收电路1912、语音处理电路1911、控制器1907等。

存储器1909、发送/接收电路1912、语音处理电路1911和控制器1907根据所接收到的指令来操作。在下文中会简述该操作。

通过接口部分1914,将输入装置1925所输入的信号发送到印刷引线板1902上所安装的CPU 1908。控制信号发生电路1920根据从输入装置1925(比如定位设备或键盘)所发送的信号,将VRAM 1916中所存储的图像数据转换成预定的格式,并且将该数据发送到控制器1907。

控制器1907根据面板的技术规范对包括CPU 1908所发送的图像数据的信号进行数据处理,并且将该信号提供给显示面板1901。此外,控制器1907基于电源电路1910所输入的电源电压或CPU 1908所输入的各种信号,产生Hsync信号、Vsync信号、时钟信号CLBC、交流电压(AC Cont)以及开关信号L/R,并将它们提供给显示面板1901。

发送/接收电路1912处理将要作为电波从天线1928中发送/接收的信号。具体来讲,包括了高频电路(比如隔离器)、带通滤波器、VCO(压控振荡器)、LPF(低通滤波器)、耦合器、或平衡-不平衡变换器。在发送/接收电路1912所发送/接收的信号中,根据来自CPU 1908的指令,将包括音频信息的信号发送到语音处理电路1911。

根据CPU 1908的指令而发送过来的含音频信息的信号可由语音处理电路1911解调成音频信号并发送到扬声器1927。根据来自CPU 1908的指令,麦克风1926所发送的音频信号可由语音处理电路1911进行解调,并且发送到发送/接收电路1912。

根据本实施方式,控制器1907、CPU 1921、电源电路1910、语音处理电路1911和存储器1909可以采用一个封装来安装。本实施方式可以应用于除高频电路(比如隔离器)、带通滤波器、VCO(电压受控振荡器)、LPF(低通滤波器)、耦合器、或平衡-不平衡变换器以外的任何类型的电路。

通过使用本发明,TFT中的特性变化减小了,因为电路图案只形成于激光辐照区域中的大晶粒尺寸区域上。此外,工艺可以得到简化,且制造成本可以得到降低,因为不再需要用于确定曝光光源的曝光位置的对准工艺了。当该TFT被集成作为CPU、存储器或IC而安装、或作为面板而使用时,可以按较低的成本来制造具有有利的品质且性能方面不变化的电子设备。

本实施方式可以与上述实施模式或另一个实施方式自由组合。

[实施方式6]

在本实施方式中,作为利用本发明而制造的元件的示例,解释了一种光IC及其制造示例。图25A-29B可用于该解释。

首先,在图25A的基板(第一基板2500)上形成元件。此处,作为用于一种玻璃基板的AN100用作基板2500。

然后,通过等离子体CVD方法形成将要成为基底绝缘膜2502的含氮的氧化硅膜(膜厚为100纳米);此外,在不暴露于空气中的条件下,半导体膜层叠成具有20或直至等于或小于150纳米的膜厚度,较佳的是30直至等于或小于80纳米。在本实施方式中,形成含氢的非晶硅膜,作为非晶半导体膜2504。

基底绝缘膜2502可以通过层叠氧化硅膜、氮化硅膜和含氮的氧化硅膜而构成。例如,基底绝缘膜2502可以是由50纳米厚的含氧的氮化硅膜和100纳米厚的含氮的氧化硅膜层叠而成的膜所构成的。含氮的氧化硅膜或氮化硅膜用作阻挡层,该层防止像碱金属这样的杂质从玻璃基板中扩散出来。

然后,通过使用像固相生长方法、激光结晶化方法等结晶化方法或利用催化金属的结晶化方法,使非晶半导体膜2504结晶化,从而形成作为一种含晶体结构的半导体膜(结晶半导体膜)的多晶硅膜2508。

在本实施方式中,多晶硅膜2508是通过利用催化元素的结晶化方法而形成的。首先,用旋涂器将含镍的溶液(镍的重量范围为10ppm-100ppm,比如醋酸镍溶液)涂敷到非晶半导体膜2504的部分或全部表面上。另外,例如,也可以使用溅射方法将镍元素溅射到整个表面上的方法,而不使用涂敷方法。作为另一个方法,可以通过汽相沉积方法或等离子体处理方法来添加镍。此处可使用的催化元素不仅是镍,还可以使用锗、铁、钯、锡、铅、钴、铂、铜、金等。在图25A中,所加的催化剂用标号2506来表示。

在使半导体膜结晶化的情况下,为了控制晶体生长方向是垂直于基板2500的表面的方向,可以将含催化元素的溶液涂敷到半导体膜的整个表面上。或者,为了控制晶体生长方向是平行于基板2500的表面的方向,可以将含催化元素的溶液涂敷到部分半导体膜的。

接下来,通过热处理使半导体膜结晶化,从而形成具有晶体结构的半导体膜(此处,即多晶硅膜)。此处,在热处理之后(在500℃下持续一个小时),进行用于结晶化的热处理(在550℃下持续一个小时)。通过之前的热处理,非晶半导体膜2504和催化元素发生反应,以便在催化元素与非晶半导体膜2504相接触的表面上或其周围形成化合物。在后续的热处理中,通过将该化合物用作籽晶,引起晶体生长。结晶化温度的下降和热处理的缩短都是因为带催化作用的金属元素的功能所致。多晶硅膜可以通过这些热处理而获得。通过使用催化元素可提高结晶度。结果,元素之间的迁移、阈值电压以及导通电流的变化都可以得到抑制。

接下来,用稀释的氢氟酸等去除多晶硅膜2508表面上的氧化膜。然后,结晶度提高了,并且进行激光束辐照以便修复晶粒中剩余的缺陷。

在用激光结晶化方法使非晶半导体膜结晶化从而获得结晶半导体膜的情况下,或者在获得具有晶体结构的半导体膜之后进行激光辐照以修复晶粒中剩余缺陷的情况下,可以进行下文将描述的激光辐照方法。

在使用激光辐照的情况下,可以使用连续振荡激光束(CW激光束)。作为此处可以使用的激光束,可以使用从下列中的一种或多种激光器中振荡出来的激光束:Ti:蓝宝石激光器;翠绿宝石激光器;以YAG、YVO4、镁橄榄石(Mg2SiO4)、YAlO3、GdVO4(这些都是单晶)或YAG、Y2O3、YVO4、YAlO3、GdVO4(这些都是多晶/陶瓷)为介质且介质中掺杂有Nd、Yb、Cr、Ti、Ho、Er、Tm或Ta中的一种或多种作为掺杂剂的激光器。通过发射出具有这些激光器的基波和基波的二次到四次谐波的激光束,便可以获得具有大晶粒尺寸的晶体。例如,可以使用Nd:YVO4激光器(基波是1064nm)的二次谐波(532nm)或三次谐波(355nm)。这种情况下,在扫描速率约为10cm/s-2000cm/s的情况下,需要的激光功率密度约为0.01-100MW/cm2(最好是0.1-10MW/cm2)。

在使用陶瓷(多晶)作为激光器的介质的情况下,可以在短时间内以低成本形成具有任意形状的介质。在使用单晶的情况下,通常使用其直径为几毫米且长度为几十毫米的柱状介质;然而,在使用陶瓷的情况下,可以形成更大的介质。

无论在单晶中还是在多晶中,对光发射有直接贡献的掺杂剂(比如Nd或Yb)在介质中的浓度都不能急剧地变化;因此,通过增大浓度而提高激光输出具有某种程度的局限。然而,在使用陶瓷的情况下,与单晶相比,介质的尺寸可以急剧地增大;因此,可以预期输出会有显著地增大。

此外,在使用陶瓷的情况下,可以很容易地形成具有平行六面体形状或矩形平行六面体形状的介质。当通过使用这种形状的介质使振荡光在介质内成z字形时,振荡光程可以很长。因此,放大就变得较大,并且可以在大输出的情况下进行振荡。另外,当发出激光束时,从这种形状的介质中发出的激光束在其横截面上具有四角形;因此,与球形激光束相比,这更有利于变形为线形。通过使用光学系统使所发出的激光束变形,可以很容易地获得其短边为1毫米或更小且其长边为几个毫米到几米的线形光束。另外,通过向介质均匀地发射激励光,使该线形光束在长边方向上具有均匀的能量分布。

通过向半导体膜发出线形光束,可以更均匀地使半导体膜退火。在需要朝着线形光束的相反边缘进行均匀退火的情况下,最好设计一些方式,比如在相反边缘中安排一狭缝从而遮住能量衰减部分中的光。

在空气中或氧气中进行激光辐照的情况下,通过激光束辐照便在表面上形成了氧化膜。

然后,除了在多晶硅膜2508上形成的氧化膜以外,通过激光束辐照,用臭氧水处理该表面120秒,便形成了总厚度为1-5纳米的氧化膜构成的阻挡层2510。形成该阻挡层,以便从该膜中去除为结晶化而添加的催化元素(例如,镍)。此处,用臭氧来形成阻挡;然而,也可以通过在氧气环境中用紫外线辐照使具有晶体结构的半导体膜的表面发生氧化的方法、用氧等离子体处理使具有晶体结构的半导体膜的表面发生氧化的方法、等离子体CVD方法、溅射方法、汽相沉积方法等,沉积厚度约为1-10纳米的氧化膜从而形成阻挡层。另外,在形成阻挡层2510之前,可以去除通过激光束辐照而形成的氧化膜。

接下来,通过溅射方法在阻挡层2510上形成了10-400纳米厚(在本实施方式中厚度为100纳米)的含稀有气体元素的非晶硅膜2512,稀有气体元素将要成为吸杂位置(图25B)。在本实施方式中,非晶硅膜2512是在含氩的气体中利用硅靶形成的。在使用等离子体CVD方法的情况下,含氩元素的非晶硅膜是在下列条件下形成的:甲硅烷和氩的流速比(SiH4∶Ar)是1∶99,成膜气压是6.665Pa,RF功率密度是0.087W/cm2,且成膜温度是350℃。此处所形成的非晶硅膜2512的密度最好低于单晶硅膜2508的密度,以便增大蚀刻时在非晶硅膜2512和多晶硅膜2508之间的选择比例。作为稀有气体元素,使用氦(He)、氖(Ne)、氩(Ar)、氪(Kr)和氙(Xe)中的一种或多种。

之后,在加热到650℃的炉内,通过三分钟的热处理,进行催化元素的去除过程(吸杂过程)。因此,催化元素在多晶硅膜2508中的浓度减小了。可以使用灯退火装置,而非上述炉。通过热处理,因箭头所示的扩散,多晶硅膜2508中的催化元素移至用于吸杂的半导体膜,即非晶半导体膜2512。

接下来,在将阻挡层2510用作蚀刻阻挡物的情况下选择性地去除非晶硅膜2512(其中含作为吸杂位置的氩元素)之后,用稀释的氢氟酸选择性地去除阻挡层2510。因为在吸杂过程中镍很可能移动到氧浓度很高的区域,所以在吸杂之后期望去除氧化膜构成的阻挡层2510。

在未用催化元素使半导体膜结晶的情况下,形成阻挡层2510、形成吸杂位置(含稀有气体元素的非晶硅膜2512)、进行用于吸杂的热处理、去除吸杂位置、去除阻挡层等步骤都不再需要。

然后,用臭氧水在所获得的具有晶体结构的半导体膜(例如,结晶硅膜)的表面上形成薄的氧化膜,然后,在该氧化膜上进一步形成抗蚀剂,然后,检测激光辐照区域中的大晶粒尺寸区域,以确定进行光刻的位置(图25C)。具体来讲,从光源中输出的具有预定波长的光2514是从抗蚀剂的上方发射到半导体膜上的,并且由检测器检测半导体膜2516所反射的光2518。此处,因为弱结晶区域的表面具有其高度等价于半导体膜厚度的突出部分,从而使得发射的光散射。结果,散射光强很强,而反射光强很弱。另一方面,大晶粒尺寸区域具有比弱结晶区域更高的平整性;因此,散射光强很弱,而反射光强很强。通过利用这种差异,两个区域之间的差异得以区分。注意到,光2514能够透射到抗蚀剂且达到大晶粒尺寸区域和弱结晶区域能够彼此区分开的程度。

在本实施方式中,蓝光发光二极管用作光源,并且CCD照相机用作检测器2519。蓝光发光二极管的波长可以约为300-400纳米,该波长可以检测大晶粒尺寸区域2520和弱结晶区域2522。例如,可以使用用到氮化镓(GaN)、硒化锌(ZeSe)、氮化铟镓(InGaN)等的发光二极管。本实施方式中可使用的光源并不限于蓝光发光二极管,并且还可以使用其发射波长比蓝光波长要短的光源。例如,可以使用能发射紫外光的发光二极管。另外,不仅可以使用发光二极管,还可以使用另一个实施方式中所示的激光器。

用作检测器2519的CCD照相机被用于接收大晶粒尺寸区域2520和弱结晶区域2522的光。为了区分这两个区域,最好使用一种接收光量与输出呈良好线性的检测器。不仅CCD照相机,还有另一个实施方式中所示的另一种检测器也可以被用作检测器2519。

通过使用这些手段,以与上述实施模式或另一个实施方式所示方法相同的方式来检测大晶粒尺寸区域2520。从而,使弱结晶区域2522和大晶粒尺寸区域2520可以彼此区分开。

接下来,对大晶粒尺寸区域2520上所形成的抗蚀剂进行曝光以形成抗蚀剂掩模。此外,进行蚀刻,从而获得所期望的形状,以便于形成彼此隔开具有岛形的半导体膜(在下文中,被称为“岛形”半导体膜)2524和2526(参照图26A)。在形成岛形半导体膜2524和2526之后,去除抗蚀剂掩模。

接下来,根据需要,添加极小量的杂质元素(硼或磷),以便控制TFT的阈值。在本实施方式中,使用离子掺杂方法,即,在没有质量分离的情况下,以等离子体激发乙硼烷(B2H6)。

然后,在冲洗岛形半导体膜2524和2526表面的同时用含氢氟酸的蚀刻剂去除氧化膜之后,形成以硅作为其主要成分的绝缘膜,该绝缘膜将要成为栅极绝缘膜2528。此处,通过等离子体CVD方法形成115纳米厚的含氮的氧化硅膜(组分比例为Si=32%,O=59%,N=7%,H=2%)。

然后,在栅极绝缘膜2528上形成了金属膜之后,用第二光掩模进行按预定形状形成金属膜的处理(图形化)以形成栅极电极2530和2532、引线2534和2536以及端电极2538(参照图26B)。例如,通过分别层叠30纳米的氮化钽(TaN)和370纳米的钨(W)而形成的膜可用作上述金属膜。

另外,除上述材料以外,下列材料也可以用作栅极电极2530和2532、引线2534和2536以及端电极2538:选自钛(Ti)、钨(W)、钽(Ta)、钼(Mo)、钕(Nd)、钴(Co)、锆(Zr)、锌(Zn)、钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、铂(Pt)、铝(Al)、金(Au)、银(Ag)或铜(Cu)中的元素;以上述元素为其主要成分的合金材料或化合物材料所构成的单层膜;或上述这些的氮化物。例如,可以给出由氮化钛、氮化钨、氮化钽或氮化钼构成的单层膜。

然后,引入使岛形半导体膜2524和2526赋予一种导电性的杂质,以形成TFT 2541的源极区域或漏极区域2540以及TFT 2543的源极区域或漏极区域2542。在本实施方式中,形成了n沟道TFT;因此,将n型杂质(例如磷或砷)引入岛形半导体膜2524和2526中(参照图26C)。

在用CVD方法形成50纳米厚的含氧化硅膜的第一夹层绝缘膜之后,进行激活各个岛形半导体膜2524和2526中所添加的杂质元素的步骤。该激活步骤是通过下列方法执行的:将灯用作光源的快速热退火(RTA)方法;YAG激光器或准分子激光器从背面发光的方法;使用炉的热处理;或这些方法中的任意一种彼此组合的方法。

然后,形成10纳米厚的第二夹层绝缘膜2544,它包括含氢和氧的氮化硅膜。

然后,在第二夹层绝缘膜2544上形成由绝缘材料构成的第三夹层绝缘膜2546(参照图26D)。关于第三夹层绝缘膜2546,可以使用通过CVD方法获得的绝缘膜。在本实施方式中,形成900纳米厚的含氮的氮化硅膜,作为第三夹层绝缘膜2546,以提高粘附性。

接下来,进行热处理(300-500℃下进行1-12个小时,例如在氮气环境中410℃下进行1个小时)以使岛形半导体膜2524和2526氢化。该步骤利用第二夹层绝缘膜2544中所包括的氢来终结岛形半导体膜2524和2526中的不饱和键。无论栅极绝缘膜2528是否存在,都可以使岛形半导体膜2524和2526氢化。

作为第三夹层绝缘膜2546,使用硅氧烷及其层叠结构的绝缘膜是可以使用的。硅氧烷是一种具有硅和氧的骨架结构(硅氧烷键)的物质,并且在其结构中氟、脂肪族烃或芳香烃中的至少一种与硅键合。

在将使用硅氧烷和上述这些的层叠结构的绝缘膜用作第三夹层绝缘膜2546的情况下,在形成第二夹层绝缘膜2544且接下来进行热处理以使岛形半导体膜2524和2526氢化之后,可以形成第三夹层绝缘膜2546。

接下来,利用第三光掩模形成抗蚀剂掩模,然后,通过选择性蚀刻第一夹层绝缘膜、第二夹层绝缘膜2544和第三夹层绝缘膜2546或栅极绝缘膜2528,便形成了接触孔(图27A)。然后,去除抗蚀剂掩模。

注意到,第三夹层绝缘膜2546可以是根据需要形成的。在不形成第三夹层绝缘膜2546的情况下,在形成第二夹层绝缘膜2544之后就选择性地蚀刻第一夹层绝缘膜、第二夹层绝缘膜2544和栅极绝缘膜2528从而形成接触孔。

接下来,通过溅射方法形成层叠金属膜,并且用第四光掩模形成抗蚀剂掩模,然后,选择性地蚀刻该金属膜以形成引线2535、连接电极2548、端电极2549、连接到TFT 2541的源极区域或漏极区域2540的电极(在下文中,被称为源极电极或漏极电极)2552、和连接到TFT 2543的源极区域或漏极区域2542的电极(在下文中,被称为源极电极或漏极电极)2554。然后,去除抗蚀剂掩模。注意到,金属膜具有三层结构,分别是100纳米厚的钛膜、含极少量硅的350纳米厚的铝膜、以及另一层100纳米厚的钛膜。

接下来,在形成导电金属膜(钛、钼等)之后,即使该导电金属膜与随后形成的光电转换层(通常是非晶硅)起反应该导电金属膜也很难成为合金,用第五光掩模形成抗蚀剂掩模,并且选择性地蚀刻该导电金属膜以形成连接到引线2534的保护电极2550(参照图27A)。此处,形成了通过溅射方法而获得的200纳米厚的钛膜。相似的是,连接电极2548、端电极2538、TFT 2541的源极电极或漏极电极2552以及TFT 2543的源极电极或漏极电极2554也用导电金属膜覆盖,于是就分别形成了保护电极2556、2558、2560和2562。因此,关于导电金属膜,在这些电极中,保护电极的侧面是用第二层铝膜来覆盖的,并因此导电金属膜可以防止铝原子扩散到光电转换层中。

然而,在引线2534、连接电极2548、端电极2538、TFT 2541的源极电极或漏极电极2554以及TFT 2543的源极电极或漏极电极2554都形成单层导电膜的情况下,换句话说,在形成引线2564、连接电极2566、端电极2568、TFT2541的源极电极或漏极电极2570以及TFT 2543的源极电极或漏极电极2572而不再形成图27B所示的电极或引线的情况下,保护电极是不需要的。

如图27B所示,在引线2564、连接电极2566、端电极2568、TFT 2541的源极电极或漏极电极2570以及TFT 2543的源极电极或漏极电极2572都形成单层导电膜的情况下,从阻热、导电等方面讲氮化钛(钛膜)是较佳的。若不使用钛膜,则可以使用下列材料:选自钨(W)、钽(Ta)、钼(Mo)、钕(Nd)、钴(Co)、锆(Zr)、锌(Zn)、钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)或铂(Pt)中的一种元素;以上述元素作为其主要成分的合金材料或化合物材料构成的单层膜;或这些的氮化物,例如,由氮化钛、氮化钨、氮化钽或氮化钼所构成的单层膜。

通过使引线2564、连接电极2566、端电极2568、TFT 2541的源极电极或漏极电极2570以及TFT 2543的源极电极或漏极电极2572形成单层膜,便可以减少在制造工艺中成膜次数。

接下来,在第三夹层绝缘膜2546上形成电光转换层2574,其中包括p型半导体层2574p、i型半导体层2574i以及n型半导体层2574n(图27C)。

关于p型半导体层2574p,可以通过等离子体CVD方法形成非晶半导体膜,其中包含属于第13族的杂质元素,例如硼(B)。

引线2534和保护电极2550电连接到位于光电转换层2574中最低位置处的层,在本实施方式中即p型半导体层2574p。

尽管未示出,在引线2564、连接电极2566、端电极2568、TFT 2541的源极电极或漏极电极2570以及TFT 2543的源极电极或漏极电极2572形成单层导电膜而没有形成像图27B所示的保护电极的情况下,处于光电转换层2574中最低位置处的层在引线2564之上且与引线2564相接触。

在形成p型半导体层2574p之后,依次形成i型半导体层2574i和n型半导体层2574n。因此,形成了包括p型半导体层2574p、i型半导体层2574i和n型半导体层2574n的光电转换层(图27C)。

作为i型半导体层2574i,例如,非晶硅膜可以通过等离子体CVD方法来形成。作为n型半导体层2574n,可以形成包含第15族杂质元素(例如,磷)的非晶硅膜,或者,可以在形成非晶硅膜之后引入第15族杂质元素。

此外,作为p型半导体层2574p、i型半导体层2574i和n型半导体层2574n,除了非晶半导体膜以外,还可以使用半非晶半导体膜。

然后,在整个表面上形成1-30微米厚的由绝缘材料(例如,含硅的无机绝缘膜)制成的密封层2576。此处,作为绝缘材料膜,通过CVD方法形成了1微米厚的含氮的氧化硅膜。通过用CVD方法所形成的绝缘膜用作密封层2576,便可提高粘附性(图27C)。

接下来,在通过蚀刻密封层2576从而提供开口部分之后,通过溅射方法形成端电极2578和2580(图27D)。端电极2578和2580都是钛膜(100纳米)、镍膜(300纳米)和金属膜(金膜,50纳米)的层叠膜。如此获得的端电极2578和2580的固定强度高于5N,并且这是作为端电极的固定强度而言已足够的固定强度。

根据上述步骤,形成了可焊接的端电极2578和2580,并且获得了图27D所示的结构。注意到,器件形成层2582表示其中已经完成的从基膜2502到密封膜2576形成的层。

接下来,将基板切割成多个单独的小片,以获得多个光传感器芯片。可以从一个大基板(例如,其尺寸为600cm×720cm)中制造出大量的光传感器芯片(各芯片的尺寸为2mm×1.5mm)。

图28A是一个光传感器芯片(2mm×1.5mm)的横截面图(侧面图),图28B是其底面图,以及图28C是其俯视图。在图28A中,基板2500、器件形成层2582以及端电极2578和2580的总厚度是0.8±0.05mm。

为了使光传感器芯片的总厚度变薄,可以在经CMP处理研磨使基板2500变薄之后用切片机将其切割成多个单独的片,从而获得多个光传感器芯片。

另外,在图28B中,端电极2578和2580的尺寸都是0.6mm×1.1mm,并且电极间隔是0.4mm。在图28C中,光接收部分2584的平方测度是1.57mm2。放大器电路部分2586具有大约100片TFT。

最终,所获得的光传感器芯片安装在基板2588的安装表面上。为了使端电极2578和2590分别连接到电极2590和2592,通过丝网印刷方法预先在基板2500的电极2590和2592上形成焊料。然后,在焊料和端电极彼此接触之后,进行焊料回流处理以便将光传感器芯片安装到基板2588中。在惰性气体环境中255-265℃下进行大约10秒的焊料回流处理。此外,不仅可以使用焊料,还可以使用金属(比如金、银等)构成的凸起、导电树脂构成的凸起等。另外,考虑到环境问题,可以使用无铅焊料。根据上述步骤,便完成了图29A和29B所示的光传感器芯片。在图29A和29B中,光是从箭头所指的部分中接收到的。图29A和29B之间的差异是是否存在保护电极。

该实施方式可以与其它实施方式自由组合。

[实施方式7]

利用本发明可以形成TFT,另外,通过集成TFT,TFT可以用于薄膜集成电路器件或非接触式薄膜集成电路器件(也被称为无线IC标签或RFID(无线验证,射频标识))。薄膜集成电路或非接触式薄膜集成电路器件可以与另一实施方式中所示的制造方法结合起来被用作标签或存储器。

根据本发明,可以获得下列优点。首先,不需要形成标记,因为通过将大晶粒尺寸区域用作标记便可以进行光刻。换句话说,按常规单独需要形成标记的步骤可以省略。

其次,不管大晶粒尺寸区域存在于何处都可以确定地进行曝光,因为曝光光源的曝光是根据大晶粒尺寸区域进行的。换句话说,大晶粒尺寸区域对应于暴露的区域;因此,可以在该区域中制造TFT。因此,各个TFT都具有高性能且性能变化减小了。在将来,预计对薄膜集成电路的需求会增长;所以需要高产地制造高性能产品。因此,使用本发明非常有用。下文将解释一个示例。

尽管本实施方式示出了隔离且绝缘的TFT作为半导体元件用于无线IC标签的集成电路的示例,但是可用于无线IC标签的集成电路的半导体元件并不限于TFT,并且可以使用其它元件。例如,通常可以给出存储元件、二极管、光电转换元件、阻抗元件、线圈、电容器元件、电感器等。这些元件可以相似的方式形成。

下文参照附图解释用于制造无线IC标签的方法。实际上,无线IC标签按如下工艺来制造:在边长大于1米的基板上同时形成了大量的半导体元件,然后,从基板切割成单独的半导体元件而剥离除元件组,然后,对各个半导体元件进行密封。另外,不仅可以使用上述方法,还可以使用下列方法:在边长大于1米的基板表面上同时形成大量的半导体元件并且从基板的背面将其磨薄之后,该基板切割成单独的半导体元件并且用膜进行密封。

首先,如图30A所示,制备基板3000。作为基板3000,可以使用像硼硅酸钡玻璃或硼硅酸铝玻璃这样的玻璃基板、石英基板等。相反,还可以使用像丙烯酸或塑料这样的柔性合成树脂,典型的有PET(聚乙烯对苯二甲酸酯)、PEN(聚乙烯二甲酸酯)和PES(聚醚砜树脂)。合成树脂可以用作基板,只要合成树脂可以承受无线IC标签制造工艺中的温度即可。

如果基板3000由上述材料构成,则对基板3000的平方测度或形状就没有多少限制。因此,如果边长为1米或者大于1米的矩形基板用作基板3000,则生产率可以大大提高。这些都是显著的优点。

另外,通过像CMP方法进行抛光,可以使由上述材料所构成的基板的表面变薄。例如,通过使用下列方法在抛光后的玻璃基板、石英基板或半导体基板上,可以形成半导体元件。

在制备基板3000之后,绝缘膜3002形成于基板3000上(图30A)。通过含氧或氮的绝缘膜(比如,氧化硅(SiOx)膜、氮化硅(SiNx)膜、含氮的氧化硅膜、含氧的氮化硅膜等)的单层结构或层叠结构,便可以提供绝缘膜3002。在本实施方式中,形成了100纳米厚的含氮的氧化硅膜,作为绝缘膜3002。另外,通过对绝缘膜进行高密度等离子体处理,便可以使绝缘膜3002氧化或氮化。

高密度等离子体是通过使用例如2.45GHz的微波而产生的。具体来讲,所使用的高密度等离子体的电子密度为1011-1013/cm3,电子温度是2eV或更小,且离子能量是5eV。关于以低电子温度为特征的上述高密度等离子体,激活的核素具有较低的动能。因此,与常规等离子体处理相比,可以形成具有较少等离子体损伤和较少缺陷的膜。在等离子体产生过程中,可以使用微波激励等离子体工艺装置,该装置采用径向的槽天线。基板3000和用于产生微波的天线之间的距离设为20-80毫米(20-60毫米较佳)。

接下来,形成了剥离层(图30A)。在本实施方式中,通过等离子体CVD方法形成了30纳米厚的钨。剥离层3004可以由金属膜、金属膜和金属氧化膜的层叠结构等构成。金属膜是由选自下列元素中的一种元素的膜的单层或层叠结构构成的或者由以下列这些元素为主要成分的合金材料或化合物材料构成:钨(W)、钼(Mo)、钛(Ti)、钽(Ta)、铌(Nb)、镍(Ni)、钴(Co)、锆(Zr)、锌(Zn)、钌(Ru)、铑(Rh)、铅(Pb)、锇(Os)或铱(Ir)。这些材料可以是用已知的方法形成的(溅射方法或诸如等离子体CVD方法的CVD方法)。

例如,在金属膜和金属氧化膜的层叠层中形成剥离层3004的情况下,金属膜和金属氧化膜都可以是通过溅射方法或等离子体CVD方法而形成的。作为另一个方法,在形成上述金属膜之后,可以在氧环境中通过热处理或等离子体处理,在金属膜的表面上形成金属氧化物。作为等离子体处理,可以进行高密度等离子体处理。另外,可以使用金属氮化物、含氧的金属氮化物、或含氮的金属氧化物,来替代金属氧化膜。在形成金属氮化物的情况下,可以在氮环境中对金属膜进行等离子体处理或热处理。在形成含氧的金属氮化物或含氮的金属氧化物的情况下,可以在含氮和氧的环境中对金属膜进行等离子体处理和热处理。根据所使用的气体的流量比,所形成的膜的种类是不同的。

当形成剥离层3004时,氧化物、氮化物或氮化氧化物都形成于其表面上。这些化合物可以在短时间内剥离,因为在使用蚀刻气体特别是三氟化物(ClF3)时反应速度很快。即,当金属、金属氧化物、金属氮化物或金属氮氧化物中的任一种被蚀刻气体去除时,剥离都有可能发生。

当在剥离层3004的表面上形成氧化物、氮化物或氮化氧化物时,化学条件可能改变。例如,在形成含钨的氧化膜的情况下,氧化钨(WOx(x=-2到3))的化合价会改变。结果,氧化膜处于这样一种状态,使得该氧化膜很容易通过物理手段剥离。在化学手段和物理手段相结合的情况下,可以在短时间内更容易地去除该氧化膜。

尽管在本实施方式中剥离层3004形成于绝缘膜3002的整个表面上,但是剥离层3004也可以直接用于基板3000。在直接设置在基板3000上的情况下,剥离层3004可以设置在基板3000的整个表面上,或者可以通过光刻而设置在基板3000的任意位置上。

在形成剥离层3004之后,形成用作基膜的绝缘膜3006。在本实施方式中,通过溅射方法形成了200纳米厚的氧化硅。

接下来,形成半导体膜3008。半导体膜3008可以是非晶半导体膜、微晶半导体膜或结晶半导体膜。半导体膜的材料并不特别受限;然而,最好使用硅或硅锗。在本实施方式中,形成了膜厚大于或等于25纳米且小于或等于200纳米的非晶硅膜(大于或等于30纳米且小于或等于80纳米较佳)。在形成了半导体膜3008之后,可以进行去除半导体膜3008中所包含的氢的步骤。具体来讲,半导体膜3008可以在500℃下加热一个小时。

接下来,通过使用激光辐照装置,向半导体膜3008发射激光束3009,从而使半导体膜3008结晶。在本实施方式中,使用了Nd:YVO4激光器,其二次谐波处的功率为100W。通过使用光学系统会聚激光束,形成线形,并且按10到几百厘米/秒的扫描速度来发射激光束。

关于激光,可以使用连续振荡激光束(CW激光束)。作为此处可使用的一种激光束,可以使用从下列一种或多种激光器中振荡出来的激光束:绿宝石激光器;Ti:蓝宝石激光器;以YAG、YVO4、镁橄榄石(Mg2SiO4)、YAlO3、GdVO4(这些都是单晶)或YAG、Y2O3、YVO4、YAlO3、GdVO4(这些都是多晶/陶瓷)为介质且介质中掺杂有Nd、Yb、Cr、Ti、Ho、Er、Tm或Ta中的一种或多种作为掺杂剂的激光器。通过发射这些激光器的基波或基波的二次谐波的激光束,便可以获得具有大晶粒尺寸的晶体。

在将陶瓷(多晶)用作激光介质的情况下,可以在短时间内以低成本形成具有任何形状的介质。在使用单晶的情况下,使用其直径为几个毫米且其长度为几十个毫米的柱状介质;然而,在使用陶瓷的情况下,可以形成更大的介质。

无论在单晶中还是在多晶中对光发射有直接贡献的掺杂剂(比如Nd或Yb)在介质中的浓度不能急剧地变化;因此,通过增大浓度而提高激光输出具有某种程度的局限。然而,在使用陶瓷的情况下,与单晶相比,介质的浓度可以提高;因此,可以预期输出会有显著地增大。

此外,在使用陶瓷的情况下,可以很容易地形成具有任意形状的介质。与单晶的介质相比,可以形成更大的陶瓷介质;因此,与使用单晶介质的情况相比,可以使光程更长。当光程很长时,光被极大地放大以允许在高输出功率的情况下振荡。此处,在使用平行六面体形状或矩形平行六面体形状的介质的情况下,可以使振荡的光笔直进入介质内部或沿z字形前进,像是在介质内部反射一样。后者的光程比前者要长;因此,可以在更高的输出功率的情况下进行振荡。因为从这种形状的介质中发出的激光束在发射处具有矩形横截面形,所以在变形为线形的过程中比圆形光束要有利的多。通过使用光学系统使所发射的激光束变形,便可以很容易地获得其短边长度为1毫米或更小且其长边长度为几毫米到几米的线形光束。此外,通过用激励光均匀地辐照该介质,使线形光束在长边方向上具有均匀的能量分布。

在本实施方式的激光结晶化与使用金属元素(用于促进结晶化过程)的结晶化方法相组合时,可以更有效地进行结晶化,用于促进结晶化过程的金属元素包括:镍(Ni)、锗(Ge)、铁(Fe)、钯(Pd)、锡(Sn)、铅(Pb)、钴(Co),铂(Pt)、铜(Cu)或金(Au)。

用赋予p型导电性的杂质元素对通过激光辐照而形成的结晶半导体膜3010进行掺杂。此处,添加了作为杂质元素的硼(B)(图30C)。

接下来,选择性地蚀刻结晶半导体膜3010,由此形成第一半导体膜3012和第二半导体膜3014(图30D)。

接下来,在形成抗蚀剂掩模3016以便覆盖第一半导体膜3012之后,用赋予p型导电性的杂质元素对第二半导体膜3014进行掺杂(图31A)。在本实施方式中,添加了作为杂质元素的硼(B)。

接下来,去除抗蚀剂掩模3016,并且通过等离子体处理使第一半导体膜3012和第二半导体膜3014氧化或氮化,使得第一绝缘膜3018和3020(氧化膜或氮化膜)形成于第一半导体膜3012和第二半导体膜3014的表面上(图31B)。在本实施方式中,在含氧的环境中进行等离子体处理以使第一半导体膜3012和第二半导体膜3014氧化,由此形成作为第一绝缘膜3018的氧化硅(SiOx)。在形成作为第一绝缘膜3018和3020的氮化硅的情况下,可以在氮环境中进行等离子体处理。

通常,因为通过CVD方法或溅射方法而形成的氧化硅膜或含氮的氧化硅膜在该膜内部包含缺陷,所以膜质量不够高。因此,通过在氧环境中进行等离子体处理以使第一半导体膜3012和第二半导体膜3014的表面发生氧化,便可以在第一半导体膜3012和第二半导体膜3014上形成比通过CVD方法、溅射方法等所形成的绝缘膜要更加致密的绝缘膜。

当在第一半导体膜3012和第二半导体膜3014上设置跨过由CVD方法、溅射方法等所形成的绝缘膜的导电膜时,存在这样一个风险,即,第一半导体膜3012和第二半导体膜3014的边缘部分处绝缘膜的台阶等断裂可能导致出现覆盖缺陷,这就会导致半导体膜和导电膜的短路。然而,当预先通过等离子体处理使第一半导体膜3012和第二半导体膜3014的表面氧化或氮化时,可以抑制第一半导体膜3012和第二半导体膜3014的边缘部分处的绝缘膜覆盖缺陷。

接下来,形成第二绝缘膜3022,以便覆盖第一绝缘膜3018和3020。第二绝缘膜3022由氮化硅(SiNx)或含氧的氮化硅构成。此处,形成了4-20纳米厚的氮化硅膜,作为绝缘膜3022(图31C)。

接下来,通过在氧环境中进行等离子体处理,使第二绝缘膜3022的表面发生氧化,从而形成第三绝缘膜3024(图31C)。等离子体处理可以在上述条件下进行。此处,通过等离子体处理在第二绝缘膜3022的表面上形成2-10纳米厚的氧化硅膜或含氮的氧化硅膜,作为第三绝缘膜3024。

接下来,在第一半导体膜3012和第二半导体膜3014上形成用作栅极电极的导电膜3026和3028(图31D)。在本实施方式中,形成导电膜3026和3028,使之具有第一导电膜3026a和3028a以及第二导电膜3026b和3028b的层叠结构。此处,第一导电膜3026a和3028a由氮化钽构成,而第二导电膜3026b和3028b由钨构成。可用于栅极电极的导电膜可以具有单层结构。导电膜的材料不限于上述材料,而是还可以使用:含钽(Ta)、钨(W)、钛(Ti)、钼(Mo)、铝(Al)、铜(Cu)、铬(Cr)和铌(Nb)中的一种或多种元素的合金;或含这些元素的化合物。此外,也可以使用以掺有杂质元素(比如磷)的多晶硅为典型的半导体材料。

接下来,通过将导电膜3026用作掩模,将赋予p型导电性的杂质元素引入第一导电膜3012,并且通过将导电膜3028用作掩模,将赋予n型导电性的杂质元素引入第二导电膜3014。经这一步骤,形成了源极区域和漏极区域。之后,形成绝缘膜3030以便覆盖导电膜3026和3028(图32A)。

在绝缘膜3030上形成导电膜3032,以便电连接到第一半导体膜3012的源极或漏极区域,由此提供将第一半导体膜3012用作沟道形成区域的p型薄膜晶体管3034以及将第二半导体膜3014用作沟道形成区域的n型薄膜晶体管3036(图32A)。尽管本实施方式示出了制造顶部栅极(交错的)TFT的示例,但是本发明也可以应用于制造底部栅极(反向交错)TFT的情形。

此处,当从基板3000上方看时,同时形成的第一半导体膜3012、第二半导体膜3014和导电膜3032(即布线)最好具有圆形边缘部分。图35A和35B示意性地示出了引线的边缘是圆形的这一状态。

图35A示出了形成第一引线3054、第二引线3056、第三引线3058和接触孔3060的常规形成方法。为了形成这些引线的边缘部分,使用了一种形成将成为引线材料的膜并通过蚀刻处理使该膜形成期望的图案的方法。然而,形成精度为微米或小于微米的微小且复杂的引线并不容易。在形成这种微小引线的情况下,引线之间的距离极短;因此,在引线边缘部分中灰尘的产生往往会导致缺陷。

图19B示出了第一引线3054、第二引线3056、第三引线3058和半导体膜3062形成圆形且形成接触孔3060的状态。当边缘部分像图35B所示那样是圆形时,有可能抑制这样一种情形,即,在引线形成过程中所产生的灰尘会留在引线的边缘部分。因此,可以减小因灰尘所导致的半导体器件的缺陷,从而提高产量。

接下来,形成绝缘膜3038以便覆盖导电膜3032,并且在该绝缘膜3038上形成用作天线的导电膜3040,此外,还形成绝缘膜3042以覆盖导电膜3040(图32B)。注意到,薄膜晶体管3034和3036上所设置的导电膜3030等(虚线所围绕的区域)一般被称为元件组3044。

绝缘膜3030、3038和3042可以具有单层或多层结构,并且可以使用相同的材料或不同的材料。作为该材料,可以使用:(1)含氧或氮的绝缘膜,比如氧化硅(SiOx)、氮化硅(SiNx)、含氮的氧化硅膜、或含氧的氮化硅膜;(2)含碳的膜,比如DLC(类金刚石的碳);(3)有机材料,比如环氧树脂、聚酰亚胺、聚酰胺、聚乙烯基苯酚、苯并环丁烯、或丙烯酸或硅氧烷基材料等。

因为上述(3)中所给出的材料应该通过旋涂方法、微滴喷射方法、印刷方法等形成,所以可以有效地进行平整并且可以缩短处理时间。此外,通过等离子体处理,可以使绝缘膜3030、3038和3042氧化或氮化。

导电膜3040可以由下列材料构成:含铜(Cu)、铝(Al)、银(Ag)、金(Au)、铬(Cr)、钼(Mo)、钛(Ti)、钽(Ta)、钨(W)、镍(Ni)、碳(C)中的一种或多种元素的导电材料;或者含上述金属元素的金属化合物。

接下来,通过激光辐照方法在除元件组3044以外的区域中形成开口部分3046,以便暴露出剥离层3004。从该开口部分3046引入蚀刻剂,以去除剥离层3004(图33A)。可以完全去除剥离层3004,或者可以部分地留下剥离层3004。当留下剥离层3004时,即使在通过蚀刻剂去除剥离层3004之后,也可以将薄膜晶体管3034和3036固定在基板3000上,此外,可以在随后的步骤中很容易地处理晶体管。该蚀刻剂可以是含卤素或卤素氟化物(比如三氟化氯)的气体或液体。例如,可以使用CF4、SF6、NF3、F2

接下来,将具有粘性的第一片状材料3048粘结着绝缘膜3042,由此使元件组3044从基板3000上剥离。

粘贴第一片状材料3048的目的是保持将要在随后的步骤中被剥离的元件组3044的机械强度。为此,第一片状材料3048的厚度最好是50微米或大于50微米。至少在其一个表面上具有粘着剂的柔性膜可以用于第一片状材料3048。作为第一片状材料3048的示例,可以使用以聚酯为基底且在粘贴表面上具有粘着剂的材料。例如,该粘着剂可以是含丙烯酸树脂的树脂材料或含合成橡胶材料的材料。

接下来,用柔性膜来密封要剥离的元件组3044。此处,元件组3044粘贴着第二片状材料3050,且进一步用第三片状材料3052来密封元件组3044(图34A和34B)。

第二片状材料3050和第三片状材料3052可以都是柔性膜,比如聚丙烯、聚酯、乙烯基、聚氟乙烯或氯乙烯的膜,可以是纸张,还可以都是基膜(聚酯、聚酰胺、无机沉积膜、纸张等)和粘性合成树脂膜(丙烯酸基合成树脂、环氧基合成树脂等)的多层膜。通过热压缩待处理物体,对待处理物体进行热处理和加压处理。在热处理和加压处理时,最外表面上的膜或层(非粘性层)的最外表面上所设置的粘性层经热处理而熔化并且经加压而粘着。在用第一片状材料3048和第二片状材料3050对器件形成层进行密封的情况下,第一片状材料3048也可以用相同的材料来构成。

根据上述步骤,可以获得一种具有存储元件且能以非接触的方式交换数据的半导体器件。本实施方式中所示的半导体器件具有柔性。当元件组3044粘结着柔性基板时,提供了一种薄、轻且即使器件跌落也难以损坏的半导体器件。此外,当使用便宜的柔性基板时,可以在成本较低的情况下提供半导体器件。此外,该器件可以粘结在具有曲面或变形形状的物体上。通过重复利用基板3000,可以在成本较低的情况下制造半导体器件。

尽管在本实施方式中用化学方法使剥离层剥离,但是有另一种方法可剥离基板与薄膜集成元件。例如,可以使用下列方法:通过将多晶硅用于剥离层,从第一基板的背面(即,未形成薄膜集成元件的那一面)发出激光,由此通过释放多晶硅中所包括的氢并产生空气隙便使第一基板分离开。此外,用物理手段单独剥离的方法也是可以使用的。

另外,通过CMP等方法用完成元件组3044阶段所固定的绝缘膜3042来进行抛光从而使基板3000变薄的方法。通过使用该方法,不再需要剥离之后再粘贴的基板,并且可以省略剥离和粘贴。结果,在剥离步骤中,所形成的半导体元件并不是弯曲的。因此,可以防止对所容纳的半导体元件的损坏。

本实施方式可以适当地与另一个实施方式组合起来。

[实施方式8]

利用本发明检测大晶粒尺寸区域和弱结晶区域之间的边界的结果已得到解释。

按与另一个实施方式相同的方式,作为本实施方式中所用的样品,基膜和半导体膜形成于玻璃基板上并且进行激光辐照。从本样品的玻璃基板一侧发射出白光,并且用透射式显微镜来确认透射到半导体膜的光的图像从而用CCD照相机拍照。

图36A是此时的图像,并且没有进行图像处理。图36B是图36A的灰度级图像。术语“灰度级”表示一种只用从白到黑的对比来表达图像而没有图像的任何彩色信息的处理。在不进行图像处理的图36A和只转换成灰阶的图36B中,已证实大晶粒尺寸区域和弱结晶区域之间的边界很难识别。

图36C是在纵向上对图36A的图像进行Sobel处理的图像。图36D是图36A的图像平均化(积分过)、经中值处理、在垂直方向上经Sobel处理、再经二元化处理而得到的图像。

术语“Sobel处理”是指用较少的对比度来增强边缘的处理。术语“均值(积分)处理”是指对像素(通常是9个像素,包括中心像素和该中心像素周围的像素)的浓度值求平均的处理。通过进行平均处理,噪声成分的影响可以减小;因此,边缘位置的测量可以稳定。术语“中值处理”是指用于检测9个像素(包括中心像素和该中心像素周围的像素)的浓度值的处理,由此检测到的浓度值的中值设为中心像素的浓度值。该处理具有这样一个特征,即可以在不使图像模糊的情况下去除噪声成分。术语“二元化处理”是指用于获得各个像素的亮度的处理,由此在亮度高于预定值(阈值)时输出白色且在亮度低于预定值(阈值)时输出黑色。

通过像图36C所示进行Sobel处理,弱结晶区域和大晶粒尺寸区域之间的边界可以增强。尽管该状态已足够了,但是通过进行进一步处理从而增强边界部分并去除用激光束辐照区域过程中所形成的晶粒的晶界所导致的噪声,便可以进一步提高边界的检测精确度。如图36D所示,通过进行均值处理或中值处理,只有弱结晶区域和大晶粒尺寸区域之间的边界可以增强,并且像晶粒边界等不必要的信息可以被去除。

如上所述,通过对所获得的光进行图像处理,便可以很容易地区分出弱结晶区域和大晶粒尺寸区域。

[实施方式9]

在本实施方式中,解释了在检测大晶粒尺寸区域和弱结晶区域的情况下所使用的光源以及发光方法。

为了实现稳定的图像处理,需要获得一种具有高对比度且最适合于检测内容的图像。因此,选择将要发射到待辐照物体上的光的光源是很重要的。尽管在上述实施模式中使用了蓝光并在实施方式1中使用了激光,但也可以给出LED(发光二极管),作为本发明可以使用的其它光源的示例。下文将描述使用LED的优点。

首先,LED的寿命据称约为3万小时,这比像荧光灯或卤素灯等其它器件的寿命要长得多。另外,LED的寿命取决于发光时间;因此,通过控制发光时间,可以进一步延长寿命。因此,更换光源所用的费用或时间可以急剧减小。第二,在LED中,不会出现像荧光灯或卤素灯重复开关会导致的恶化。第三,与荧光灯或卤素灯相比,LED器件自身极小;因此,通过改变安装方法,可以实现各种发光方法或发光区域。第四,LED器件本身就是发光元件;因此,不需要发光机构或发光电路,LED具有优越的耐冲击性能,并且出故障的次数极小。第五,LED是一种将电直接变成光的器件;因此,与其它器件相比,LED具有较高的能效。

关于激光束辐照之后的半导体膜,根据图4所示半导体膜的晶体条件,表面状况是不同的。当进行发光时,在没有凹陷/凸起的部分(即,大晶粒尺寸区域)中镜面分量得到增强,或者,在具有凹陷/凸起的部分(即,弱结晶区域)中漫反射分量得到增强。通过利用表面状态的差异,可以更容易且更准确地区分出大晶粒尺寸区域和弱结晶区域。

图37A和37B示出了使用LED的发光示例。在图37A和37B中,相同亮度的光以相同角度发射到对其进行激光束辐照的半导体膜上。在图37A中,从面光源3701向半导体膜3702发出光线,在面光源3701中LED排列成平面形状。同时,将来自面光源3701的光设置成光检测器3703不能直接检测到。另外,将光检测器3703排列在半导体膜3702所反射的光中,从而使之仅仅只能接受到半导体膜3702的镜面反射光3704,而不能接受到漫反射光3705。之后,测量镜面反射光3704。通过使用该方法,具有较少凹陷/凸起的大晶粒尺寸区域所反射的光线大部分都被接收到;因此,可以获得这样一种图像,其中大晶粒尺寸区域部分是亮的,而弱结晶区域部分是暗的。

在图37B中,按与图37A相同的方式,从面光源3711向半导体膜3712发射光线,在该面光源3711中LED排列成平面形状。将光检测器3713排列在半导体膜3712的反射光中,使之仅仅只能接受到半导体膜3712的漫反射光3715,而不能接受到镜面反射光3714,随后测量漫反射光3715。通过使用该方法,具有更多凹陷/凸起的弱结晶区域所反射的光大部分都被接收到;因此,可以获得这样一种图像,其中弱结晶区域部分是亮的,而大晶粒尺寸区域部分是暗的。通过使用该发光方法,具有凹陷/凸起的部分的反射光;因此,表面的光泽很难对该方法产生影响。

通过使用这些方法对所获得的图像进行实施方式8中所给出的图像处理,可以更精确地检测出大晶粒尺寸区域和弱结晶区域之间的边界。

此处,在下文中示出了更具体的示例。

图38A是接收镜面反射光的示例。从面光源3801(LED排列成平面形状)所发出的光穿过漫射器3802(比如复眼透镜)成为均匀的光。具有平面的大晶粒尺寸区域部分所反射的光进入与照相机3805相同的轴。另一方面,具有凹陷/凸起表面的弱结晶区域所反射的光被漫射;因此,光没有到达照相机3805。因此,可以从灰暗中提取出弱结晶区域并获得具有高对比度的图像。通过对该图像作进一步的图像处理,可以更精确地检测大晶粒尺寸区域和弱结晶区域。

此外,还解释了接收漫反射光的示例。在图38B所示的发光器件3810中,LED 3811按高密度排列,相应地,可以进行360度发光。通过使用这种发光器件,可以向半导体膜发出无阴影的均匀光。

通过使用这种发光器件便可检测出大晶粒尺寸区域和弱结晶区域。在图38C中,与图38B相同的标号表示相同的部分。在发光器件3810中,从LED 3811中发出的光可均匀地射向半导体膜3812。该光被半导体膜3812反射。在反射的光中,由弱结晶区域漫反射的光由光检测器3813检测到。光检测器3813逐渐地且相对地从半导体膜3812的一边沿垂直于光束束斑扫描方向的方向移动到垂直于光束束斑扫描方向的方向3814。然后,由半导体膜3812反射的光由光检测器3813接收到,然后,将所接收到的光的数据输出到信息处理器3815(比如计算机)。在信息处理器3815中,进行接收光的数据映射。

接下来,由信息处理器3815进行信息处理,使得大晶粒尺寸区域和弱结晶区域可以彼此区分开。尽管仅仅通过将LED用作光源就可以使大晶粒尺寸区域和弱结晶区域彼此分开,但是通过进行实施方式8所示的图像处理便可以更精确地区分出大晶粒尺寸区域和弱结晶区域。

本实施方式可以与上述实施模式和另一个实施方式自由组合。

[实施方式10]

通过使用本发明所制造的TFT,便可以完成各种电子设备。下文将解释具体的示例。

通过使用本发明,TFT特性变化可以减少,因为电路图案可以只形成于激光辐照区域中的大晶粒尺寸区域上。此外,工艺可以简化,且制造成本可以降低,因为不再需要用于确定曝光光源的曝光位置的对准工艺。因此,通过使用本发明所制造的TFT,便可以在成本较低的情况下制造出品质良好且性能稳定的电子设备。

图21A示出了显示器件,它包括底盘2101、支架2102、显示部分2103、扬声器部分2104、视频输入端2105等。该显示器是通过使用另一个用于驱动IC、显示部分2103等的实施模式中所示的制造方法形成的TFT来制造的。显示器件是指液晶显示器、发光显示器等,具体来讲,包括所有种类可用于显示信息的显示器件,例如,用于计算机的显示器、用于电视接收的显示器或用于广告显示的显示器。

图21B示出了计算机,它包括底盘2111、显示部分2112、键盘2113、外部连接端口2114、定位鼠标2115等。利用本发明形成的TFT不仅可以应用于显示部分2112的像素部分,还可以应用于像显示用驱动IC、主体内的CPU、存储器等半导体器件。

图21C示出了移动电话,它是移动终端的一个典型代表。该移动电话包括底盘2121、显示部分2122、操作按键2123等。用本发明形成的TFT不仅可以应用于显示部分2112或传感器部分2124的像素部分,还可以应用于显示用驱动IC、存储器、语音处理电路等。传感器部分2124具有光传感器元件,通过根据传感器部分2124所获得的照明强度来控制显示部分2122的亮度,并且根据传感器2124所获得的照明强度来抑制操作按键2123的发光控制,由此便可以降低移动电话的功耗。

除了移动电话以外,利用本发明所形成的半导体材料还可以用于其它各种电子设备,比如PDA(个人数字助理)、数码相机、小型游戏机。例如,半导体材料可以用于形成各种功能电路,比如CPU、存储器和传感器,或者还可以应用于这些电子设备的像素部分或显示用的驱动IC。

图21D和21E示出了数码相机,图21E示出了图21D的反面。数码相机包括底盘2131、显示部分2132、透镜2133、操作按键2134、快门2135等。利用本发明形成的TFT可以用于显示部分2132的像素部分、驱动显示部分2132的驱动IC、存储器等。

图21F示出了数字摄像机。该数字摄像机包括主体2141、显示部分2142、底盘2143、外部连接端口2144、远程控制接收部分2145、图像接收部分2146、电池2147、音频输入部分2148、操作按键2149、目镜部分2150等。本发明所形成的TFT可以用于数字输入处理器件、存储器、显示部分2242的像素部分、控制显示部分2242的驱动IC等。

本发明所制造的TFT可以用于薄膜集成电路或非接触的薄膜集成电路器件(也被称为无线IC标签或RFID(射频标识))。通过使用另一个实施方式中所示的制造方法,薄膜集成电路和非接触的薄膜集成电路可以用作标签或存储器。

图22A示出了护照2201,无线IC标签2202贴在其上。或者,无线IC标签2202可以嵌入在护照2201中。相似的是,无线IC标签可以贴到或嵌入驾照、信用卡、钞票、钱币、证书、商品优惠券、票据、旅行支票(T/C)、健康保险卡、居住卡、家庭登记簿等。在这种情况下,仅仅将验证为真的信息输入到无线IC标签中,并且设置存取权限使得信息不可以被非法读写。通过使用本发明所形成的TFT便可以实现这一点。通过以这种方式使用标签,便有可能区分真伪。

此外,无线IC标签可以用作存储器。图22B示出了将无线IC标签2211用于待贴到蔬菜包装上的标签的示例。或者,无线IC标签可以直接贴到或嵌入包装中。在无线IC标签2211中,可以记录产地、制造商、制造日期以及生产阶段中的处理,比如加工方法、产品分配过程、价格、质量、期望目的、形状、重量、到期日期、各类验证信息等。来自无线IC标签2211的信息被无线读取器2212的天线部分2213接收并读出,并且被显示在读取器2212的显示部分2214。因此,批发商、零售商和顾客都可以很容易地了解这些信息。此外,可以针对制造商、贸易商和顾客中的各类设置存取权限。那些没有验证权限的人无法读取、写入、复写并擦除无线IC标签中的数据。

无线IC标签可以按下列方式来使用。在支付处,已支付的信息被写入无线IC标签中,并且在出口处所设置的检查装置检查该无线IC标签,判断已支付的信息是否被写入无线IC标签。如果未支付而将IC标签从商店中带出去,则警报会响。通过使用该方法,忘记支付或入店行窃都可以得到防止。

考虑到保护顾客的隐私,下列方法也是可行的。在收银机支付处,进行下列中任意的行为:(1)被输入到无线IC标签中的数据被插针数锁定;(2)被输入到无线IC标签中的数据被加密;(3)被输入到无线IC标签中的数据被擦除;以及(4)被输入到无线IC标签中的数据被销毁。通过使用另一个实施方式中所示的方法便可以实现这一点。然后,在出口处设置检查装置,并且检查是否已进行(1)到(4)中的任一项或者是否已支付。这样,可以在商店中检查是否已支付,也可以防止在商店外违背持有人的意愿从无线IC标签中读出信息。

对于(4)中销毁被输入到无线IC标签中的数据,给出了若干种方法。例如,(a)通过将″0(关)″和″1(开)″中的一种或两种写入无线IC标签的电子数据的至少一部分,便仅销毁了数据;以及(b)电流过量地流入无线IC标签,以物理的方式销毁无线IC标签的半导体元件中的一部分引线。

因为上述无线IC标签的制造成本高于常规使用的条形码,所以成本削减是必需的。根据本发明,工艺可以简化,制造成本可以降低,因为不再需要用于确定曝光光源的曝光位置的标记。此外,可以制造品质良好且性能稳定的任何无线IC标签,因为可以对激光辐照区域中的大晶粒尺寸区域进行曝光。

如上所述,本发明所制造的半导体器件可以应用于很宽的范围,并且本发明所制造的半导体器件可以应用于各个领域中的电子设备。

本实施方式可以与上述实施模式和另一个实施方式组合起来。

本申请基于2004年12月24日提交到日本专利局的日本专利申请2004-375080,其内容引用在此作为参考。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号