首页> 中国专利> 闪烁校正方法、闪烁校正电路、以及使用它们的摄像装置

闪烁校正方法、闪烁校正电路、以及使用它们的摄像装置

摘要

对从视频信号生成部分(11)供应的、构成为一连串的特定周期且包含闪烁分量的视频信号的每一个特定周期,算术处理部分(15)响应校正误差检测部分(16)供应的每一个特定周期的校正误差信号DER,对闪烁校正信号发送部分(13)发送且与包含在每一个特定周期的视频信号中的闪烁分量相对应的闪烁校正信号DCU、以及每一个特定周期的视频信号执行算术处理,以形成特定周期的闪烁分量已经校正了的特定周期的校正视频信号。校正误差检测部分(16)从紧接在每一个特定周期前面的特定周期的校正视频信号以及每一个特定周期的校正视频信号DVX检测闪烁分量的校正误差、获取每一个特定周期的校正误差信号DER作为与检测的校正误差相对应的信号、并且将校正误差信号供应给闪烁校正信号发送部分(13),闪烁校正信号发送部分(13)根据校正误差信号DER获取闪烁校正信号DCU作为用于减小校正误差的信号。

著录项

  • 公开/公告号CN101057489A

    专利类型发明专利

  • 公开/公告日2007-10-17

    原文格式PDF

  • 申请/专利权人 索尼株式会社;

    申请/专利号CN200580038959.3

  • 申请日2005-11-11

  • 分类号H04N5/21(20060101);H04N5/235(20060101);

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人康建峰

  • 地址 日本东京

  • 入库时间 2023-12-17 19:16:00

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-01-04

    未缴年费专利权终止 IPC(主分类):H04N5/21 授权公告日:20090429 终止日期:20151111 申请日:20051111

    专利权的终止

  • 2009-04-29

    授权

    授权

  • 2007-12-12

    实质审查的生效

    实质审查的生效

  • 2007-10-17

    公开

    公开

说明书

技术领域

本发明涉及一种闪烁校正方法和闪烁校正电路,用于校正包含闪烁分量的视频信号以减少闪烁分量,本发明还涉及使用该闪烁校正方法和闪烁校正电路的摄像装置。

本申请基于并且要求2004年11月15日提出的日本专利申请No.2004-330299,其全部内容通过引用包含于此。

背景技术

包括适宜生成相应于通过光学系统获取的物体图像的摄像输出信号的摄像信号生成部分的摄像装置(视频摄像机)在市场上已经普及,其包含固态摄像元件并且根据摄像输出信号获取代表物体图像的视频信号。包含在该摄像装置的摄像信号生成部分中的固态摄像元件包括:光接收部件,每一个均在通过光学系统接收到来自物体的光时执行光电转换操作并且累积作为操作结果所获得的信号电荷;电荷发送部分,用于发送在光接收部件中所累积的信号电荷;以及输出部件,用于根据从电荷发送部分所发送的信号电荷生成摄像输出信号。

固态摄像元件的电荷发送部分可以通过使用适宜相继传送在光接收部件中累积且从光接收部件中读出的信号电荷的电荷耦合器件(CCD)、适宜根据切换操作发送在光接收部件中累积的信号电荷的互补金属氧化物半导体(CMOS)、或者其它器件来形成。包括具有通过使用CCD或所谓的CCD图像传感器形成的电荷发送部分的固态摄像元件的摄像装置通常称作CCD摄像机,而包括具有通过使用CMOS或所谓的CMOS图像传感器形成的电荷发送部分的固态摄像元件的摄像装置通常称作CMOS摄像机。

同时,在周期性地闪烁的光源比如荧光灯下通过摄像装置进行图像拍摄时,所拍摄的图像显示周期性的明暗条纹,因此导致图像中流过明暗条纹的现象增加。另外,从帧到帧整个图像变得周期性地明暗。这是一种称作闪烁的现象,其导致在闪烁光源下采用累积电荷的定时移位(shift)通过包括适宜拍摄图像的图像传感器的摄像装置进行图像拍摄时不可避免的问题。

传统上,图像传感器以帧为单位或者以行为单位移位累积电荷的定时。通常,将与以帧为单位的电荷累积定时相匹配的系统称作全局快门系统,而将与以行为单位的电荷累积定时相匹配的系统称作滚动快门系统。虽然带有全局快门系统的CCD图像传感器已经成为主流,但是CMOS图像传感器也引起关注,这是因为其消耗较低的功耗并且能够以较低的成本用较少数量的部件进行制造。从结构上看不带有滚动快门系统的CMOS图像传感器更为常见。对于任何一种系统,虽然闪烁模式可能在从帧到帧整个帧变明或暗的帧闪烁以及图像一行接一行地闪烁的行闪烁之间而不同,但是在闪烁光源下拍摄图像时由于电荷累积定时的差分差异而导致闪烁出现。

图1示出在采用全局快门系统时在传感器中累积的电荷量如何变化,图2示出在采用全局快门系统时从帧到帧闪烁的图像,而图3示出在采用滚动快门系统时在传感器中累积的电荷量如何变化,以及图4示出一行接一行地闪烁的图像。

例如,当通过CMOS摄像机拍摄图像并且照亮物体的光源以对应于AC电源的周期的周期,例如以等于1/2的诸如荧光灯的AC电源的周期的周期闪烁时,基于来自固态摄像元件的摄像输出信号形成的视频信号会包含以亮度电平周期性地升降而出现的闪烁分量。包含在视频信号中的该闪烁分量产生为在固态摄像元件的光接收部件中累积的电荷量,光接收部件累积预定周期的信号电荷并且发送在每一个预定周期中累积的信号电荷,在照亮物体的光源的亮度周期波动的影响下周期性地变化。

当照亮物体的光源的亮度以图3中的X所示周期性地波动,而信号电荷在期间a和期间b上延续的期间(a+b)中、在作为固态摄像元件部分S中用于累积相应于视频信号的行周期的信号电荷的光接收元件的行的光接收部件Ln中累积,然后信号电荷在期间b和期间c(c=a)上延续的期间(b+c)中、在作为固态摄像元件部分S中用于累积相应于视频信号的下一行周期的信号电荷的光接收元件的行的光接收部件Ln+1中累积时,在期间(a+b)中在光接收部件Ln中累积的信号电荷量与面积Aa和面积Ab的和(面积Aa+Ab)成比例,并且在期间(b+c)中在光接收部件Ln+1中累积的信号电荷量与面积Ab和面积Ac的和(面积Ab+Ac)成比例。期间a和期间c的每一个对应于视频信号的行周期,而期间(a+b)和期间(b+c)的每一个对应于视频信号的帧周期。

因此,光接收部件Ln和光接收部件Ln+1对于电荷累积时间(曝光时间)表现出相同的持续时间,但是后一部件的电荷累积时间的定时从前一部件的电荷累积时间的定时移位相应于视频信号的行周期的期间。在图3的情况下,照亮物体的光源的亮度的波动周期(1/2的AC电源的周期)以及视频信号的帧周期没有表现出一个是另一个的整数倍的关系。

从图3中可以清楚地看出,面积Aa+Ab和面积Ab+Ac都包括面积Ab,从而它们之间的差等于面积Aa和面积Ac之间的差。因此,在期间(a+b)中在光接收部件Ln中累积的信号电荷量以及在期间(b+c)中在光接收部件Ln+1中累积的信号电荷量表现出与面积Aa和面积Ac之间的差相对应的差。

这样,与视频信号的行周期相对应、并且在作为固态摄像元件部分S中用于累积相应于行周期的信号电荷并发送的光接收元件的行的光接收部件中累积的信号电荷量,根据照亮物体的光源的亮度的周期波动而周期性地变化。然后,在光接收部件中累积、并且相应于视频信号的行周期的信号电荷量的周期变化表现为视频信号的亮度电平的周期波动,使得视频信号包含闪烁分量。

根据包含这样的闪烁分量的视频信号再现的帧周期图像典型地表现出沿着图4的(水平方向上)的行蔓延的明暗条纹。

在这些情况下,已经提出数种方案用于闪烁校正,以便在摄像装置拍摄用荧光灯照射的物体的图像时,减小包含在从包括固态摄像元件的摄像装置所获得的视频信号中的闪烁分量。

一种这种方案对于本领域的技术人员是公知的。根据该方案,包含在视频信号中的闪烁分量通过使对应于视频信号的帧周期、用于累积相应于视频信号的行周期的信号电荷并发送的固态摄像元件部分的每一个光接收部件的电荷累积期间等于荧光灯的闪烁周期的整数倍来减小,以便使在光接收部件中累积的信号电荷量总是基本上表现出恒定电平。

根据在日本专利申请公开No.2000-004382中描述的另一种方案,当视频信号的场速率(rate)(两倍的帧速率)为60Hz且场周期为1/60秒、而荧光灯的电源频率为50Hz且荧光灯的闪烁周期为1/100秒,从而在视频信号的每3个场周期中荧光灯闪烁5次、并且由此以等于视频信号的3个场周期的周期重复相同的闪烁模式时,视频信号以相应于场周期的数目的量累积在存储器中,场周期反过来又对应于闪烁分量的重复周期或其积分值,并且包含在视频信号中的闪烁分量近似为正弦波信号。然后,包含在视频信号中的闪烁分量通过利用正弦波信号的特征和在存储器中累积的视频信号或其积分值来减小。

发明内容

减小包含在从摄像装置获得的视频信号中的闪烁分量的上述公知闪烁校正方法存在如下问题。首先,对于上面引用的对本领域的技术人员公知的闪烁校正方法,其必须使对应于视频信号的帧周期、用于累积相应于视频信号的行周期的信号电荷并发送的固态摄像元件部分的每一个光接收部件的电荷累积期间等于荧光灯的闪烁周期的整数倍。因此,一旦给定荧光灯的闪烁周期,则不允许改变视频信号的帧速率。这样的方法缺乏一般的适用性。

对于在日本专利申请公开No.2000-004382中描述的闪烁校正方法,当视频信号的场速率改变并且对应于闪烁分量的重复周期的场周期的数目增加时,用于存储其数目对应于闪烁分量的重复周期的场周期的视频信号或其积分值所需的存储器的存储容量需要增加。因此,该方法也缺乏一般的适用性并且是不现实的。另外,当电源频率为60Hz的荧光灯的闪烁周期为1/120秒、而视频信号的场速率(两倍的帧速率)为60Hz且场周期为1/60秒时,该方法不能提供减小包含在视频信号中的闪烁分量的效果。

鉴于上述情形,本发明的目的是提供一种闪烁校正方法,在视频信号是具有各自不同的帧周期或某些其他特定周期的任意不同的视频信号时、或者在包含在视频信号中的闪烁分量是具有各自不同的重复周期的任意不同的闪烁分量时,能够可靠并准确地减小包含在视频信号中的闪烁分量,适宜使用该方法的闪烁校正电路,以及通过使用该闪烁校正方法和闪烁校正电路实现的摄像装置。

根据本发明,上述目的通过提供一种闪烁校正方法来实现,该方法包括:响应针对构成为一连串特定期间的视频信号的每一个特定期间的校正误差信号,为每一个特定期间获取相应于包含在视频信号中的闪烁分量的闪烁校正信号;针对每一个特定期间通过对闪烁校正信号和视频信号执行算术处理,形成为闪烁分量校正的特定期间的校正视频信号;以及从紧接在每一个特定期间前面的特定期间的校正视频信号和每一个特定期间的校正视频信号检测闪烁分量的校正误差,获取校正误差信号作为相应于检测校正误差的信号,并且根据校正误差信号获取闪烁校正信号作为用于减小校正误差的信号。

根据本发明,还提供一种闪烁校正电路,包括:闪烁校正信号发送部分,响应针对每一个特定期间的校正误差信号,发送相应于包含在每一个特定期间的视频信号中的闪烁分量的闪烁校正信号,视频信号构成为一连串的特定期间并且包含闪烁分量;算术处理部分,对闪烁校正信号发送部分发送的闪烁校正信号以及每一个特定期间的视频信号执行算术处理,以形成为闪烁分量校正的特定期间的校正视频信号;以及校正误差检测部分,从紧接在每一个特定期间前面的特定期间的校正视频信号和每一个特定期间的校正视频信号检测闪烁分量的校正误差,获取每一个特定期间的校正误差信号作为相应于检测校正误差的信号,将校正误差信号提供给闪烁校正信号发送部分,并且根据校正误差信号获取闪烁校正信号作为用于减小校正误差的信号。

根据本发明,还提供一种摄像装置,包括:摄像元件部分,具有通过排列多个光电转换像素形成的摄像表面部分;视频信号形成部分,根据来自摄像元件部分的摄像输出信号形成视频信号;闪烁校正电路,包括:闪烁校正信号发送部分,响应针对每一个特定期间的校正误差信号,发送相应于包含在从视频信号形成部分获取的每一个特定期间的视频信号中的闪烁分量的闪烁校正信号;算术处理部分,对闪烁校正信号发送部分发送的闪烁校正信号以及每一个特定期间的视频信号执行算术处理,以形成为闪烁分量校正的特定期间的校正视频信号;以及校正误差检测部分,从紧接在每一个特定期间前面的特定期间的校正视频信号和每一个特定期间的校正视频信号检测闪烁分量的校正误差,获取每一个特定期间的校正误差信号作为相应于检测校正误差的信号,将校正误差信号提供给闪烁校正信号发送部分,并且根据校正误差信号获取闪烁校正信号作为用于减小校正误差的信号;以及信号处理部分,对从闪烁校正电路获取的校正视频信号执行信号处理以形成输出视频信号。

因此,根据如上所述的本发明,在形成特定期间的对其校正了闪烁分量的校正视频信号时,闪烁校正信号和特定期间的视频信号经受算术处理,以便闪烁校正信号减小视频信号的闪烁分量的校正误差。由此,能够获得其中闪烁分量有效减小的校正视频信号,并且在视频信号是具有各自不同的帧周期或某些其他特定周期的任意不同的视频信号时、或者在包含在视频信号中的闪烁分量是具有各自不同的重复周期的任意不同的闪烁分量时,能够可靠并准确地减小包含在视频信号中的闪烁分量。

本发明的其它目的和优点从以下实施例的描述中将变得更加清楚。

附图说明

图1示意示出累积在采用全局快门系统的图像传感器中的电荷量的变化;

图2示意示出表现出由于全局快门系统而出现的帧闪烁的图像;

图3示意示出累积在采用滚动快门系统的图像传感器中的电荷量的变化;

图4示意示出表现出由于滚动快门系统而出现的行闪烁的图像;

图5是执行根据本发明的闪烁校正方法的闪烁校正电路的实施例的示意方框图;

图6是说明图5的闪烁校正电路的闪烁校正信号发送部分的波形图;

图7是图5的闪烁校正电路的校正数据地址计算部分的示意方框图,示出其具体结构;

图8是图5的闪烁校正电路的闪烁校正信号形成部分的示意方框图,示出其具体结构;

图9是图5的闪烁校正电路的校正误差检测部分的校正误差检测算法的示意图;

图10是图9的校正误差检测部分的示意方框图,示出其具体结构;

图11是图9的校正误差检测部分的闪烁数据地址计算部分的示意方框图,示出其具体结构;

图12是图5的闪烁校正电路的闪烁校正序列的流程图;

图13是图5的闪烁校正电路的闪烁校正时序图;以及

图14是通过应用根据本发明的闪烁校正方法和闪烁校正电路实现的摄像装置的实施例的示意方框图。

具体实施方式

现在将参照示出本发明的优选实施例的附图详细描述本发明。但是应该指出的是,本发明并不限于下面描述的实施例,而是在不脱离本发明的构思和范围的情况下可以对其进行各种形式的修改。

根据本发明的闪烁校正方法典型地通过具有图5所示结构的闪烁校正电路来体现。

图5是根据本发明的闪烁校正电路12的实施例的示意方框图,其中还示出了连接到其上的视频信号生成部分11。

在图5的实施例中,典型地包括比如彩色视频摄像机的摄像装置的视频信号生成部分11发送构成为连续的帧周期并且包含闪烁分量(照亮被摄像装置拍摄的物体的荧光灯的AC电源频率(荧光灯的亮度波动周期的两倍的倒数))的数字视频信号DV、表示包含在数字视频信号DV中对应于数字视频信号DV的帧速率和行速率的闪烁分量的周期的闪烁信息信号DFI、以及表示数字视频信号DV的帧周期的帧信息信号DFR。

然后将数字视频信号DV、闪烁信息信号DFI和帧信息信号DFR从视频信号生成部分11供应给闪烁校正电路12。

闪烁校正电路12包括闪烁校正信号发送部分13、算术处理部分15和校正误差检测部分16,闪烁校正信号发送部分13包括校正数据地址计算部分17、校正数据存储器18和闪烁校正信号形成部分19。

来自视频信号生成部分11的数字视频信号DV供应给闪烁校正电路12的闪烁校正信号发送部分13、算术处理部分15和校正误差检测部分16。通过后面将要详细描述的减小每一帧周期中的闪烁分量,从算术处理部分15获取校正数字视频信号DVX作为校正数字视频信号DV的结果。然后校正数字视频信号DVX以帧周期为单位从闪烁校正电路12顺序发送到外部,并且还供应给闪烁校正电路12中的校正误差检测部分。

另外,来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR供应给闪烁校正信号发送部分13和校正误差检测部分16。从校正数字视频信号DVX为每一个帧周期获取对应于闪烁分量上的校正误差的校正误差信号DER(其配置将在下文中详细描述)并供应闪烁校正信号发送部分13。

来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR以及来自校正误差检测部分16的校正误差信号DER供应给闪烁校正信号发送部分13的校正数据地址计算部分17。然后,校正数据地址计算部分17针对对应于帧周期的数字视频信号DV的每一部分发送表示在校正数据存储器18中的存储器地址的存储器地址信号DAL,存储器地址信号DAL然后供应给校正数据存储器18。

校正数据存储器18为每一个帧周期的多个行周期的每一个存储用于减小包含在与帧周期相对应的数字视频信号DV的每一部分中的闪烁分量的校正数据。包含在与帧周期相对应的数字视频信号DV的每一部分中的闪烁分量对于数字视频信号DV的亮度电平基本上表现出正弦波形式的波动,因此可以近似为正弦波信号。校正数据存储器18与存储器地址相对应地存储表示1/4信号周期中正弦波信号的大量采样点处的电平的数据,典型地如图6所示,其中水平轴表示相位并且垂直轴表示电平。

与校正数据地址计算部分17计算确定并且供应给校正数据存储器18的存储器地址信号DAL所表示的存储器地址相对应的校正数据从校正数据存储器18读出并且作为校正数据DLF供应给闪烁校正信号形成部分19。闪烁校正信号形成部分19针对数字视频信号DV的每一个帧周期的多个行周期的每一个中的多个像素的每一个通过调整校正数据DLF所表示的校正电平获取调整后的校正电平,并且顺序形成与数字视频信号DV的每一个帧周期的多个行周期的每一个中的各个像素相对应的闪烁校正信号DCU。

针对从视频信号生成部分11发送的数字视频信号DV的每一个帧周期,算术处理部分15对每一个帧周期的多个行周期的每一个中的每一个像素和从闪烁校正信号发送部分13发送的闪烁校正信号DCU执行算术处理,校正数字视频信号DV以减小帧周期的多个行周期的每一个中的闪烁,并且以帧周期为单位顺序导出通过校正数字视频信号DV中的闪烁所获得的校正数字视频信号DVX。如此以帧周期为单位从算术处理部分15顺序导出的校正数字视频信号DVX然后作为输出信号从闪烁校正电路12发送,并且还供应给闪烁校正电路12的校正误差检测部分16。

校正误差检测部分16根据以帧周期为单位从算术处理部分15顺序供应的校正数字视频信号DVX、来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR、以及来自视频信号生成部分11的数字视频信号DV,为每一个帧周期中的闪烁分量检测校正数字视频信号DVX中的校正误差,以生成对应于所检测的校正误差的校正误差信号DER,并且将校正误差信号DER供应给闪烁校正信号发送部分13的校正数据地址计算部分17。在校正误差检测部分16以这种方式将校正误差信号DER供应给校正数据地址计算部分17时,由校正数据地址计算部分17顺序计算确定的存储器地址信号DAL能够如校正误差检测部分16所检测的来减小校正数字视频信号DVX的每一个帧周期中闪烁分量上的校正误差。

这意味着从校正误差检测部分16获取的校正误差信号DER能够根据该校正误差信号DER减小校正数字视频信号DVX的每一个帧周期中闪烁分量上的校正误差,并且校正误差检测部分16使得来自闪烁校正信号发送部分13的闪烁校正信号DCU能够根据校正信号DER减小校正数字视频信号DVX的每一个帧周期中闪烁分量上的校正误差。

作为示例,下面将参照图7描述闪烁校正信号发送部分13的校正数据地址计算部分17的具体结构。图7的校正数据地址计算部分17包括初始行地址数据计算部分21、行地址增量计算部分22和行地址数据计算部分23。

在校正数据地址计算部分17中,初始行地址数据计算部分21根据来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR以及从校正误差检测部分16获得的校正误差信号DER计算确定与数字视频信号DV的每一个帧周期中的第一行周期相对应的存储器地址,并且生成表示计算确定的存储器地址的存储器地址信号DAa。与此同时,行地址增量计算部分22根据来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR为数字视频信号DV的每一个帧周期的行周期的每一个计算确定存储器地址增量,以生成表示计算确定的存储器地址增量的存储器地址单元增量信号DAb。

另外,在图7所示的校正数据地址计算部分17的具体结构中,行地址数据计算部分23根据来自初始行地址数据计算部分21的存储器地址信号DAa和来自行地址增量计算部分22的存储器地址单元增量信号Dab,计算确定与数字视频信号DV的每一个帧周期的行周期的每一个相对应的存储器地址并且生成表示所计算确定的存储器地址的存储器地址信号DAL。生成的存储器地址信号DAL然后从行地址数据计算部分23发送并供应给校正数据存储器18。

由此,校正数据地址计算部分17从电源频率和帧速率计算确定所考虑帧的引导行的地址,然后通过将地址增量加到与引导行邻接的下一行上计算确定当前行的地址等等。

更具体地说,在电源频率为50Hz、帧速率为30Hz、以及在摄像元件的垂直方向上的时钟数目为1125clk时,闪烁的上升和下降的周期T通过下面的公式1确定为等于337.5行。

T=30Hz×1125clk/(50Hz×2)

=337.5[clk]                            …(1)

系统中的ROM存储通过将周期除以512所获得的闪烁数据,对于下一行使得ROM的地址以如下式2所确定的大约1.51703递增。

512/337.5=1.51703                      …(2)

由此,在引导行的校正波形地址为0时,第100行的地址通过下面所示的公式3确定为152。

0+1.51703×100152                     …(3)

下面参照图8描述闪烁校正信号发送部分13的闪烁校正信号形成部分19的具体结构。参照图8,闪烁校正信号形成部分19包括校正电平信号形成部分24和像素闪烁校正信号形成部分25。在闪烁校正信号形成部分19中,校正电平信号形成部分24生成校正电平信号DCL,表现出由从校正数据存储器18获取的用于减小数字视频信号DV的每一个帧周期的行周期的每一个上的闪烁分量的校正数据DLF所表示的校正电平。像素闪烁校正信号形成部分25供应有数字视频信号DV和来自校正电平信号形成部分24的校正电平信号DCL。然后,针对校正电平信号DCL,像素闪烁校正信号形成部分25调整包含在数字视频信号DV的每一个帧周期的多个行周期的每一个中的多个像素的每一个的电平,并且生成与数字视频信号DV的每一个帧周期的多个行周期的每一个中的每一个像素相对应的像素闪烁校正信号,然后将该像素闪烁校正信号发送作为闪烁校正信号DCU。

像素闪烁校正信号形成部分25针对校正电平信号DCL调整包含在数字视频信号DV的每一个帧周期的多个行周期的每一个中的多个像素的每一个的电平的上述操作,通常以校正电平信号DCL的电平与每一个像素的亮度电平成比例的方式进行。这是因为通过实际观察发现每一个像素的亮度电平趋于表现出与对应于像素的闪烁分量的亮度电平成比例的关系。

闪烁校正电路12的校正误差检测部分16通过图9所示的算法检测校正误差。

也就是说,在输出“第n帧的校正图像”之后,通过预测第n+1帧的闪烁状态将闪烁分量加到“第n帧的校正图像”上。在此将作为结果所获得的图像称作“图像A”。与此同时,通过预测第n+1帧的闪烁状态并且在移位地址之后加上闪烁分量所获得的图像称作“图像B”。在包含闪烁分量的“第n+1帧的图像”从这两个图像中减去之后,对于“图像A”仅输出物体的运动作为差分图像,但是对于“图像B”输出物体和闪烁分量的运动两者作为差分图像。因此,当将差分进行彼此比较时,“图像A”的差分较小。相反,当从“图像B”获得的差分小于从“图像A”获得的差分时,可以安全地认为在地址移位时正确地预测了闪烁。换句话说,对于表现出较小差分的图像闪烁被正确预测,从而通过在减小差分的方向上移位地址能够将校正误差收缩到特定范围。

下面将参照图10描述校正误差检测部分16的具体结构。图10所示的校正误差检测部分16包括:闪烁数据地址计算部分31,为其供应来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR以及校正误差信号DER;地址转换部分32、33,从闪烁数据地址计算部分31为其供应存储器地址信号DDL;闪烁数据存储器34、35,用于存储闪烁数据;闪烁信号形成部分36、40以及算术处理部分37、41,为其供应由闪烁校正电路12通过校正闪烁所获得的校正数字视频信号DVX;行积分器部分38、42,分别从算术处理部分37、41供应加有闪烁的数字视频信号DVXP、VXN;存储器39、43,为其供应分别由行积分器部分38、42通过积分获得的行积分输出信号DIP、DIN;行积分器45和待读出控制信号形成部分46,从视频信号生成部分11为其供应数字视频信号DV;差分检测部分47、48,为其供应作为行积分器45的积分结果所获得的行积分输出信号DIV以及分别从存储器39、43读出的行积分输出信号DIP、DIN;积分器49、51,为其供应分别由差分检测部分47、48检测的差分信号SP、SN;以及比较器50,为其供应分别由积分器49、51获得的积分数据SPI、SNI。存储器39、43由待读出控制信号形成部分46控制,并且将作为比较器47的比较结果所获得的校正误差信号DER供应给闪烁数据地址计算部分31。

校正误差检测部分16的闪烁数据地址计算部分31针对校正数字视频信号DVX的每一个帧周期发送表示闪烁数据存储器34中的存储器地址和闪烁数据存储器35中的存储器地址的存储器地址信号DDL,并且将存储器地址信号DDL供应给地址转换部分32、33。地址转换部分32通过将预先定义的地址量加到存储器地址信号DDL所表示的存储器地址上,将存储器地址信号DDL表示的存储器地址转换成表示在前进方向上移位预定量的前进/转换的存储器地址,并且随后生成表示前进/转换的存储器地址的转换存储器地址信号DPL。从地址转换部分32获取的转换存储器地址信号DPL供应给闪烁数据存储器34。另一方面,地址转换部分33通过将预先确定的地址量从存储器地址信号DDL所表示的存储器地址上减去,将存储器地址信号DDL表示的存储器地址转换成表示在倒退方向上移位预定量的倒退/转换的存储器地址,并且随后生成表示倒退/转换的存储器地址的转换存储器地址信号DNL。从地址转换部分33获取的转换存储器地址信号DNL供应给闪烁数据存储器35。

在电源频率为50[Hz]、帧速率为30[Hz]并且在传感器的垂直方向上的时钟数目为1125[clk]、而存储在ROM中的数据表现出每512的周期且第n帧的第一行上的闪烁分量的地址为0时,第n+1帧的第一行上的闪烁分量的地址为171((0+112×512/337.5)%512=171)。那么,对于在地址转换部分32、33中预先定义的预定地址量,小于与数字视频信号DV的每一个帧周期中包含的闪烁分量的1/2周期相对应的量就足够了。更具体地说,如果周期为337.5,则预定地址量小于168将是足够的。虽然在移位量小时能够提高精度,但是在移位量太小时对于校正误差可能会出现检测误差,这是因为在判断校正结果时必须考虑到物体的运动。对于实际应用,期望选择与数字视频信号DV的每一个帧周期中包含的闪烁分量的1/16周期相对应的量。

闪烁数据存储器34和闪烁数据存储器35存储表示与数字视频信号DV的每一个帧周期中包含的闪烁分量相对应的闪烁分量的闪烁数据。对于数字视频信号DV的亮度电平,包含在数字视频信号DV的每一个帧周期中的闪烁分量基本上表现为正弦波形式的波动,因此能够近似为正弦波信号。因此,闪烁数据存储器34和闪烁数据存储器35与存储器地址相对应地存储表示1/4信号周期中正弦波信号的大量采样点处的电平的数据作为闪烁数据,典型地如图6所示。

从存储在闪烁存储器34的闪烁数据中,读出由从地址转换部分32获得的转换存储器地址信号DPL所表示的前进/转换的存储器地址的数据并供应给闪烁信号形成部分36作为闪烁数据DFP。闪烁信号形成部分36还供应有从算术处理部分15为帧周期顺序发送的校正数字视频信号DVX。由此,闪烁信号形成部分36根据每一个帧周期的校正数字视频信号DVX的部分和来自闪烁数据存储器34的闪烁数据DFP,调整用闪烁数据DFP表示的、包含在校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的多个像素的每一个的闪烁电平,并且顺序形成表现调整后的闪烁电平且表示校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素的闪烁分量的闪烁信号DUP。从闪烁信号形成部分36获得的闪烁信号DUP供应给算术处理部分37。

算术处理部分37还供应有从算术处理部分15为帧周期顺序发送的校正数字视频信号DVX。然后,算术处理部分37对来自算术处理部分15的校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素以及从闪烁信号形成部分36为多个行周期的每一个发送的闪烁信号DUP执行算术处理,将由闪烁信号DUP表示的闪烁分量加到校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素上,并且顺序导出通过以帧周期为单位加上闪烁分量所获得的加有闪烁的数字视频信号DVXP。由此,对于每一个帧周期,通过将用于下一帧周期的相应数字视频信号DV中所包含的预测闪烁分量加到用于帧周期的校正数字视频信号DVX上,获取加有闪烁的数字视频信号DVXP。

从算术处理部分37为每一个帧周期顺序导出的加有闪烁的数字视频信号DVXP然后供应给行积分器部分38。行积分器部分38对从算术处理部分37为每一个帧周期的多个行周期的每一个发送的加有闪烁的数字视频信号DVXP进行积分,以产生行积分输出信号DIP并供应给存储器39。存储器39顺序存储并保持来自行积分器部分38的行积分输出信号DIP。

另一方面,从存储在闪烁存储器35的闪烁数据中,读出由从地址转换部分33获得的转换存储器地址信号DNL所表示的倒退/转换的存储器地址的数据并供应给闪烁信号形成部分40作为闪烁数据DFN。闪烁信号形成部分40还供应有从算术处理部分15为帧周期顺序发送的校正数字视频信号DVX。由此,闪烁信号形成部分40根据每一个帧周期的校正数字视频信号DVX的部分和来自闪烁数据存储器35的闪烁数据DFN,调整用闪烁数据DFN表示的、包含在校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的多个像素的每一个的闪烁电平,并且顺序形成表现调整后的闪烁电平且表示校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素的闪烁分量的闪烁信号DUN。从闪烁信号形成部分40获得的闪烁信号DUN供应给算术处理部分41。

算术处理部分41还供应有从算术处理部分15为帧周期顺序发送的校正数字视频信号DVX。然后,算术处理部分41对来自算术处理部分15的校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素以及从闪烁信号形成部分40为多个行周期的每一个发送的闪烁信号DUN执行算术处理,将由闪烁信号DUN表示的闪烁分量加到校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素上,并且顺序导出通过以帧周期为单位加上闪烁分量所获得的加有闪烁的数字视频信号DVXN。由此,对于每一个帧周期,通过将用于下一帧周期的相应数字视频信号DV中所包含的预测闪烁分量加到用于帧周期的校正数字视频信号DVX上,获取加有闪烁的数字视频信号DVXN。

从算术处理部分41为每一个帧周期顺序导出的加有闪烁的数字视频信号DVXN然后供应给行积分器部分42。行积分器部分42对从算术处理部分41为每一个帧周期的多个行周期的每一个发送的加有闪烁的数字视频信号DVXN进行积分,以产生行积分输出信号DIN并供应给存储器43。存储器43顺序存储并保持来自行积分器部分42的行积分输出信号DIN。

行积分器部分38、42分别切出每一个帧周期的多个行周期的每一个的加有闪烁的数字视频信号DVXP、DVXN,或切出信号的特定区域,在水平方向上进行积分并以行为单位进行保持。所述区域可以取任何任意选择的值,只要在水平方向上获得的图像内能够发现即可。在选择大区域时,校正结果的判断精度提高。图像中闪烁的明暗周期的整数倍可以用于垂直方向,但是在图像不包含闪烁的明暗周期时,则可以使用周期的一半。更具体地说,在水平方向上可以选择1000的像素值,而在垂直方向上可以选择1000×675的675像素(337.5×2)。

在校正误差检测部分16取图10所示的具体结构时,来自视频信号生成部分11的数字视频信号DV供应给行积分器45和待读出控制信号形成部分46。

在待读出控制信号形成部分46得到帧周期的各部分的加有闪烁的数字视频信号DVXN,例如第n(n为正整数)帧周期的部分,以及相对于来自算术处理部分41的加有闪烁的数字视频信号DVXN的第n帧周期的下一帧周期部分的数字视频信号DV,或者第n+1帧周期的部分时,它发送存储器读出控制信号QM并将其供应给存储器39和存储器43。结果,基于第n帧周期的加有闪烁的数字视频信号DVXP部分的行积分输出信号DIP从存储器39顺序读出并供应给差分检测部分47。另外,基于第n帧周期的加有闪烁的数字视频信号DVXN的行积分输出信号DIN从存储器43顺序读出并供应给差分检测部分48。

另外,行积分器45针对第n+1帧周期的多个行周期的每一个积分数字视频信号DV,以获得行积分输出信号DIV并将其供应给差分检测部分47和差分检测部分48。

然后,差分检测部分47检测从存储器39读出的基于第n帧周期的加有闪烁的数字视频信号DVXP部分的行积分输出信号DIP和来自行积分器45的基于第n+1帧周期的数字视频信号DV的部分的行积分输出信号DIV之间的差,并形成表示所检测的差的差分信号SP,然后将差分信号SP供应给积分器49。积分器49为每一个帧周期积分由差分信号SP表示的差的绝对值,并将所获得的积分输出信号SPI供应给比较器50。

类似地,差分检测部分48检测从存储器43读出的基于第n帧周期的加有闪烁的数字视频信号DVXN部分的行积分输出信号DIN和来自行积分器45的基于第n+1帧周期的数字视频信号DV的部分的行积分输出信号DIV之间的差,并形成表示所检测的差的差分信号SN,然后将差分信号SN供应给积分器51。积分器51为每一个帧周期积分由差分信号SN表示的差的绝对值,并将所获得的积分输出信号SNI供应给比较器50。

由此,分别从积分器49和积分器51供应给比较器50的积分输出信号SPI和积分输出信号SNI各自与从算术处理部分15获得的加有预测闪烁分量的每一个帧周期的校正数字视频信号DVX的部分和实际到达并包含闪烁分量的每一个帧周期的数字视频信号DV的相应部分之间的差相对应,从而积分输出信号代表每一个帧周期的从算术处理部分15获得的校正数字视频信号DVX的闪烁分量的校正误差。因此,从闪烁数据地址计算部分31到积分器49和积分器51的所有部分作为整体用于为每一个帧周期检测校正数字视频信号DVX中的闪烁分量的校正误差。

比较器50比较来自积分器49的积分输出信号SPI和来自积分器51的积分输出信号SNI并确定哪一个较大。然后,将判断结果发送为校正误差信号DER。结果,从比较器50发送的校正误差信号DER与针对每一个帧周期从算术处理部分15获得的校正数字视频信号DVX的闪烁分量的校正误差相对应,因此能够起到根据校正误差信号DER对每一个帧周期的校正数字视频信号DVX的部分的闪烁分量、减小从闪烁校正信号发送部分13获得的闪烁校正信号DCU的校正误差的作用。

下面参照图11描述闪烁数据地址计算部分31的具体结构。图11所示的闪烁数据地址计算部分31包括初始行地址数据计算部分55、行地址增量计算部分56和行地址数据计算部分57。在闪烁数据地址计算部分31中,初始行地址数据计算部分55根据来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR以及从比较器部分50获取的校正误差信号DER,为从算术处理部分15获得的每一个帧周期的第一行周期计算确定与校正数字视频信号DVX的部分相对应的存储器地址,并生成表示计算确定的存储器地址的存储器地址信号DDa。与此同时,行地址增量计算部分56根据来自视频信号生成部分11的闪烁信息信号DFI和帧信息信号DFR为每一个帧周期的行周期的每一个计算确定校正数字视频信号DVX的增量,并生成表示计算确定的存储器地址增量的存储器地址单元增量信号DDb。

在具有图11所示的具体结构的闪烁数据地址计算部分31中,行地址数据计算部分57根据来自初始行地址数据计算部分55的存储器地址信号DDa和来自行地址增量计算部分56的存储器地址单元增量信号DDb计算确定每一个帧周期的每一个行周期的校正数字视频信号DVX的部分的存储器地址,并生成表示计算确定的存储器地址的存储器地址信号DDL。然后,以这种方式生成的存储器地址信号DDL行地址数据计算部分57发送并供应给地址转换部分32和地址转换部分33。

在具有上述结构的闪烁校正电路12中,闪烁校正信号发送部分13为每一个帧周期形成与包含在构成为一连串帧周期并认为包含闪烁分量的数字视频信号DV中的闪烁分量相对应的闪烁校正信号DCU,算术处理部分15针对该帧周期对闪烁校正信号DCU和数字视频信号DV的部分执行算术处理,以产生针对帧周期校正了闪烁分量的校正数字视频信号DVX。此时,校正误差检测部分16根据与包含在当前帧周期的校正数字视频信号DVX中的闪烁分量相对应的闪烁校正信号DCU,从紧接在当前帧周期前面的帧周期的校正数字视频信号DVX和当前帧周期的校正数字视频信号DVX检测闪烁分量的校正误差,并且获取与所检测的校正误差相对应的校正误差信号DER。然后,形成根据校正误差信号DER已经减小了闪烁分量的校正误差的校正数字视频信号DVX。

闪烁校正电路12的闪烁校正操作按照图12所示的流程图中的下述序列进行。

参照图12,首先在步骤S1,闪烁校正信号发送部分13的校正数据地址计算部分17为帧周期的多个行周期中的每一个计算确定用于从校正数据存储器18读出用来减小包含在每一个帧周期的数字视频信号DV中的闪烁分量的校正数据DLF的存储器地址。然后,在下一步骤,或步骤S2,根据表示由校正数据地址计算部分17计算确定的存储器地址的存储器地址信号DAL,从校正数据存储器18读出校正数据DLF。

在下一步骤,或步骤S3,闪烁校正信号形成部分19根据从视频信号生成部分11发送的并且包含闪烁分量的每一个帧周期的数字视频信号DV的部分、以及从校正数据存储器18读出的校正数据DLF,顺序形成与数字视频信号DV的每一个帧周期的多个行周期的每一个中的每一个像素相对应的闪烁校正信号DCU。

在下一步骤,或步骤S4,算术处理部分15通过使用闪烁校正信号发送部分13的闪烁校正信号形成部分19形成的闪烁校正信号DCU,执行减小包含在来自视频信号生成部分11的数字视频信号DV中的闪烁分量的闪烁校正操作,并形成针对闪烁进行了校正的校正数字视频信号DVX。

在下一步骤,或步骤S5,校正误差检测部分16的闪烁数据地址计算部分31计算确定用于从分别存储闪烁数据DFP和DFN的闪烁数据存储器34、35读出与下一帧的行周期的每一个相对应的闪烁数据的存储器地址,并且形成表示计算确定的存储器地址的存储器地址信号DDL。

在步骤S6A,地址转换部分32将存储器地址信号DDL表示的存储器地址转换成在前进方向上移位预定地址量的前进/转换的存储器地址,并形成表示前进/转换的存储器地址的转换存储器地址信号DPL。在下一步骤,或步骤S7A,从闪烁数据存储器34读出转换存储器地址信号DPL表示的前进/转换的存储器地址的闪烁数据DFP。

在下一步骤,或步骤S8A,闪烁信号形成部分36根据算术处理部分15获得的每一帧的校正数字视频信号DVX和来自闪烁数据存储器34的闪烁数据DFP,生成代表与校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素相对应的闪烁分量的闪烁信号DUP。

在下一步骤,或步骤S9A,算术处理部分37导出通过将来自闪烁信号形成部分36由闪烁信号DUP表示的闪烁分量加到来自算术处理部分15的每一个帧周期的多个行周期的每一个中的每一个像素的校正数字视频信号DVX上所获得的加有闪烁的数字视频信号DVXP。

在下一步骤,或步骤S10A,行积分器部分38对从算术处理部分37导出的每一个帧周期的多个行周期的每一个的加有闪烁的数字视频信号DVXP进行积分,并且在存储器39中存储所获得的行积分输出信号DIP。

在下一步骤,或步骤S11A,差分检测部分47检测从存储器39读出的加有闪烁的数字视频信号DVXP的当前帧的行积分输出信号DIP与来自行积分器45的数字视频信号DV的下一帧的行积分输出信号DIV之间的差,并生成代表所检测的差的差分信号SP。

在下一步骤,或步骤S12A,针对每一个帧周期,积分器49通过对差分检测部分47获得的差分信号SP所表示的差的绝对值进行积分来产生积分输出信号SPI。

另一方面,在步骤S6B,地址转换部分33将存储器地址信号DDL表示的存储器地址转换成在倒退方向上移位预定地址量的倒退/转换的存储器地址,并形成表示倒退/转换的存储器地址的转换存储器地址信号DNL。在下一步骤,或步骤S7B,从闪烁数据存储器35读出转换存储器地址信号DNL表示的倒退/转换的存储器地址的闪烁数据DNP。

在下一步骤,或步骤S8B,闪烁信号形成部分40根据算术处理部分15获得的每一帧的校正数字视频信号DVX和来自闪烁数据存储器35的闪烁数据DNP,生成代表与校正数字视频信号DVX的每一个帧周期的多个行周期的每一个中的每一个像素相对应的闪烁分量的闪烁信号DUN。

在下一步骤,或步骤S9B,算术处理部分41导出通过将来自闪烁信号形成部分40由闪烁信号DUN表示的闪烁分量加到来自算术处理部分15的每一个帧周期的多个行周期的每一个中的每一个像素的校正数字视频信号DVX上所获得的加有闪烁的数字视频信号DVXN。

在下一步骤,或步骤S10B,行积分器部分42对从算术处理部分41导出的每一个帧周期的多个行周期的每一个的加有闪烁的数字视频信号DVXN进行积分,并且在存储器43中存储所获得的行积分输出信号DIN。

在下一步骤,或步骤S11B,差分检测部分48检测从存储器43读出的加有闪烁的数字视频信号DVXN的当前帧的行积分输出信号DIN与来自行积分器48的数字视频信号DV的下一帧的行积分输出信号DIV之间的差,并生成代表所检测的差的差分信号SN。

在下一步骤,或步骤S12B,针对每一个帧周期,积分器51通过对差分检测部分48获得的差分信号SN所表示的差的绝对值进行积分来产生积分输出信号SNI。

在下一步骤,或步骤S13,比较器50比较来自积分器49的积分输出信号SPI和来自积分器51的积分输出信号SNI,然后在步骤S14,确定哪一个大。如果来自积分器49的积分输出信号SPI较大,则在步骤S15A中将校正数据地址计算部分17计算确定的存储器地址在前进方向上移位预定量。另一方面,如果来自积分器51的积分输出信号SNI较大,则将校正数据地址计算部分17计算确定的存储器地址在倒退方向上移位预定量。

简言之,可以可靠地判定由图9所示的算法的比较所确定的较小的一个接近正确地址,从而将确定结果作为校正误差信号DER供应给校正数据地址计算部分17,并且根据校正误差信号DER将校正数据地址计算部分17计算确定的与每一个帧周期的每一个行周期的校正数字视频信号DVX相对应的存储器地址移位,以减小校正误差。

实际上,校正数据地址计算部分17根据校正误差信号DER通过移位与大约1/64周期的闪烁分量相对应的地址量计算确定存储器地址,并且形成表示计算确定的存储器地址的存储器地址信号DAL。在校正数据地址计算部分17使用较大的用于计算确定存储器地址的移位时收敛所需的时间将减小,但是图像将导致闪烁的出现,这是因为闪烁校正波形的相位在每一帧中被移位到较大的范围。因此,地址移位的量被抑制,使得其小于量校正误差检测电路16所使用的量。在摄像机拍摄操作期间,由电源频率波动导致的误差和实际摄像机帧速率的波动导致的误差而出现的计算地址差异的影响可以通过恒常移动(constantly moving)校正误差检测电路16来抑制。

那么,在闪烁校正电路12根据图12的流程图所示的序列以帧为单位校正闪烁时,比较有关第n帧的闪烁校正的信息与第n+1帧的图像,并且将比较结果反映到第n+2帧的闪烁校正上。

以这种方式,在产生对其校正闪烁分量的帧周期的校正数字视频信号DVX时,通过对每一帧周期的闪烁校正信号DCU和数字视频信号DV执行算术处理,减小数字视频信号DV的闪烁分量的校正误差。因此,如果数字视频信号DV是任意的不同帧周期的多个视频信号或者包含在数字视频信号DV中的闪烁分量是任意的具有彼此不同的各自重复周期的多个闪烁分量,能够获得表现出闪烁分量有效减小的校正数字视频信号DVX,从而能够准确且有效地减小包含在任意数字视频信号DV中的闪烁分量。

因此,通过上面所述的闪烁校正操作,闪烁校正电路12能够获得从中已经去除闪烁的校正数字视频信号DVX。

在帧闪烁由全局快门系统产生的情况下,上面所述的校正数据地址计算部分17适合于不计算每一个行的地址,而是计算图像的每一个帧的地址用于校正帧闪烁的目的。

在图5所示的闪烁校正电路12的情况下,闪烁校正信号发送部分13使用以行周期为单位为帧周期的多个行周期存储用于减小包含在数字视频信号DV每一帧中的闪烁分量的校正数据的校正数据存储器18,以便获得如上所述的闪烁校正信号DCU。但是,用于发送闪烁校正信号的闪烁校正信号发送部分的结构不仅限于此。例如,可以可选地配置为闪烁校正信号发送部分每次收到包含闪烁分量的到达视频信号时生成闪烁校正信号。类似地,在图5所示的闪烁校正电路12的情况下,用于通过减小包含在数字视频信号DV中的闪烁分量产生校正数字视频信号DVX的闪烁校正操作是以行周期为单位针对每一个帧周期的多个行周期进行的。但是,以行周期为单位针对每一个帧周期的多个行周期对包含闪烁分量的视频信号进行闪烁校正操作并不是必须的。

根据本发明的闪烁校正方法和闪烁校正电路能够应用到各种包括其内部包含固态摄像元件的摄像信号生成部分的摄像装置中,以根据从摄像信号生成部分获得的摄像输出信号产生代表物体图像的视频信号,用于准确且有效地减小包含在视频信号中的闪烁分量的目的。因此,根据本发明的摄像装置作为能够有效减小代表物体图像的视频信号的闪烁分量的摄像装置能够应用于各种领域,而视频信号根据从包含固态摄像元件的摄像信号生成部分获得的摄像输出信号来获取。

根据本发明的闪烁校正方法和闪烁校正电路能够应用于具有图14所示结构的摄像装置100。

参照图14,摄像装置100包括:摄像元件部分62、63、64,分别用于借助来自物体的摄像光通过摄像光学系统61拍摄绿色图像、蓝色图像和红色图像;模拟/数字(A/D)转换器部分65、66、67,分别用于数字化由摄像元件部分62、63、64获取的彩色图像的摄像信号SG、SB、SR;闪烁校正电路68、69、70,分别用于对A/D转换器部分65、66、67数字化的摄像信号DVG、DVB、DVR执行闪烁校正处理;用于摄像机的信号处理电路71,为其供应分别由闪烁校正电路68、69、70校正了闪烁的摄像信号DVXG、DVXB、DVXR;系统控制器80,用于控制上述各部件;以及输入操作部分81,连接到系统控制器80。

摄像光学系统61典型地包含多个透镜、光圈机构、颜色分解棱镜、以及聚焦调整机构,配置以定向到物体。然后来自物体的光通过摄像光学系统61导向摄像元件部分62、63、64。

每一个摄像元件部分62、63、64典型地是CMOS图像传感器,具有:摄像表面部分,其中排列大量的光电转换像素以形成光接收部分;电荷传输部分,由于光电转换效应在每一个光接收部分中累积的信号电荷通过执行切换操作的CMOS从中发送;以及输出部分,用于根据电荷传输部分发送的信号电荷生成摄像输出信号。

摄像元件部分62对来自物体的光中的绿光(G)执行光电转换以发送绿光摄像输出信号SG,摄像元件部分63对来自物体的光中的蓝光(B)执行光电转换以发送蓝光摄像输出信号SB,而摄像元件部分64对来自物体的光中的红光(R)执行光电转换以发送红光摄像输出信号SR。从摄像元件部分62获取的绿光摄像输出信号SG供应给视频信号形成部分的模拟/数字(A/D)转换器部分65并经历包括增益控制和A/D转换的各种处理。由此,根据绿光摄像输出信号SG形成数字视频信号DVG。类似地,从摄像元件部分63获取的蓝光摄像输出信号SB供应给视频信号形成部分的模拟/数字(A/D)转换器部分66并经历包括增益控制和A/D转换的各种处理。由此,根据蓝光摄像输出信号SB形成数字视频信号DVB。另外,从摄像元件部分64获取的红光摄像输出信号SR供应给视频信号形成部分的模拟/数字(A/D)转换器部分67并经历包括增益控制和A/D转换的各种处理。由此,根据红光摄像输出信号SR形成数字视频信号DVR。

从A/D转换器部分65获取的数字视频信号DVG供应给闪烁校正电路68,从A/D转换器部分66获取的数字视频信号DVB供应给闪烁校正电路69,而从A/D转换器部分67获取的数字视频信号DVR供应闪烁校正电路70。每一个闪烁校正电路68、69、70典型地具有与图5所示的闪烁校正电路12相同的结构。

因此,每一个闪烁校正电路68、69、70包括:闪烁校正信号发送部分,响应帧周期的校正误差信号为每一帧周期发送与包含在数字视频信号DVG、DVB或DVR中的闪烁分量相对应的闪烁校正信号,与图5的闪烁校正信号发送部分13类似;算术处理部分,对当前帧周期的数字视频信号和闪烁校正信号发送部分发送的闪烁校正信号执行算术处理,以形成对其校正了闪烁分量的该帧的校正数字视频信号,与图5的算术处理部分15类似;以及校正误差检测部分,从紧接在当前帧周期前面的帧周期的校正数字视频信号和当前帧周期的校正数字视频信号中检测闪烁分量的校正误差、获取与检测的校正误差相对应的当前帧周期的校正误差信号、并将其供应给闪烁校正信号发送部分,以便闪烁校正信号发送部分根据校正误差信号减小闪烁校正信号的校正误差,与图5的校正误差检测部分16类似。

闪烁校正电路68执行减小包含在从A/D转换器部分65获取的数字视频信号DVG中的闪烁分量的闪烁校正处理、并获取具有减小的闪烁分量的校正数字视频信号DVXG,与图5的执行减小包含在数字视频信号DV中的闪烁分量的闪烁校正处理、并获取具有减小的闪烁分量的校正数字视频信号DVX的闪烁校正电路12类似。类似地,闪烁校正电路69执行减小包含在从A/D转换器部分66获取的数字视频信号DVB中的闪烁分量的闪烁校正处理、并获取具有减小的闪烁分量的校正数字视频信号DVXB,与图5的执行减小包含在数字视频信号DV中的闪烁分量的闪烁校正处理、并获取具有减小的闪烁分量的校正数字视频信号DVX的闪烁校正电路12类似。闪烁校正电路70执行减小包含在从A/D转换器部分67获取的数字视频信号DVR中的闪烁分量的闪烁校正处理、并获取具有减小的闪烁分量的校正数字视频信号DVXR,与图5的执行减小包含在数字视频信号DV中的闪烁分量的闪烁校正处理、并获取具有减小的闪烁分量的校正数字视频信号DVX的闪烁校正电路12类似。

分别与供应给图5的闪烁校正电路12的闪烁信息信号DFI和帧信息信号DFR相对应的闪烁信息信号和帧信息信号从下文中将详细描述的系统控制器80供应给闪烁校正电路68、69、70的每一个。

分别从闪烁校正电路68、69、70获取的校正数字视频信号DVXG、DVXB、DVXR然后供应给信号处理部分71。信号处理部分71根据校正数字视频信号DVXG、DVXB、DVXR,形成典型地符合NTSC(国家电视系统委员会)彩色电视系统的彩色视频信号SVC,并且将其作为输出视频信号发送。

上述摄像光学系统61、摄像元件部分62、63、64、A/D转换器部分65、66、67、闪烁校正电路68、69、70、以及信号处理部分71由配置用以控制装置的总体操作的系统控制器80控制。系统控制器80连接到输入操作部分81,与输入操作部分81的操作相对应的命令CD从输入操作部分81供应给系统控制器80。然后,系统控制器80根据输入操作部分81的命令CD控制装置的各个部分。例如,根据来自输入操作部分81的命令CD执行从系统控制器80供应闪烁信息信号和帧信息信号给每一个闪烁校正电路68、69、70的上述控制操作。

对于参照图14描述的摄像装置100根据分别来自每一个具有排列大量光电转换像素的摄像表面部分的摄像元件部分62、63、64的绿、蓝、红摄像输出信号SG、SB、SR形成数字视频信号DVG、DVB、DVR,并执行减小数字视频信号DVG、DVB、DVR中的闪烁分量的闪烁校正处理的上述操作,上述闪烁校正电路68、69、70负责对数字视频信号DVG、DVB、DVR执行闪烁校正处理。

在摄像装置100针对每一个帧周期对闪烁校正信号和数字视频信号DVG、DVB、DVR执行算术处理以产生通过对每一个帧周期进行校正闪烁分量所获得的校正数字视频信号DVXG、DVXB、DVXR时,闪烁校正信号用以减小闪烁分量的校正误差。因此,能够获得各自闪烁分量有效减小的校正数字视频信号DVXG、DVXB、DVXR,从而在数字视频信号DVG、DVB、DVR的每一个是具有各自不同的帧周期或某些其它特定周期的任意不同的视频信号时、或者在包含在每一个数字视频信号DVG、DVB、DVR中的闪烁分量是具有各自不同的重复周期的任意不同的闪烁分量时,能够准确有效地减小包含在数字视频信号DVG、DVB、DVR中的闪烁分量。

本发明不限于上述实施例,在不脱离本发明的构思及其范围的情况下可以对其进行各种不同的修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号