首页> 中国专利> 驱动系统、包括该驱动系统的动力输出系统、配备该动力输出系统的车辆、及驱动系统控制方法

驱动系统、包括该驱动系统的动力输出系统、配备该动力输出系统的车辆、及驱动系统控制方法

摘要

在一种驱动系统中,在来自电机的动力被传输至驱动轴且传动比被变速器改变的情况下,如果基准转矩(Tm2r0)与在改变期间的驱动轴侧转矩(Tm2r)之间的差的绝对值小于阈值α直到改变结束(S280),则学习在改变期间变速器中制动器的啮合状态和施加至制动器的液压的状态(S290),其中所述基准转矩是在变速器的换挡速度改变初始时的驱动轴侧转矩(Tm2r)。在改变期间,利用那些学习结果控制变速器的致动器。因此修正了可能由于变速器随着时间的改变等而导致的任何偏差,且变速器的换挡速度可以被更适当地被改变。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2009-02-04

    授权

    授权

  • 2007-09-19

    实质审查的生效

    实质审查的生效

  • 2007-07-25

    公开

    公开

说明书

技术领域

本发明涉及驱动系统和包括该驱动系统的动力输出系统、配备该动力输出系统的车辆、及用于控制这种驱动系统的方法。

背景技术

日本专利申请公开号JP-A-2002-225578描述了一种包括在车辆中的驱动系统,动力由电机经变速器输出到连接至车轴的驱动轴。通过根据车速来改变变速器的换档速度,该系统由电机产生适合于车速的动力,然后将该动力输出至驱动轴。

通过这种驱动系统,为了修正由于变速器随时间产生的变化而导致的可能已经发生的任何偏差,并为了更合适地改变变速器的速比,需要利用当变速器的速比改变时的学习结果进行学习操作并控制变速器的致动器。在此情况下,希望当驱动系统平稳运行的同时变速器的换档速度改变时,进行学习操作。但是,例如在保持从电机输出的动力的同时变速器的换档速度改变时,因为由电机输出的转矩在换档速度改变时也发生改变,所以利用由电机输出的转矩难以确定驱动系统是否平稳运行。此外,在将来自发动机的动力和来自电机的动力两者经由变速器输出至驱动轴的动力输出装置中,即使运行平稳,当来自发动机的动力与来自电机的动力之间的比例改变时,因为转矩响应于来自电机的动力的改变而改变,所以也难以利用由电机输出的转矩确定运行是否平稳。

发明内容

因此,根据本发明的驱动系统、包括该驱动系统的动力输出系统、配备有该动力输出系统的车辆、以及用于控制这种驱动系统的方法的一个目的在于更合适地改变变速器的传动比。另一个目的在于更合适地判断是否执行用于学习致动器的运行状态和电机的运行状态的学习操作。

根据本发明的驱动系统、结合该驱动系统的动力输出系统、配备有该动力输出系统的车辆、以及控制这种驱动系统的方法全部采用以下方式来实现上述目的的至少一部分。

根据本发明的驱动系统对驱动轴进行驱动,并包括:输出动力的电机;换档/变速装置,用于将动力从所述电机的转轴传输至所述驱动轴,并用于通过驱动致动器来改变所述电机的所述转轴与所述驱动轴之间的传动比;换档学习装置,当所述换档/变速装置的所述传动比被改变使得从所述电机经由所述换档/变速装置输出至所述驱动轴的在所述驱动轴侧上的驱动力的改变量处于预定范围内时,所述换档学习装置用于执行学习操作,以学习所述致动器的运行状态和所述电机的运行状态的至少一项;以及换档控制装置,用于利用所述学习操作的结果来控制所述换档/变速装置的所述致动器使所述换档/变速装置的所述传动比改变。

通过根据本发明的驱动系统,当所述换档/变速装置的所述传动比被改变使得从所述电机经由所述换档/变速装置输出至所述驱动轴的在所述驱动轴侧上的驱动力的改变量处于预定范围内时,学习所述致动器的运行状态及所述电机的运行状态中的至少一项。此外,利用所述学习操作的结果来控制所述换档/变速装置的所述致动器使所述换档/变速装置的所述传动比改变。因为当所述换档/变速装置的所述传动比被改变使得在所述驱动轴侧上的驱动力的改变量处于预定范围内时学习所述致动器的运行状态和所述电机的运行状态中的至少一项,并利用所述学习操作的那些结果来控制致动器,所以可以更合适地判断是否要进行学习操作。此外,可以修正由于变速器随时间的改变而可能导致的任何偏差并更合适地改变换档/变速装置的传动比。因此可以更合适地进行学习操作。

在根据本发明的驱动系统中,其中所述换档学习装置还可以被构造为基于所述电机的驱动来估计所述驱动轴侧上的所述驱动力,并当所述换档/变速装置的所述传动比被改变使得所述驱动轴侧上的所述估计的驱动力的改变量处于所述预定范围内时执行所述学习操作。在此情况下,换档学习装置也可以被构造为利用施加至所述电机的电流值和所述电机的转矩命令值之一来估计所述驱动轴侧上的所述驱动力。因此可以更准确地估计驱动轴侧的驱动力。

而且在根据本发明的驱动系统中,所述换档学习装置可以被构造为,当在所述换档/变速装置的所述传动比改变初始所述驱动轴侧上的所述驱动力与在所述换档/变速装置的所述传动比改变期间所述驱动轴侧上的所述驱动力之间的差值小于预定差值时,执行所述学习操作直至所述换档/变速装置的所述传动比改变结束。因此,可以更合适地判断是否可以执行学习操作。

此外,在根据本发明的驱动系统中,所述换档/变速装置可以被构造为通过改变至少一个液压驱动离合器的啮合状态来改变所述传动比;并且所述换档学习装置可以被构造为在所述换档/变速装置的所述传动比改变的整个过程中学习所述换档/变速装置的所述离合器的所述啮合状态以及施加至所述离合器的液压状态。因此,可以修正离合器的啮合状态以及施加至离合器的液压状态随时间的改变,并更合适地改变换档/变速装置的传动比。在此情况下,术语“离合器”不仅包括连接两个旋转系统的常规离合器,还包括例如将一个旋转系统保持至非旋转系统的制动器。

在根据本发明的驱动系统中,所述换档学习装置还可以被构造为在所述换档/变速装置的所述传动比改变的整个过程中学习所述电机的转速的改变状态。因此,用于学习电机的转速的改变状态的学习操作使得换档/变速装置的传动比可以被更合适地改变。

根据本发明的动力输出系统包括:根据上述任一模式的发明的驱动系统;动力装置,用于将动力输出至所述驱动轴;需求动力设定装置,用于设定所述驱动轴所需的需求动力;和控制装置,用于控制所述电机和所述动力装置,使得由所述需求动力设定装置设定的所述需求动力基于所述换档/变速装置的所述传动比被输出至所述驱动轴。

因为根据本发明的动力输出系统结合了根据上述任一模式的发明的驱动系统,因此该动力输出系统也可以更合适地判断是否可以执行学习操作。此外,动力输出系统可以修正由于变速器随时间的改变所导致的任何偏差,并更合适地改变换档/变速装置的传动比。此外,基于需求动力的动力可以被输出至驱动轴。

在根据本发明的动力输出系统中,所述动力装置还可以被构造为包括内燃机以及电能/动力输入/输出装置,所述电能/动力输入/输出装置连接至所述内燃机的输出轴及所述驱动轴,并伴随电能和动力的输入/输出将来自所述内燃机的动力的至少一部分输出至所述驱动轴。

根据本发明的车辆配备有根据上述任一模式的发明的动力输出系统,其中车轴连接至所述驱动轴。因为这样的车辆配备有根据上述任一模式的发明的动力输出系统,所以在该车辆中也可以更合适地判断是否可以执行学习操作。其还可以修正由于变速器随时间的改变所导致的任何偏差,并更合适地改变换档/变速装置的传动比。

根据本发明的用于控制驱动系统的方法是一种用于控制包括输出动力的电机和换档/变速装置的驱动系统的方法,所述换档/变速装置用于将动力从所述电机的转轴传输至所述驱动轴的换档/变速装置,并通过驱动致动器来改变所述电机的所述转轴与所述驱动轴之间的传动比。所述方法包括:(a)当所述换档/变速装置的所述传动比被改变使得从所述电机经由所述换档/变速装置输出至所述驱动轴的在所述驱动轴侧上的驱动力的改变量处于预定范围内时,执行学习操作,以学习所述致动器的运行状态和所述电机的运行状态中的至少一项;和(b)利用所述学习操作的结果来控制所述换档/变速装置的所述致动器,使得所述换档/变速装置的所述传动比改变。

根据本发明的用于控制驱动系统的方法,当所述换档/变速装置的所述传动比被改变使得从所述电机经由所述换档/变速装置输出至所述驱动轴的在所述驱动轴侧上的驱动力的改变量处于预定范围内时,学习所述致动器的运行状态及所述电机的运行状态中的至少一项,并利用所述学习操作的结果来控制所述换档/变速装置的所述致动器,使得所述换档/变速装置的所述传动比改变。因为当所述换档/变速装置的所述传动比被改变使得在所述驱动轴侧上的驱动力的改变量处于预定范围内时将学习所述致动器的运行状态和所述电机的运行状态中的至少一项,且利用学习操作的结果来控制致动器,所以可以更合适地判断是否可以执行学习操作。还可以修正由于变速器随时间的改变所导致的任何偏差,并更合适地改变换档/变速装置的传动比。因此可以进行更合适的学习操作。

附图说明

结合附图通过以下对优选实施例的描述,本发明的上述及其他目的、特征和优点将变得清楚,其中使用相似的标号表示相似的元件,其中:

图1是框图,示意性地示出了配备有根据本发明的一个示例性实施例的驱动系统的混合动力车辆20的构造;

图2是框图,示意性地示出了变速器60的构造;

图3是框图,示意性地示出了液压回路100的构造;

图4是流程图,说明了由混合动力电子控制单元70所执行的驱动控制例程的一个示例;

图5是说明了需求转矩设定图的一个示例的视图;

图6是说明了其中设定发动机22的目标转矩Te*和目标速度Ne*以及运行线的一个示例的方式的视图;

图7是示出了用于从机械方面说明动力分配/集成机构30的旋转元件的列线图的一个示例的视图;

图8是流程图,说明了正在换档处理的一个示例;

图9是流程图,说明了换档速度改变处理的一个示例;

图10是框图,示意性地示出了根据修改示例的混合动力车辆120的构造;且

图11是框图,示意性地示出了根据另一修改示例的混合动力车辆220的构造。

具体实施方式

接下来将描述本发明的示例性实施例。

图1是框图,示意性地示出了配备有作为本发明的一个示例性实施例的动力输出系统的混合动力车辆20。如图所示,混合动力车辆20包括发动机22,经由减振器28连接至作为发动机22的输出轴的曲轴26的三轴式动力分配/集成机构30,能发电并连接至动力分配/集成机构30的电机MG1,经由变速器60连接至动力分配/集成机构30的电机MG2,以及控制整个车辆的混合动力电子控制单元(以下称为“混合动力ECU”)70。

发动机22是内燃机,其通过燃烧诸如汽油或轻油之类的烃基燃油而输出动力。从检测发动机22的运行状态的各种传感器接收信号的发动机电子控制单元(以下简称为“发动机ECU”)24进行诸如燃油喷射控制、点火控制、及进气量调节控制之类的对发动机22的运行控制。发动机ECU 24与混合动力ECU 70通信,根据来自混合动力ECU 70的控制信号执行对发动机22的运行控制。在需要时,发动机ECU 24还将发动机22的运行状态相关的数据输出至混合动力ECU 70。

动力分配/集成机构30配置为行星齿轮组,其包括具有外齿的太阳轮31、具有内齿并与太阳轮31同心的齿圈32、与太阳轮31和齿圈32两者啮合的多个小齿轮33、以及可自转并可公转地支撑多个小齿轮33的行星轮架34。行星齿轮组利用作为旋转元件的太阳轮31、齿圈32和行星轮架34进行差速操作。动力分配/集成机构30构造为发动机22的曲轴26连接至托架34,电机MG1连接至太阳轮31,且变速器60经由齿圈轴32a连接至齿圈32。当电机MG1起发电机的作用时,动力分配/集成机构30将来自发动机22的动力(从托架34输入)根据齿轮速比在太阳轮31侧与齿圈32侧之间进行划分。当电机MG1起电动机的作用时,动力分配/集成机构30将来自发动机22的动力(从托架34输入)与来自电机MG1的动力(从太阳轮31输入)相结合并将结合后的动力输出至齿圈32侧。输出至齿圈32的动力然后从齿圈轴32a经由齿轮传动系统37和差速齿轮38输出至驱动轮39a和39b。

电机MG1及电机MG2两者配置为同步发电机电机,其可被作为发电机及电动机进行驱动。电机MG1和电机MG2经由逆变器41和42接收来自电池50的电能以及向电池50提供电能。将逆变器41和42连接至电池50的电线54包括被逆变器41和42共同使用的正总线及负总线,且由电机MG1或电机MG2中的任一个所产生的电能可以被另一个电机消耗。因此,可以根据由电机MG1和电机MG2产生的电能的过剩或缺乏而对电池50充电和放电。另外,如果电机MG1和电机MG2的能量输入和输出总是保持平衡,则电池50既不会被充电,也不会被放电。电机MG1和电机MG2两者由电机电子控制单元(以下简称为“电机ECU”)40控制。电机ECU 40接收为驱动电机MG1和电机MG2所需的信号。该信号包括例如来自旋转位置检测传感器43及44(其检测电机MG1和电机MG2的转子的旋转位置)的信号、以及由电流传感器(未示出)所检测的表示施加至电机MG1和电机MG2的相电流的信号。电机ECU 40接着将切换控制信号输出至逆变器41和42。基于从旋转位置检测传感器43和44接收的信号,电机ECU 40根据转速计算程序(未示出)计算电机MG1及电机MG2的转子转速Nm1及Nm2。电机ECU 40与混合动力ECU 70通讯,并响应于来自混合动力ECU 70的控制信号驱动电机MG1和电机MG2。此外,在需要时,ECU 40将与电机MG1和电机MG2的运行状态相关的数据输出至混合动力ECU 70。

变速器60配置为选择性地将电机MG2的转轴48与齿圈轴32a连接和断开,以及当这些轴连接时将电机MG2的转轴48的转速降低为两个速度的其中之一并将降低的转速传递至齿圈轴32a。图2中示出了变速器60的一种示例性配置。如图2所示的变速器60包括双级行星齿轮式行星齿轮组60a、单级行星齿轮式行星齿轮组60b、以及两个制动器B1和B2。双级行星齿轮式行星齿轮组60a包括具有外齿的太阳轮61、具有内齿并与太阳轮61同心的齿圈62、与太阳轮61啮合的多个第一小齿轮63a、与第一小齿轮63a和齿圈62两者啮合的多个第二小齿轮63b、以及连接而且可自转并可公转地支撑多个第一小齿轮63a和多个第二小齿轮63b的行星轮架64。太阳轮61可通过啮合制动器B1而保持静止,或者通过松开制动器B1而允许旋转。单级行星齿轮式行星齿轮组60b包括具有外齿的太阳轮65、具有内齿并布置为与太阳轮65同心的齿圈66、与太阳轮65和齿圈66两者都啮合的多个小齿轮67、以及可自转并可公转地支撑多个小齿轮67的行星轮架68。太阳轮65连接至电机MG2的转轴48,而行星轮架68连接至齿圈轴32a。齿圈66通过啮合制动器B2保持静止,或者通过松开制动器B2而允许旋转。双级行星齿轮式行星齿轮组60a和单级行星齿轮式行星齿轮组60b通过齿圈62和齿圈66、以及行星轮架64和行星轮架68而互相连接。在变速器60中,电机MG2的转轴48可以通过松开制动器B1和B2两者而与齿圈轴32a断开。当松开制动器B1而啮合制动器B2时,电机MG2的转轴48的旋转被以相对较大的减速比减速,并被传递至齿圈轴32a(以下将称此状态为“低档状态”)。另一方面,当啮合制动器B1而松开制动器B2时,电机MG2的转轴48的旋转以相对较小的减速比减速,并被传递至齿圈轴32a(以下将称此状态为“高速档状态”)。当啮合制动器B1和B2两者时,阻止转轴48和齿圈轴32a进行旋转。

如图3所示,响应于来自液压回路100的液压来啮合和松开制动器B1和B2。如图所示,液压回路100包括由发动机22的旋转所驱动的机械泵102、容纳电动机(未示出)的电泵104、调节来自机械泵102或电泵104的管路液压PL的三通螺线管106和压力控制阀108、利用线性液压PL调节制动器B1和B2的啮合力的线性螺线管110和111以及控制阀112和113、以及储液器114和115。在液压回路100中,通过驱动三通螺线管106以打开或关闭压力控制阀108来调节管路液压PL。通过控制施加至线性螺线管110和111的电流,来控制将管路液压PL传递至制动器B1和B2的控制阀112和113的打开或关闭,从而调节制动器B1和B2的啮合力。

电池50由电池电子控制单元(以下简称为“电池ECU”)52控制。电池ECU 52接收为控制电池50所需的信号,例如来自设置在电池50的端子之间的电压传感器(未示出)的表示端子之间电压的信号、来自附装到连接至电池50的输出端子的电线54的电流传感器(未示出)的表示充电和放电电流的信号、以及来自附装至电池50的温度传感器(未示出)的表示电池温度Tb的信号等。在需要时,电池ECU 52接着将与电池50的状态相关的数据输出至混合动力ECU 70。电池ECU 52还基于由电流传感器所检测的充电和放电电流的累积值来计算充电状态(SOC)以控制电池50。

混合动力ECU 70是以CPU 72为中心的微处理器。除了CPU 72,混合动力ECU 70还具有存储处理程序的ROM 74、临时存储数据的RAM76、以及输入/输出端口和通讯端口(两者均未示出)。混合动力ECU 70通过输入端口接收各种信号。由混合动力ECU 70接收的这些信号中的一些示例包括来自点火开关80的点火信号、来自检测换档杆81的操作位置的换档杆位置传感器82的表示换档杆位置SP的信号、来自检测与加速踏板83的下压量相对应的加速器开度Acc的加速踏板位置传感器84的表示加速器开度Acc的信号、来自检测制动踏板85的下压量的制动踏板位置传感器86的表示制动踏板位置BP的信号、以及来自车速传感器88的表示车速V的信号。混合动力ECU 70还通过输出端口输出各种信号,诸如向驱动电泵104的电动机输出的驱动信号、向三通螺线管106输出的驱动信号、向线性螺线管110和111输出的驱动信号。如上所述,混合动力ECU 70通过通讯端口与发动机ECU 24、电机ECU 40、以及电池ECU 52通讯,并对发动机ECU 24、电机ECU 40、及电池ECU 52发送和接收各种控制信号及数据。

在如上所述构造的、示例性实施例的混合动力车辆20中,基于车速V及与驾驶员压下加速踏板83的量相对应的加速器开度Acc,来计算将要输出至作为驱动轴的齿圈轴32a的需求转矩。接着操作发动机22、电机MG1、以及电机MG2使得与需求转矩相对应的需求动力被输出至齿圈轴32a。存在各种操作模式,根据这些操作模式来操作发动机22、电机MG1、以及电机MG2。例如,存在转矩转换操作模式,其操作发动机22使得从发动机22输出与需求动力相匹配的动力,并驱动电机MG1和电机MG2使得从发动机22输出的所有动力都由动力分配/集成机构30以及电机MG1和电机MG2进行转矩转换,并输出至齿圈轴32a。还存在充电放电操作模式,其操作发动机22使得从发动机22输出与需求动力和对电池50充电或对电池50放电所需的电能的总量相匹配的动力。在充电放电操作模式中,驱动电机MG1和电机MG2,使得作为当电池50充电或放电时从发动机22输出的全部或部分动力的、输出到齿圈轴32a的需求动力由动力分配/集成机构30以及电机MG1和电机MG2进行转矩转化。还存在电机操作模式,其停止发动机22的运行并从电机MG2将与需求动力相匹配的动力输出至齿圈轴32a。

接下来将描述上述结构的混合动力车辆20的运行。图4是流程图,示出了由混合动力ECU 70执行的驱动控制例程的示例。该例程以预定时间间隔执行(例如,每数个毫秒)。

当执行该驱动控制程序时,混合动力ECU 70的CPU 72首先输入例如以下数据,来自加速踏板位置传感器84的加速器开度Acc、来自车速传感器88的车速V、电机MG1和电机MG2的转速Nm1和Nm2、电池50充电或放电所需的充放电功率Pb*、电池50的输出限制Wout、以及变速器60的当前速比Gr(步骤S100)。这里,基于由旋转位置检测传感器43和44所检测的电机MG1和电机MG2的转子的旋转位置,来计算电机MG1和电机MG2的转速Nm1和Nm2的值,并从电机ECU 40输入。基于电池50的充电状态(SOC)等来设定需求充放电功率Pb*的值,并从电池ECU52输入。此外,基于电池50的温度Tb以及电池50的充电状态(SOC)来设定输出限制Wout的值,并从电池ECU 52输入。通过将电机MG2的转速Nm2除以用作驱动轴的齿圈轴32a的转速Nr而获得变速器60的当前速比Gr。在此情况下,齿圈轴32a的转速Nr可以通过将车速V乘以转换因子k而获得。

当以此方式输入数据时,基于已经输入的加速器开度Acc以及车速V,设定将输出至齿圈轴32a的需求转矩Tr*以及对于发动机22进行要求的需求动力Pe*(步骤S110)。在示例性实施例中,需求转矩Tr*作为事先设置的需求转矩设置图存储在ROM 74中,该需求转矩设置图表示加速器开度Acc、车速V、与需求转矩Tr*之间的关系。一旦提供了加速器开度Acc和车速V,就能从存储的图得出相应的需求转矩Tr*并进行设定。图5示出了需求转矩设定图的一个示例。根据齿圈轴32a的转速Nr乘以需求转矩Tr*的乘积、电池50充电或放电的需求充放电功率Pb*、以及损耗的总和来设置需求动力Pe*

然后,基于需求动力Pe*来设置发动机22的目标转矩Te*以及目标速度Ne*(步骤S120)。这通过基于需求动力Pe*而设置的目标速度Ne*以及目标转矩Te*,并通过有效地操作发动机22的运行线来实现。图6示出了设置目标速度Ne*、目标转矩Te*、以及发动机22的运行线的一个示例的方式。如图所示,根据运行线与需求动力Pe*(其为恒量)的曲线相交的点(Ne*×Te*)可以获得目标速度Ne*和目标转矩Te*

当设置了目标速度Ne*以及目标转矩Te*时,计算电机MG1的目标转速Nm1*和转矩命令值Tm1*两者(步骤S130)。利用所设置的目标速度Ne*、齿圈轴32a的转速Nr(=V×k)、以及动力分配/集成机构30的速比ρ,根据如下所示的表达式(1)来计算目标转速Nm1*。基于所计算的目标转速Nm1*和当前转速Nm1,根据如下所示的表达式(2)来计算电机MG1的转矩命令Tm1*。这里,表达式(1)是相对于动力分配/集成机构30的旋转元件的机械关系表达式。图7示出了列线图,其示出了动力分配/集成机构30的旋转元件的转矩与转速之间的机械关系。在该图中,左侧的轴线S表示太阳轮31的转速,即电机MG1的转速Nm1;轴线C表示行星轮架34的转速,即发动机22的速度Ne;轴线R表示齿圈32(即齿圈轴32a)的转速Nr。利用在列线图中的转速关系,可以容易地获得电机MG1的目标转速Nm1*。因此,通过设定转矩命令Tm1*使得电机MG1以目标转速Nm1*旋转,并驱动电机MG1,发动机22能以目标速度Ne*运行。表达式(2)是用于使电机MG1以目标转速Nm1*旋转的反馈控制的关系表达式。在表达式(2)中,项“k1”是比例增益而项“k2”是积分增益。在图7中,在轴线R上指向上的两个粗体箭头均表示当发动机22在目标速度Ne*和目标转矩Te*的运行点运行时获得的转矩。箭头中的一个表示当从发动机22输出的转矩Te*被直接传递至齿圈轴32a时获得的转矩(以下称为“直接传递转矩Ter”)。另一个箭头表示当从电机MG2输出的转矩Tm2*经由变速器60作用在齿圈轴32a上时获得的转矩。

Nm1*=Ne*×(1+ρ)/ρ-V×k/ρ...(1)

Tm1*=最近Tm1*+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt...(2)

当计算电机MG1的转矩命令Tm1*和目标转速Nm1*时,根据下面的表达式(3)来计算可以从电机MG2输出的最大转矩限制Tmax(步骤S140)。在表达式(3)中,电池50的输出限制Wout与电机MG1的功率消耗(发电功率)(其通过将电机MG1的当前转速Nm1与电机MG1的转矩命令Tm1*相乘而获得)之间的差值除以电机MG2的转速Nm2。此外,根据表达式(4),利用需求转矩Tr*、转矩命令Tm1*、动力分配/集成机构30的速比ρ、以及变速器60的当前速比Gr来计算将从电机MG2输出的转矩(以下称为“临时电机转矩Tm2tmp”)  (步骤S150)。通过利用转矩限制Tmax限制所计算的临时电机转矩Tm2tmp来设定电机MG2的转矩命令Tm2*(步骤S160)。通过以此方式设置电机MG2的转矩命令Tm2*,可以把将要输出至齿圈轴32a的需求转矩Tr*设定为限制在电池50的输出限制Wout的范围内的转矩。表达式(4)可以容易地从图7中上述列线图中得出。

Tmax=(Wout-Tm1*×Nm1)/Nm2...(3)

Tm2tmp=(Tr*+Tm1*/ρ)/Gr...(4)

接下来,判断是否要求改变变速器60的换档速度(步骤S170)。这里,在此实施例中,在当前时刻基于需求转矩Tr*和车速V要求改变变速器60的换档速度。如果确定不要求对变速器60的换档速度进行改变,则将表示发动机22的目标速度Ne*和目标转矩Te*的信号发送至发动机ECU 24,同时将表示电机MG1和电机MG2的转矩命令Tm1*和Tm2*的信号发送至电机ECU 40(步骤S190),随后驱动控制例程结束。在接收到表示目标速度Ne*和目标转矩Te*的信号时,发动机ECU 24执行对发动机22的各种控制,诸如燃料喷射控制及点火控制,由此发动机22在由目标速度Ne*及目标转矩Te*表示的运行点运行。此外,在接收到表示转矩命令Tm1*和Tm2*的信号时,电机ECU 40执行对逆变器41和42的切换元件的切换控制,由此电机MG1由转矩命令Tm1*驱动,而电机MG2由转矩命令Tm2*驱动。

另一方面,如果在步骤S170中确定要求对变速器60的换档速度进行改变,则接着执行图8所示的正在换档处理(步骤S180),并将表示发动机22的目标速度Ne*和目标转矩Te*以及电机MG1和电机MG2的转矩命令Tm1*和Tm2*的信号发送至相应的ECU(步骤S190),随后驱动控制例程结束。图8中所示的正在换档处理开始于计算将从电机MG2通过变速器60输出至齿圈轴32a的驱动轴侧处的转矩(以下简称为“驱动轴侧转矩Tm2r”)(步骤S200)。通过将变速器60的当前速比Gr乘以在图2中的驱动控制例程最近执行时设定的转矩命令(即最近的Tm2*)来计算驱动轴侧转矩Tm2r。然后,判断是否已经开始了改变变速器60的换档速度的换档速度改变处理(步骤S210)。如果还没有开始换档速度改变处理,则将驱动轴侧转矩Tm2r设置为基准转矩Tm2r0(步骤S220),开始图9所示的换档速度改变处理(步骤S230),将学习禁止判断标记F设置为0(步骤S240),然后结束正在换档处理。在此情况下,学习禁止判断标记F是用于判断是否禁止用于学习的学习操作的标记,例如,当变速器60的换档速度改变时,电机MG2的转速Nm2的改变状态、供应至制动器B1及B2的液压的状态、以及制动器B1和B2啮合的状态。在此处,为了描述图9的所示的换档速度改变处理,将暂时中断对图8所示的正在换档处理的描述。在执行图2所示的驱动控制例程的同时,由混合动力ECU70执行换档速度改变处理。

在换档速度改变处理中,在其中变速器60从低速档状态变为高速档状态的升档期间根据以下的表达式(5),并在其中变速器60从高速档状态变为低速档状态的降档期间根据以下的表达式(6),利用电机MG2的当前转速Nm2以及当变速器60分别在低速档或高速档状态时的速比Glo或Ghi,混合动力ECU 70的CPU 72首先计算改变后电机MG2的转速Nm2*(步骤S400)。CPU 72然后执行“快速填充”(步骤S410)。在此情况下“快速填充”指以油快速填充部件以封闭摩擦构件之间的缝隙的处理。具体而言,该处理以100%的负荷比(或约100%的负荷比)在升档期间驱动制动器B1侧上的线性螺线管110,并在降档期间驱动制动器B2侧上的线性螺线管111。伴随快速填充操作,还执行与对制动器填充油相对的将作用在制动器上的油排掉的操作。当快速填充结束时(步骤S420),线性螺线管110及111从100%的负荷比(或约100%的负荷比)到达较低的负荷比,并以恒定压力置于备用状态(步骤S430)直至电机MG2的转速Nm2逼近改变后的转速Nm2*(步骤S440和S450)。然后,进行压力增大控制(步骤S460),其通过在备用状态期间从恒定压力增大液压,调节线性螺线管110和111的负荷比。然后换档速度改变处理结束。

Nm2*=Nm2×Ghi/Glo...(5)

Nm2*=Nm2×Glo/Ghi...(6)

现在返回参考图8所示的正在换档处理,一旦在步骤S210中已经确定换档速度改变处理已经开始,则接着判断换档速度改变处理是否已经结束(步骤S250)。如果确定换档速度改变处理尚未结束,则接着将在步骤S200计算得到的驱动轴侧转矩Tm2r与基准转矩Tm2r0之间的差值的绝对值与阈值α进行比较(步骤S260)。如果驱动轴侧转矩Tm2r与基准转矩Tm2r0之间的差值的绝对值小于阈值α,则正在换档处理结束。另一方面,如果驱动轴侧转矩Tm2r与基准转矩Tm2r0之间的差值的绝对值等于或大于阈值α,则将学习禁止判断标记F设置为1(步骤S270),并且正在换档处理结束。然后,当确定换档速度改变处理完成时(步骤S250),检查学习禁止判断标记F的值(步骤S280)。如果学习禁止判断标记F的值为0,即如果在整个变速器60的换档速度改变期间,驱动轴侧转矩Tm2r与基准转矩Tm2r0之间的差值的绝对值等于或小于阈值α,则执行学习操作(步骤S290)。如果学习禁止判断标记F的值为1,则不执行学习操作,而将表示正在换档处理已经结束的正在换档处理结束判断标记G设定为1(步骤S300)且正在换档处理结束。在此情况下,步骤S280处的学习操作可以包括用于学习以下内容的操作,例如,当在图9所示的换档速度改变处理中进行快速填充时填充油的方式或增大其对其填充油的制动器侧上液压的方式、在对其排掉油的制动器侧上排掉或释放油或液压的时机、当以恒定压力处于备用状态时电机MG2的转速Nm2的改变状态或在各个制动器B1和B2侧上液压的改变状态、以及制动器B1和B2相对于作用在各个制动器B1和B2侧上的液压的啮合状态。此外,例如,在维持从电机MG2输出的动力的同时改变换档速度时,因为当换档速度改变时从电机MG2输出的转矩Tm2也改变,故利用从电机MG2输出的转矩Tm2难以做出是否进行学习操作的判断。相反,基于从电机MG2输出的转矩Tm2以及变速器60的当前速比Gr来计算驱动轴侧转矩Tm2r,并利用所计算的驱动轴侧转矩Tm2r的改变量来确定是否进行学习操作,可以使得将要进行的判断更为准确。利用以此方式学习的结果,根据图9中的换档速度改变处理来改变变速器60的换档速度,能够修正可能因制动器B1和B2的啮合状态及液压回路100的状态随着时间而改变所产生的任何偏差,并且考虑电机MG2的转速Nm2的改变状态,可以更合适地对变速器60的换档速度进行改变。然后,如果在变速器60的整个换档速度改变期间,当换档速度改变处理已经结束时驱动轴侧转矩Tm2r的改变量等于或小于阈值α,则因为学习操作是在图8的正在换档处理中的步骤S290中进行的,故可以更合适地进行学习操作。如果正在换档处理结束判断标记G被设置为1,则在步骤S170中确定在随后对图2的驱动控制例程的执行期间不需要对变速器60的换档速度进行改变。

根据上述示例性实施例的混合动力车辆20,因为用于在改变变速器60的换档速度时学习电机MG2的转速Nm2的改变状态、施加至制动器B1和B2的液压状态、以及制动器B1和B2的啮合状态的学习操作是在变速器60的换档速度改变期间驱动轴侧转矩Tm2r与基准转矩Tm2r0(其为变速器60的换档速度改变初始时的驱动轴侧转矩Tm2r)之间的差的绝对值等于或小于阈值α时进行的,并直至变速器60的换档速度改变结束,所以可以更适当地进行是否执行学习操作的判断。而且,利用以此方式学习的结果来驱动液压回路100,由此可修正由于施加至制动器B1和B2的液压的状态以及制动器B1和B2的啮合状态随时间而改变可能会导致的任何偏差,而且考虑到电机MG2的转速Nm2的改变状态,可以更适当地改变变速器60的换档速度。因此可以更适当地执行学习操作。

在示例性实施例的混合动力车辆20中,利用电机MG2的最近的转矩命令(即最近Tm2*),即利用从电机MG2输出的Tm2来计算驱动轴侧转矩Tm2r。但是,也可以利用电机MG2的当前的转矩命令Tm2*来计算驱动轴侧转矩Tm2r。可选的,还可以利用施加至电机MG2的相电流来代替电机MG2的转矩命令Tm2*以计算驱动轴侧转矩Tm2r。

在示例性实施例的混合动力车辆20中,进行用于学习电机MG2的转速Nm2的状态、施加至制动器B1和B2的液压的状态、以及制动器B1和B2的啮合状态的学习操作。但是,也可以独立地或以各种组合来学习施加至制动器B1和B2的液压的状态以及制动器B1和B2的啮合状态。

在示例性实施例的混合动力车辆20中,液压回路被用于制动器B1和B2的致动器。但是,也可以使用诸如使用电机的致动器或直接使用螺线管的致动器之类的的不同于液压致动器的其他致动器。

在示例性实施例的混合动力车辆20中,使用了具有两种换档速度(即高速及低速)的变速器60。但是,变速器60并不限于仅具有两档速度的变速器。即,也可以使用具有三档或更多档速度的变速器。

在示例性实施例的混合动力车辆20中,电机MG2的转轴与齿圈轴32a之间的传动比通过变速器60来改变,且动力输出至作为驱动轴的齿圈轴32a。但是,如根据图10所示的修改示例的混合动力车辆120所示,电机MG2的转轴与齿圈轴32a之间的传动比可以通过变速器60来改变而动力可输出至与连接到齿圈轴32a的车轴(即连接至驱动轮39a及39b的轴)不同的轴(即在图10中连接至驱动轮39c及39d的轴)。

在示例性实施例的混合动力车辆20中,来自发动机22的动力通过动力分配/集成机构30输出至连接到驱动轮39a及39b的作为驱动轴的齿圈轴32a。但是,如根据图11所示的修改示例的混合动力车辆220所示,也可以设置双转子电机230,其具有连接至发动机22的曲轴26的内转子232以及连接至将动力输出至驱动轮39a和39b的驱动轴的外转子234。双转子电机230将来自发动机22的一部分动力传输至驱动轴,而将剩余动力转换为电能。

在示例性实施例中,描述了其中发动机22和电机MG1通过动力分配/集成机构30连接至驱动轴而电机MG2通过变速器60被连接至驱动轴的车辆。但是,只要除了可输出动力至驱动轴的电机MG2之外还设置了其他动力源,本发明就不限于该结构。此外,除了车辆设置有发动机22、动力分配/集成机构30、及电机MG1和MG2的模式之外,还可以是不包括发动机22且通过变速器60将动力从电机MG2输出至驱动轴的动力输出系统或驱动系统的模式。当模式是动力输出系统或驱动系统时,其可被安装在除机动车、飞机、海上船只之外的其他运载工具上。

虽然已参考其示例性实施例对本发明进行了描述,需要理解的是本发明并不限于那些示例性实施例或构造。相反,不脱离其精神,本发明可以各种其他具体的形式来实施。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号