首页> 中国专利> 一种质子交换膜燃料电池无增湿操作条件的遴选方法

一种质子交换膜燃料电池无增湿操作条件的遴选方法

摘要

本发明涉及燃料电池的无增湿操作,具体地说是一种在质子交换膜燃料电池无增湿操作条件的遴选方法,在干气进气条件下,采用设定的温度、压力及干气进气流量,测定电池暂态电流电压曲线,确定电池可以干气操作的工作点,实现质子交换膜燃料电池无增湿稳定操作条件的遴选。本发明的遴选方法可以实现无增湿条件下的稳定操作,避免了膜在干气下的脱水问题,同时也避免了水淹现象的发生,不仅适用于常温工作环境,而且特别适于零下温度环境中的电池启动与运行,同时简化了燃料电池系统,从而推动了燃料电池的发展。

著录项

  • 公开/公告号CN1992401A

    专利类型发明专利

  • 公开/公告日2007-07-04

    原文格式PDF

  • 申请/专利权人 中国科学院大连化学物理研究所;

    申请/专利号CN200510136766.3

  • 发明设计人 俞红梅;明平文;衣宝廉;

    申请日2005-12-30

  • 分类号H01M8/00(20060101);H01M8/10(20060101);G01R31/36(20060101);

  • 代理机构21002 沈阳科苑专利商标代理有限公司;

  • 代理人许宗富;周秀梅

  • 地址 116023 辽宁省大连市中山路457号

  • 入库时间 2023-12-17 18:50:31

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2008-08-20

    授权

    授权

  • 2007-12-19

    专利申请权、专利权的转移专利申请权的转移 变更前: 变更后: 登记生效日:20071116 申请日:20051230

    专利申请权、专利权的转移专利申请权的转移

  • 2007-08-29

    实质审查的生效

    实质审查的生效

  • 2007-07-04

    公开

    公开

说明书

技术领域

本发明涉及燃料电池的无增湿操作,具体的说是一种在质子交换膜燃料电池电压-电流(I-V)曲线的基础上,通过I-V曲线的滞后现象,在电池水淹与脱水之间找到在干气进气下,可以稳定操作的工作点,实现无增湿时电池可启动与运行的质子交换膜燃料电池无增湿操作条件的遴选。

背景技术

燃料电池是一种将燃料与氧化剂中的化学能直接转化为电能的发电装置。它不经过热机过程,所以不受卡诺循环的限制,能量转化效率很高。同时,它又是一种清洁无污染的发电装置。其中,质子交换膜燃料电池(Proton ExchangeMembrane Fuel Cell,简称PEMFC)在作为汽车动力、可移动电源及小型电厂等方面有着巨大的市场潜力。在过去的10年中,燃料电池的发展与应用得到了越来越多的关注,但在其走向市场的过程中仍然存在着诸多困难。由于质子交换膜燃料电池以高分子固体聚合物为质子导体,而固体聚合物只有水合状态良好的情况下,才能保证质子的顺利传递,所以在质子交换膜燃料电池操作时,通常需要采用增湿反应气的方法,使质子交换膜维持水合状态。

电流与电压是燃料电池工作状态的重要指标,燃料电池的性能通常是通过其电流-电压曲线来表征的。在连续测量I-V曲线的过程中,有稳态与非稳态两种方式。在燃料电池的实际应用时,经常有非稳态或暂态操作出现,如电池的启动与停车、变载、温度变化、反应气波动都会造成燃料电池性能的动态变化,对燃料电池的应用产生影响。因此,随着商业化步伐的加速,近来针对燃料电池暂态性能的研究也得到研发人员的重视。相关的报道有:S.Kim,S.Shimpalee,J.W.V.Zee,J.Power Sources,135,110(2004);S.Yerramalla,A.Davari,A.feliachi,T.Biswas,J.Power Sources,124,104(2003)。

同时,由于膜的水合状态对于质子交换膜燃料电池的稳定操作至关重要,以干气进气,稳定操作燃料电池是燃料电池研发人员一直追求的目标,这将有利于简化电池系统与操作。相关的报道有:F.N.Buchi,S.Srinivasan,J.Electrochem.Soc.,144,2767(1997);Z.Qi,A.Kaufman,J.Power Sources,109,469(2002);T.H.Yang,Y.G.Yoon,C.S.Kim,S.H.Kwask,K.H.Yoon,J.Power Sources,106,328(2002);S.H.Kwak,T.H.Yang,C.S.Kim,K.H.Yoon,J.Power Sources,118,200(2003);M.V.Williams,H.R.Kunz,J.M.Fenton,J.Power Sources,135,122(2004);R.Eckl,W.Zehtner,C.Leu,U.Wagner,J.Power Sources,138,137(2004)。

在燃料电池的动态特性研究中,在J.Hamelin,K.Agbossou,A.Laperriere,F.Laurencelle,T.K.Bose,Int.J.Hydrogen Energy,26,625(2001).中测试MK5电堆时发现了极化曲线的滞后现象。其方法是每间隔0.15秒,正向(或反向)改变负载。但是他们采用的是增湿进气。其实验结果显示反向的加载性能总是高于正向加载,其解释为膜的传导性与膜中水含量的关系。在加载过程中,由于水的生成量与时间有关,需要一定的时间才能达到平衡状态。因此造成了较低的性能。当降载时,膜中的水含量足够维持质子传导。所以,相应的性能曲线(I-V曲线)就体现较高的趋势。这种现象称为滞后现象。

J.R.Atkins,S.C.Savett,S.E.Creager,J.Power Sources,128,201(2004).研究了质子交换膜脱水时,燃料电池的性能变化。他们发现在进气的湿度减小时,电池的电流与阻抗出现周期性的波动,并将其归因于阳极的周期性水合与脱水。S.Kim,S.Shimpalee,J.W.V.Zee,J.Power Sources,137,43(2004).也研究了质子交换膜燃料电池动态行为中的蓄水与稀释效应,但他们采用的是固定流率的增湿气。

实际上,在燃料电池的操作条件变化时,其电化学反应界面并不是固定不变的。在HClO4溶液中,K.Kanamura,H.Morikawa,T.Umegaki,J.Electrochem.Soc.,150,A193(2003).发现在Pt电极与Nafion膜之间的憎水与亲水界面非常容易随着湿度的变化而发生漂移。

而模拟计算的结果也显示了反应界面随操作条件变化的漂移现象,相关报道有C.Ziegler,H.M.Yu,J.O.Schumacher,3rd European Polymer Electrolyte Fuel CellForum,B064-098,Lucerne,Switzerland,(2005);C.Ziegler,H.M.Yu,J.O.Schumacher,J.Electrochem.Soc.,152,A1555(2005)。但至今为止,并无实际实验证明。

发明内容

为弥补现有技术的不足,本发明的目的在于提供一种避免了膜在干气下的脱水,同时也避免了水淹现象发生、且适用于常温工作环境下能够使燃料电池启动与运行的质子交换膜燃料电池无增湿稳定操作条件的遴选方法。

为实现上述目的,本发明的技术方案是:

一种质子交换膜燃料电池无增湿操作条件的遴选方法,在干气进气条件下,采用设定的温度、压力及干气进气流量,测定电池暂态电流电压曲线,确定电池可以干气操作的工作点,实现质子交换膜燃料电池无增湿稳定操作条件的遴选。

燃料电池的无增湿操作方法步骤为:

1.测定给定温度、压力与干气进气流量条件下电池的暂态电流-电压曲线,确定燃料电池干气操作平衡点-门槛点;

(1)将组装好的燃料电池置于电池评价台上,进行恒电流(或恒电压)的线性变载扫描,从活化极化区开始,向扩散极化区移动,达到一定的设定值时,立即返回,往复循环多次;

扫描程序的设定:首先设定好扫描起始点与终止点、扫描速度,然后以程序控制扫描过程;

(2)对扫描过程的电流电压进行动态数据采集,至少每100毫秒采集一次,直至扫描停止;

(3)将扫描采集的数据绘制成图(参见图1);

其中:图1中前行扫描(forward sweep)以黑色方框标记,返回扫描(backwardsweep)以空芯圆圈标记,其交叉点为门槛点,以星号”*”标记。在门槛上方,电池反应生成水的速度小于干气带走水份的速度,因而表现出膜逐渐脱水,膜的质子传导率小于完全水合时的质子传导率;在门槛以下时,膜完全水合,甚至造成电池水淹;

2.对电池进行实时的电流电压数据的动态监测,获得暂态性能数据;

动态监测操作条件为:常压、40℃,阳极与阴极的气体流速分别为25ml/分和50ml/分,获得扫描过程中,电池的电流、电压以及10kHz下的MEA阻抗变化的暂态性能数据,如图2所示,从中可以看到MEA阻抗的滞后现象;在起始阶段(扫描的第一个循环),由于膜的脱水效应,表现为高阻抗;而回扫时,阻抗下降,维持在动态平衡的状态;

3.从暂态电流-电压曲线上获得门槛点,门槛点即为上述扫描过程中前行扫描与返回扫描的交叉点,以此门槛点为该电池操作条件(包括温度,气体压力,气体流量)下的稳定操作点;

4.以上述实验条件测定的门槛点所处的电池操作条件包括温度,气体压力,气体流量、电压、电流来启动燃料电池,使其燃料电池能够正常运行;

5.在门槛点运行电池,可获得稳定的功率输出。

其中:门槛点位置的确定受电池材料,电池运行时的温度、压力与进气流量限制。

本发明的有益效果是:

1.本发明在干气进气条件下,通过对电极反应界面的漂移,提取质子交换膜燃料电池的暂态操作特性,同时根据其变载时的滞后现象,提出可以使燃料电池启动与稳定操作的工作点,实现质子交换膜燃料电池无增湿稳定操作条件及其高功率稳定输出值。

2.本发明可以遴选获知电池的无增湿工作条件,实现电池无增湿条件下的稳定操作,以干气稳定启动并运行燃料电池,避免了膜在干气下的脱水问题,同时也避免了水淹现象的发生,不仅适用于常温工作环境,而且特别适于零下温度环境中的电池启动与运行,同时简化了燃料电池系统,从而推动了燃料电池的发展。

3.本发明对于燃料电池汽车发动机来说,可以减化系统部件,节省附加设施造价,更有利于满足实用化的要求。

附图说明

图1为燃料电池干气操作平衡点-门槛点的示意图;

图2为电池的电流,电压与阻抗随时间变化的动态监测图;

图3为本发明实施例不同气体流量下的门槛点示意图;

图4为本发明实施例不同气体流速下的电池阻抗示意图;

图5为本发明实施例不同温度下的门槛点示意图;

图6为本发明实施例的门槛点定义图;

图7为本发明实施例的门槛点稳定操作曲线。

具体实施方式:

实施例1

1.测定给定温度为:30℃,常压下,气体流量分别为:阴极干空气400ml/分,阳极干氢气200ml/分条件下电池的暂态电流-电压曲线,并确定燃料电池干气操作平衡点-门槛点;

(1)将Gore 5510(25μm)与Toray碳纸为GDL的电池置于电池评价台上,进行恒电流(或恒电压)的线性变载扫描,从活化极化区开始,向扩散极化区,达到一定的设定值时(在开路电压到0.05V之间),立即返回,循环多次(通常至少为5次)。

扫描程序的设定:首先设定好扫描起始点与终止点、扫描速度,然后以程序控制扫描过程。

(2)对扫描过程的电流电压进行动态数据采集,至少每100毫秒采集一次,直至扫描停止。

(3)将扫描采集的数据绘制成图(参见图3);

其中:图3中前行扫描(forward sweep)以黑色方框标记,返回扫描(backwardsweep)以空芯圆圈标记,其交叉点为门槛点。在门槛上方,电池反应生成水的速度小于干气带走水份的速度,因而表现出膜逐渐脱水,膜的质子传导率小于完全水合时的质子传导率;在门槛以下时,膜完全水合,甚至造成电池水淹。

2.从暂态电流-电压曲线上获得门槛点,门槛点即为上述扫描过程中前行扫描与返回扫描的交叉点,以此门槛点为燃料电池的操作条件(包括温度,气体压力,气体流量,电压、电流)下的稳定操作点。

3.以上述实验条件测定的门槛点所处电池操作条件为:温度为30,气体压力为常压,气体流量干空气阴极400ml/分、阳极干氢气200ml/分,电压0.5V,电流900Ma/cm2在其条件下燃料电池能够正常运行。

4.在门槛点运行电池,可获得稳定的功率输出。

按照图3绘制的一定条件下IV曲线的门槛点,可获得稳定的功率输出值。据此,选择接近门槛点,恒电压操作电池,其在干气条件下的电流输出与MEA的阻抗值均保持稳定。

实施例2

与实施例1不同之处在于:

1.测定门槛点

测定Gore 5510(25μm)与Toray碳纸为GDL的电池在温度为:30℃,常压下,气体流量分别为:阴极干空气200ml/分、阳极干氢气100ml/分,条件下电池的暂态电流-电压曲线,确定燃料电池不同气速下的干气操作平衡点-门槛点(参见图3)。

由图3可见气体流量阴极干空气400ml/分、阳极干氢气200ml/分时的门槛点电压0.49V,电流921Ma/cm2

实施例3

与实施例1不同之处在于:

1.测定门槛点

测定Gore 5510(25μm)与Toray碳纸为GDL的电池在温度为:30℃,常压下,气体流量分别为:阴极干空气100ml/分、阳极干氢气50ml/分,条件下电池的暂态电流-电压曲线,确定燃料电池不同气速下的干气操作平衡点-门槛点(参见图3)。

由图3可见气体流量阴极干空气400ml/分、阳极干氢气200ml/分时的门槛点电压0.61V,电流583mA/cm2

通过获得暂态性能数据可以看出图3中随进气流量的增加,门槛点的电流密度升高,在对应的阻抗图中,阻抗值越高,则在IV曲线上的门槛点的电流密度越高,越不容易发生水淹。

实施例4

与实施例1不同之处在于:

1.测定不同温度下的门槛点

测定Gore 5510(25μm)与Toray碳纸为GDL的电池测定在常压下,气体流量为:阴极干空气50ml/分、阳极干氢气25ml/分,温度分别为30℃条件下电池的暂态电流-电压曲线,确定燃料电池不同气速下的干气操作平衡点-门槛点(参见图5)。

从图5中可以看出30℃的门槛点Threshold30的电流为537mA/cm2,电压为0.605V。

实施例5

与实施例1不同之处在于:

1.测定不同温度下的门槛点

测定Gore 5510(25μm)与Toray碳纸为GDL的电池测定在常压下,气体流量为:阴极干空气50ml/分、阳极干氢气25ml/分,温度分别为40℃条件下电池的暂态电流-电压曲线,确定燃料电池不同气速下的干气操作平衡点-门槛点(参见图5)。

从图5中可以看出40℃的门槛点Threshold40的电流为778mA/cm2,电压为0.453V。

实施例6

与实施例1不同之处在于:

1.测定不同温度下的门槛点

测定Gore 5510(25μm)与Toray碳纸为GDL的电池测定在常压下,气体流量为:阴极干空气50ml/分、阳极干氢气25ml/分,温度分别为50℃条件下电池的暂态电流-电压曲线,确定燃料电池不同气速下的干气操作平衡点-门槛点(参见图5)。

从图5中可以看出50℃的门槛点Threshold40的电流为778mA/cm2,电压为0.453V。

由此可见图5中30℃的门槛点Threshold30(537mA/cm2,0.605V)的电流密度最低,这是因为其电化学反应速度较40℃的Threshold40(778mA/cm2,0.453V)和50℃的Threshold40(778mA/cm2,0.453V),的慢,生成水的速度慢,而造成的。从IV曲线的宽度体现出其脱水效应较弱。

实施例7

与实施例1不同之处在于:

1.测定不同温度下的门槛点

测定Gore 5510(25μm)与Toray碳纸为GDL的电池测定在常压下,气体流量为:阴极侧空气流速50ml/分、阳极侧氢气25ml/分,温度分别为50℃条件下电池的暂态电流-电压曲线,确定燃料电池不同气速下的干气操作平衡点-门槛点(参见图6)。

从图6中可以看出50℃的门槛点Threshold40的电流为(712mA/cm2,电压为0.55V。据此,选择接近门槛点,恒电压操作电池,其在干气条件下的电流输出与MEA的阻抗值均保持稳定(参见图7)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号