首页> 中国专利> 具有优良的抗碎裂性和抗边部裂缝性的立方氮化硼切削工具刀片

具有优良的抗碎裂性和抗边部裂缝性的立方氮化硼切削工具刀片

摘要

本发明公开了一种用于加工例如硬化钢、热加工和冷加工工具钢、模具钢、表面硬化钢、高速钢以及可锻灰口铸铁的切削工具刀片,其由包括cBN-相和含有碳氮化钛相和TiB2相的结合相的复合材料制得。通过CuKa-辐射线检测到的复合材料的XRD图谱能够看到,最强(101)TiB2峰和最强cBN(111)峰的峰高比值小于0.06,XRD图谱中的碳氮化钛相的(220)峰同TiC(PDF32-1383)和TiN(PDF38-1420)的PDF-线的垂直线相交,而且其最低相交点的高度至少为陶瓷结合相的最大(220)峰高的0.15。该刀片由粉末冶金方法经研磨、压制和烧结制得,该烧结在最低的可能温度下进行,以在最短的可能时间内获得密集结构。

著录项

  • 公开/公告号CN1978383A

    专利类型发明专利

  • 公开/公告日2007-06-13

    原文格式PDF

  • 申请/专利权人 山特维克知识产权股份有限公司;

    申请/专利号CN200610143208.4

  • 发明设计人 利夫·达尔;

    申请日2006-10-30

  • 分类号C04B35/583(20060101);C04B35/58(20060101);

  • 代理机构11219 中原信达知识产权代理有限责任公司;

  • 代理人王爱华;田军锋

  • 地址 瑞典桑德维肯

  • 入库时间 2023-12-17 18:42:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2009-12-09

    授权

    授权

  • 2007-08-08

    实质审查的生效

    实质审查的生效

  • 2007-06-13

    公开

    公开

说明书

技术领域

本发明涉及一种包含立方氮化硼的切削工具刀片刀片,在加工如淬火钢和类似材料的硬质材料时,其具有良好的抗碎裂性和抗边部裂缝性。

背景技术

在高温高压下烧结而成的立方氮化硼(cBN)基陶瓷已为人所公知。

一般来说,用于硬质零件加工的cBN基材料包含作为硬质弥散相的cBN和用来形成烧结硬质切削工具刀片的陶瓷结合剂。具有40-80%体积百分含量cBN的cBN切削工具刀片的陶瓷结合相通常含有具有少量的Ti、W、Co、Al的硼化物或这些物质的固溶体、铝土以及其他不可避免的反应产物的氮化物、碳氮化物以及碳化钛。通过改变组分的相对含量,就能够将cBN工具设计成在不同的应用条件下(例如连续或间歇切削)均具有最优的性能。具有相对较高cBN含量的cBN工具通常被推荐用于重载断续切削,而具有高陶瓷结合相含量的cBN工具在连续切削中抗磨损性能良好。断续切削的苛刻条件通常造成边部裂缝,以致相对于例如缺口磨损或凹坑磨损的其他磨损方式来说更能决定工具的使用寿命。甚至在连续切削时,工具的不稳定性也可能产生造成边部裂缝提前发生的间歇行为。特别是,具有体积百分含量范围为40-80%cBN、且含有氮化物、碳氮化物以及碳化钛的cBN切削工具刀片通常用于从对抗磨损性能有很高要求的连续切削到对抗裂缝性能有很高要求的间歇切削这样的非常广泛的切削应用中。因此,迫切需要上述cBN切削工具不仅具有优良的抗边部裂缝性能,同时需要其具有良好的抗磨损性能。

以前,为了提高抗碎裂性能,已建议在陶瓷结合相和弥散硬质相之间引入中间结合相(EP-A-1498199)。为了避免cBN-cBN之间的直接接触,还建议使结合相环绕cBN晶粒(EP-A-974566)。cBN或覆盖cBN晶粒的残余B2O3和形成TiB2的陶瓷结合相之间发生化学反应,从而生成结合相。另外,为了提高环绕在cBN晶粒周围的增强凸缘,利用PVD-工艺对cBN晶粒进行Ti和Al的氮化物或硼化物的预涂层处理(US6,265,337)。

已经发现,由于忽略了一个非常重要的韧化机理,即裂痕挠曲,因而陶瓷结合相和弥散硬质相之间的中间相事实上降低了刀片材料的边部韧性。如果材料中不同相之间的结合过强,产生的裂缝将很容易在材料中笔直传播,以致其裂缝韧性较低。如果结合过弱,就意味着其抗磨损性能会有很大程度的降低。然而,如果结合平衡的话,就意味着其低于晶粒的固有强度,裂缝就会沿着具有较高韧性晶界传播。通过仔细控制烧结温度和原材料的活性,就能够使cBN晶粒和陶瓷结合相之间具有理想的结合强度。

US4,343,651公开了一种cBN溶度高于80%wt的烧结坯,其中,通过加入Cu和/或Fe能够使TiB2降至最低。

由于工业上需要降低成本和提高产量,因此就需要进一步改进cBN基工具。一般而言,这意味着高切削速度、尤其是高切削深度和给进量,并且经常还要结合考虑间歇切削。因此,为了达到加工工业的要求,不仅要提高其抗磨损性能而且要提高其抗边部裂缝性能。

发明内容

因此,本发明的目的在于提供具有良好的抗磨损性能和抗边部裂缝性能的cBN基工具。

本发明的另一目的在于提供在不同相之间具有平衡结合的cBN基工具。

本发明的另一目的在于提供基本不含Fe和Cu的cBN基工具。

本发明的这些和其他目的均通过由含有cBN相和含有碳氮化钛相以及TiB2相的结合相的复合材料组成的切削工具刀片实现,其中,从利用CuKa-辐射线得到的复合材料图谱中,最强的(101)TiB2峰和最强的cBN(111)峰的峰高比约小于0.06,XRD图谱中的碳氮化钛相的(220)峰同TiC(PDF32-1383)和TiN(PDF38-1420)的PDF-线的垂直线均相交,而且其最低相交点的高度至少为陶瓷结合相最大的(220)峰高的0.15。

附图说明

图1所示为根据本发明和现有技术所述、利用点聚焦(pointfocus)、2θ修正、背景提取(background subtraction)以及从cBN材料中剥离(stripping)出的Kα2所形成的XRD图谱。垂直线对应于从公用PDF-数据库(国际衍射数据中心编辑的粉末衍射,ICDD)中摘录的结构信息,其还表示感兴趣的化合物,同时在每条线上还给出了名称以及各化合物的米勒系数。

图2a为本发明所述cBN材料中的典型裂缝挠曲(D)的5000X SEM背散射图像。暗晶粒为CBN,亮基体为陶瓷结合相。图2b为现有技术所述cBN工具中的典型直裂缝图。

图3所示为本发明(图3a)和现有技术(图3b)所述工具的TiC1-xNx的220-峰的XRD图谱。该图谱利用点聚焦、2θ修正、背景提取以及Kα2剥离而得到。图3a示出了来自碳氮化钛相的220峰以及TiC和TiN的PDF线的相交点(如B所示)。

具体实施方式

本发明涉及一种用于加工硬化钢、热加工和冷加工工具钢、模具钢、表面硬化钢、高速钢以及可锻灰口铸铁的切削工具刀片。所述切削工具刀片可以为整体cBN工具或是连接于超硬基体上的cBN小型工具。其由包括cBN相和结合相的涂层或非涂层复合物组成,所述结合相含有碳氮化钛相和TiB2相。优选地,所述复合物包括40-80vol%、优选55-70vol%的cBN,其平均粒度小于5μm的,优选1-4μm,且优选具有这样的双峰cBN晶粒尺寸分布:其中0.1-1μm的一部分>10vol%,2-5μm的另外部分>10vol%。在利用CuKa辐射得到的复合物XRD图谱中,最强TiB2峰和最强cBN峰的峰高比≤0.06,优选≤0.045,最优选≤0.03。此比值确定为最强TiB2(PDF35-0741)峰(101)和最强cBN(PDF35-1365)峰(111)的峰高比ITiB2(101)/IcBN(111)。此外,任何Ti、W、Co、Al的硼化物及其组合物的最强峰与最强cBN峰的峰高比值小于0.06。

本发明的另一特点在于XRD图谱中碳氮化钛相的(220)峰均同TiC(PDF32-1383)和TiN(PDF38-1420)的上述PDF-线的垂直线相交,而且其最低相交点的高度至少为陶瓷结合相最大(220)峰高的0.15,优选至少为0.20,如图3a所示。这表明了从TiC到TiN之间这样一个相当宽的TiC1-xNx组分范围。为了表征通常钎焊到超硬基体且不会受基体衍射噪音干扰的小试样,优选利用光聚焦来进行确定。由于在59-62度(deg)2θ这样的特定角度范围内,不会有其他的干扰峰,因此适用(220)峰。

本发明所述的材料进一步包含重量百分比可达5%的从研磨超硬合金球得到的碳化钨以及从原材料中Al和不可避免的氧反应所得到的氧化铝。本发明所述材料中的Cu和Fe含量在工业杂质的范围内。Cu和/或Fe的总含量优选低于1wt%,最优选低于0.5wt%。

本发明所述的cBN切削工具刀片利用如研磨、压制以及高压烧结这样的传统粉末冶金方法制得。形成陶瓷结合相、Ti(C,N)、化学计量的或优选亚化学计量的以及金属结合相的粉末以及Al在超微磨碎机中被预研磨成极为细小晶粒的粉末。随后将该超微研磨机研磨的粉末连同cBN粉末原材料一起进行混合和研磨。在研磨后,对其进行干燥,并将其挤压制成半成品盘状坯块。随后在温度为900-1250℃下对该半成品坯块预烧结一小时。

随后在压强为5Gpa、温度范围为1300℃的超高压烧结炉中,对该半成品坯块进行单独烧结或是在超硬板上对其进行烧结。选择烧结温度和烧结时间,从而获得完全烧结(就多孔性而言)但是,为了使陶瓷结合相和硬质cBN相之间的化学反应降至最低,必须防止温度过高和时间过长。该最佳的烧结温度取决于成分、陶瓷结合相的化学计量以及所有原材料的晶粒度。熟练的工匠能够利用其器械通过试验以确定获得理想的微观组织的必要条件。通常,其温度范围为1200-1325℃。

随后,经过顶端和底端的研磨后,利用电弧放电钢丝切割将该烧结坯切割成理想的形状。随后,将该烧结cBN半成品切片钎焊至超硬基体上,并研磨成如WO2004/105983中所述的理想形状和尺寸。在另一实施例中,将烧结cBN半成品切片研磨成理想的形状和尺寸,而不将其钎焊至超硬基体(整体cBN)上。该研磨刀片还可涂覆有该申请文件中所述的抗磨损PVD以及CVD层,如TiN、(Ti,Al)N以及Al2O3

出于对本发明进行说明的考虑,下面通过以下实施例对本发明进行进一步的描述。然而应当理解的是,本发明并不限于这些实例的具体内容。

实例1

本发明所述的cBN坯体是由体积百分比为65vol%的具有双峰分布粒度的cBN的球磨粉末制得的,所述具有双峰分布粒度包括30vol%的0.2-0.6μm的cBN晶粒,余者为2-4μm的cBN晶粒,同时还有非化学计量陶瓷结合相Ti(C0.3N0.7)0.8以及6wt%的Al结合相。在与cBN进行球磨之前,所述结合相以及陶瓷结合相被研磨成具有细小晶粒的精细混合物。

在球磨后,对所述的粉末进行干燥,进而压实成直径为40mm的盘状半成品。在约为900℃的温度下,将该生坯预烧结1小时左右。

随后,在压强为5Gpa,温度为1300℃的超高压烧结仪器中,对该预烧结半成品进行烧结。

在Bruker D8衍射显示计中对cBN材料进行分析,其分析条件如下:

表1

衍射计的普通设置衍射模式操作40kV以及100mA初级侧CuKα辐射扁平石墨分光仪φ0.5mm点聚焦准直管二级侧PSD检测仪检测仪和试样座间的距离为16cm背景提取峰的Kα2带对于cBN PDF-列,35-1365的2θ修正

其结果如图1a所示。作为对比,现有技术的cBN材料的分析结果如图1b所示。现有cBN材料含有大约60vol%的cBN,其晶粒尺寸约为2-5μm,平衡量为碳氮化钛和含量约为5wt%的Al。

另外,在如表1所示的条件下对所述两种材料的陶瓷结合相进行分析,本发明所述材料的分析结果如图3a所示,现有材料的分析结果如图3b所示。

从图1a和图1b能够明显的看出两种刀片的主要区别在于是否出现硼化物反应相,特别是TiB2或Ti、W、Co、Al的任何硼化物以及其组合物。在图1a中选定的2θ区域内希望发现上述的TiB2的最强峰。本发明所述刀片的最强TiB2峰和最强cBN峰的峰高比值为0,而现有刀片中的峰高比值为0.23。

如图3a所示,在本发明所述刀片中,陶瓷结合相包含很宽成分范围的TiC1-xNx。如图3b所示,在现有刀片中,主要的陶瓷结合相由相对较窄的Ti(C,N)峰构成。为了避免来自干扰峰的重叠,选择59-64度(deg)的2θ区间用于描述如图3a和图3b所示的结合相。如图3a所示,TiC1-xNx的(220)衍射峰同TiN和TiC PDF-线相交于图3a中的B处。最低的相交点高度为TiN相交点的高度,该高度为结合相最高220峰高度的0.24。与之相反,如图3b所示,现有技术所含的TiCN在此情形仅与TiN这一条线相交。相交部分的最低点为同TiC相交的点,其=0。

实施例2

在将烧结坯的头部和底部均磨削成带有CNGA 120408标识的刀片后,利用电弧放电钢丝切割将实施例1所述的烧结体切割成Safe-Lok概念所述的形状。在重载间歇车削加工中,对刀片的韧性进行测试,其车削加工条件如下:

工件材料:     淬硬球轴承钢,HRC 56

速度:         120m/min

给进量:       0.1-0.6mm/rev

切削深度(DOC):0.1-0.6mm

干车

然后对带有10mm槽缝的环进行平面加工。其给进量和DOC每次均增加0.02mm,直至其被切断或裂缝。

利用了实施例1中的现有刀片作对比,。

每个试验均重复4次。其给进量和DOC的平均值如表2所示。

  给进量的最大值mm/rev/DOCmm  现有技术    0.47  本发明    0.62

本发明所述刀片的抗裂缝/碎裂性能比典型的现有刀片高30%,而它们的抗磨性能相同。

实施例3

将实施例1所提到的本发明所述刀片铜焊到Safe-Lok概念下的超硬体上,进而对其进行进一步的加工,以形成带有CNGA 120408标识的切削工具刀片。在连续的车削加工下对该刀片的抗磨性能进行测试,其车削加工条件如下所示;

工件材料:     表面硬化钢,HRC 52

速度:         200m/min

给进量:       0.2mm/rev

切削深度(DOC):0.15mm

干车

利用实施例1中的现有刀片作对比。

测量达到侧面磨损(VB)为0.12mm时的时间进行。四次试验的平均值如表3所示。

    时间(min)    现有技术    28    本发明    30

同现有材料相比,本发明所述材料的抗磨性能有一些提高。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号