首页> 中国专利> 贱金属电极上的金属氧化物陶瓷薄膜

贱金属电极上的金属氧化物陶瓷薄膜

摘要

一种方法,包括形成电容器结构,该电容器结构包括电极材料、和电极材料上的陶瓷材料、以及在陶瓷材料的点缺陷态界定陶瓷材料是绝缘的、且不会氧化电极材料的条件下烧结陶瓷材料。一种方法,包括在导电箔片上沉积陶瓷材料、和在使点缺陷转换到对应更高电导率的陶瓷材料水平的活动性最小化的温度下,在还原气氛中烧结陶瓷材料。一种装置,包括第一电极、第二电极、和设置在第一电极和第二电极之间的陶瓷材料,其中陶瓷材料包括小于一微米的厚度、和与活动点缺陷的浓度最优化的热力学状态相对应的漏电流。

著录项

  • 公开/公告号CN1961391A

    专利类型发明专利

  • 公开/公告日2007-05-09

    原文格式PDF

  • 申请/专利权人 英特尔公司;

    申请/专利号CN200580017468.0

  • 发明设计人 闵研基;坚吉兹·A·帕兰独兹;

    申请日2005-06-23

  • 分类号H01G4/12(20060101);C04B35/468(20060101);

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人王英

  • 地址 美国加利福尼亚

  • 入库时间 2023-12-17 18:37:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-04-27

    授权

    授权

  • 2007-07-04

    实质审查的生效

    实质审查的生效

  • 2007-05-09

    公开

    公开

说明书

技术领域

集成电路结构和封装。

技术背景

希望紧邻着集成电路芯片或管芯(die)提供去藕电容。随着芯片或管芯的开关速度和电流要求变得越来越高,必须增大该电容。在芯片或管芯中提供去藕电容的一种方式是通过位于芯片和封装体之间的插入体衬底提供。在芯片和封装体之间使用插入体衬底使得电容接近芯片,且不必使用芯片或相关衬底封装体上的区域。该构造能够改善芯片的电源线上的电容。

关于插入体衬底,可以通过使用薄膜电容器提供电容。代表性地,采用构图薄片形式的铂材料可以形成电极,介电材料(例如金属氧化物材料)可以形成在电极之间。铂作为电极材料,在空气中高处理温度下,例如在可能用于烧结陶瓷介电体的温度下,不会氧化。然而,铂与镍或铜相比,原材料成本较高,并且电阻率较高。还必须对铂进行溅射沉积(物理气相沉积(PVD))使其最大沉积厚度在0.2微米的数量级上。铜和镍能够电镀至几微米的厚度,从而使这些金属材料更有利于电路设计的考虑。然而,这些金属材料在高处理温度下容易被氧化,例如将在电容器介电体的陶瓷材料烧结中遇到的温度。如果在陶瓷烧结期间使用还原气氛来避免电极材料的氧化,陶瓷可能被还原至导电(漏电)态。在一定的工作电场中(例如,2伏特,0.1微米),还原气氛下产生的陶瓷材料中的自由电荷载流子可以迁移到电极,导致形成空间电荷(电荷分离),伴随着电子从阴极(负电极)肖特基发射到介电体中,以保持电荷中性状态;这个过程导致漏电流不可逆转地增大和电容器毁坏。

附图说明

实施例的特征、方面和优点通过以下具体描述、附加的权利要求和附图将更加完整清楚,附图中:

图1示出设置在管芯和基底衬底之间的插入体衬底的截面图;

图2示出图1的插入体衬底的部分放大图;

图3示出电容器形成方法的流程图;

图4示出不同温度和氧气分压下钛酸锶的导电性能图表。参考:Integrated Ferroelectrics,2001,38卷,229-237页,Christian Ohly等人的“Defects in alkaline earth titanate thin films-the conduction behaviorof doped BST”;

图5示出设置在具有集成电容器的基底衬底上的管芯的截面图。

具体实施方式

图1示出设置在管芯和基底衬底之间的插入体衬底的截面图。图1示出组件100,该组件包括管芯或芯片110、插入体衬底120和基底衬底150。该组件可以形成电子系统的一部分,所述电子系统例如为计算机(例如,台式计算机、膝上型计算机、手提计算机、服务器、互联网装置等)、无线通讯设备(例如,蜂窝式电话、无绳电话、寻呼机)、计算机外围设备(例如,打印机,扫描仪、显示器)、娱乐设备(例如,电视机、收音机、立体声、磁带放音机、光盘播放器、录像机、MP3(运动图像专家组,音频层3播放器))等。

在图1示出的实施例中,管芯110是集成电路管芯,例如处理器管芯。管芯110表面上的电触点(例如,接触焊盘)经过导电突起层130连接到插入体120。基底衬底150,例如是封装衬底,可以用于连接组件110至印刷电路板,例如母板或其它电路板。插入体120经过导电块层140电连接到基底衬底150,该块层140使例如插入体120表面上的接触焊盘与基底衬底150表面上的接触焊盘对准。图1还示出表面安装电容器160,其可选择为连接到基底衬底150。

在一个实施例中,插入体120包括电容器结构。图2示出插入体120的放大图。插入体120包括插入体衬底210、设置在插入体衬底210上的第一导电层220(导电的)、设置在第一导电层220上的介电层240、和设置在介电层240上的第二导电层230(导电的)。在一个实施例中,插入体衬底210为陶瓷插入体。插入体衬底210例如为具有较低介电常数的陶瓷材料。代表性地,低介电常数(低-k)材料为介电常数在10的数量级上的陶瓷材料。适合的材料包括,但不限于,玻璃陶瓷或氧化铝(例如,Al2O3)。

在一个实施例中,第一导电层220和第二导电层230选自可沉积为几微米或以上数量级厚度的材料。适合的材料包括,但不限于,铜和镍材料。在一个实施例中,介电层240为具有较高介电常数(高-k)的陶瓷材料。代表性地,高-k材料为介电常数在1000的数量级上的陶瓷材料。用于介电层240的适当材料包括,但不限于,钛酸钡(BaTiO3)、钛酸锶钡(Ba,SrTiO3)、和钛酸锶(SrTiO3)。

在一个实施例中,高-k陶瓷材料介电层240形成为小于一微米的厚度。在一个实施例中,介电层240的代表性厚度在0.1-0.2微米的数量级上。形成介电层240的材料可沉积为陶瓷材料的纳米颗粒。将高-k材料沉积至0.1-0.2微米厚度的代表性颗粒尺寸在20-50纳米的数量级上。

图2示出延伸穿过插入体衬底120的多个导电通孔。代表性地,导电通孔250和导电通孔260是要被连接到芯片110的电源/接地触点(例如经过块层130的导电块到图1的管芯110上的接触焊盘)的不同极性的导电材料(例如,铜或银)。这样,导电通孔250和导电通孔260延伸穿过高-k材料介电层240和低-k材料插入体衬底210。图2还示出临近插入体120周界的导电通孔270(例如,填充有铜或银的通孔)。使导电通孔270对准以与输入/输出(I/O)信号连接。在一个实施例中,导电通孔270没有延伸穿过高-k介电层240。代表性地,在插入体120的周界内蚀刻掉高-k介电层240以及第一导电层220和第二导电层230,以从导电通孔270的导电路径中除去高-k材料。

图3示出一种形成插入体120的技术。参见图3,该方法或技术300包括在方框310起初形成第一导电层。代表性地,第一导电层,例如图2的第一导电层220,是形成为具有期望厚度的薄片(例如,箔)的镍或铜材料。代表性的厚度依据特定设计参数在几微米到几十微米的数量级上。一种形成薄片或箔的导体层的方式是在其表面上具有例如导电籽晶层的可除去基底衬底(例如,聚合物载体薄片)上电镀材料箔或层。可选择地,可以在可除去基底衬底上沉积导电材料浆料(例如,铜或镍浆料)。

形成第一导电层或沉积第一导电层之后,在方框320,该技术或方法300在第一导电层的表面、包括整个表面上沉积陶瓷颗粒。为了形成厚度在0.1到0.2微米的数量级上的陶瓷材料,在第一导电层上沉积厚度在20到30纳米的数量级上的陶瓷颗粒。一种沉积陶瓷材料的方式是通过化学溶液沉积(溶胶-凝胶)工艺,其中金属阳离子被嵌入在溶解于溶剂的聚合物链中,并将该溶剂旋转或喷射到第一导电层上。另一种沉积陶瓷材料的技术是化学气相沉积(CVD)。

参见图3的技术或方法300,在其中例如在溶胶-凝胶工艺中通过溶剂沉积陶瓷材料的实施例中,一旦沉积,在方框330中对沉积物进行干燥以蒸发掉有机物含量。代表性地,其上具有沉积的陶瓷颗粒的第一导电层暴露在惰性气氛(例如氮)和高温(例如100到200℃)中,从而分离溶剂和除去有机物含量。

方框340中,陶瓷颗粒受到烧结处理,以减小陶瓷颗粒的表面能。在使用例如铜或镍的可氧化金属作为导电层的实施例中,选择工艺条件使得导电层不被氧化。对于铜或镍导电层,例如,使用包括还原气氛的工艺参数,使得铜或镍材料的第一导电层不被氧化。然而,还原气氛的存在可能还原陶瓷材料,使得陶瓷材料更加导电(更漏电的状态)。因此,选择工艺参数来控制导电层的氧化和陶瓷材料的还原。在另一工艺流程中,方框340中的烧结高-k膜可以在陶瓷材料上沉积第二导电层之后进行。代表性地,第一导电层和第二导电层之一或两者由金属浆料形成。在第二电极由金属浆料形成的情形中,可以在烧结之前在陶瓷材料上沉积金属浆料。

在一个实施例中,陶瓷材料,例如钛酸钡(BaTiO3)、钛酸锶(SrTiO3)、或钛酸锶钡(Ba,SrTiO3),包括固定离子(Ba,Sr,Ti)和移动离子(O)。典型陶瓷材料(例如颗粒、晶体)还会具有大量点缺陷,主要是由于离子空位和自由电子载流子造成的,例如导带中的电子和价带中的空穴。在包括高温和还原气氛的典型烧结条件下,移动自由电子和氧空位的浓度增大。一个实施例中,使用包括氧气的还原气氛中氧的例子,选择还原气体中氧的化学势,使得陶瓷的平衡电导率反映出在相应Krger-Vink图表中的有利区域(regime)。这样,伴随着电子从价带转移至导带的氧离子从固态变至气态的趋势将得到控制。如果铜或镍的可氧化金属用作电极,并受到烧结工艺条件影响时,必须进一步控制工艺条件以使电极的氧化最小化。

为了确定烧结陶瓷材料的特定工艺参数,为陶瓷材料样品获得陶瓷材料的平衡电导率,其作为热力学状态参数(温度(T),氧分压(P(O2),对于给定样品固定的陶瓷组分,假定零挥发性)的函数。代表性地,可以利用平衡状态下测量的电导率,在不同烧结温度和压力下分析陶瓷材料样品的四点导电性测量。

图4示出了标称未掺杂的钛酸锶(SrTiO3)薄膜的代表性导电特性。例如图4中的数据点提供了在各个热力学平衡点处存在于陶瓷材料中的点缺陷的数量和类型的指示。使用该热力学状态函数(T,P(O2)和陶瓷材料的函数)来确定从介电状态到导电状态的电导率状态转变。如图4所示,在700℃的烧结温度下,SrTiO3的导电性状态转变发生在大约1×10-15巴下。为了有效地作为适用于去藕电容器的介电材料,必须在大于1×10-15巴(图4的图表上的右侧)的压力下烧结陶瓷材料。

除了确定期望烧结温度的电导率相转变之外,还要确定可氧化金属的还原气氛的限制值。在一个实施例中,在氧还原气氛中使用例如铜的金属,由下面等式给出的铜氧化反应的吉布斯自由能表达式来确定金属铜的P(O2)的限制值:

   ΔG=-333,000+126T

      =RTlnP(O2)

利用上式,在烧结温度为700℃时,P(O2)值大约为5×10-12巴。烧结炉中的还原气体的P(O2)需要低于约5×10-12巴,以避免铜在还原气氛中的氧化。然而,如上面提到的,导电性相转变大约在1×10-15巴。因此,在烧结温度为700℃时,还原气氛中氧的分压处于大约5×10-12巴和大约1×10-15巴之间的工艺范围(如图4中箭头400所示)。

上面的例子表明了存在用于烧结高-k陶瓷材料而不会氧化例如铜或镍的金属且不会产生漏电陶瓷材料的温度和压力的工艺条件范围(最佳位置)。

参见图3,烧结陶瓷材料之后,在方框350,可以把第二导电层连接(例如印刷、电镀)到陶瓷材料,以形成电容器衬底。在陶瓷位于第一导电层薄片或箔上方的实施例中,第二导电层可以设置在陶瓷材料的相对表面上。在一个实施例中,第二导电层是金属,例如镍或铜。如上面提到的,在另一可选工艺中,烧结陶瓷材料之前,在陶瓷材料上形成第二导电层。

然后在方框360,可以把电容器衬底连接到(例如层叠)插入体衬底层,以形成插入体。在一个实施例中,插入体衬底层是陶瓷材料。代表性地,插入体衬底层是具有较低介电常数的陶瓷材料,而复合电容器的陶瓷材料具有较高的介电常数。

电容器衬底连接到插入体衬底层以形成陶瓷插入体之后,在方框370中对插入体进行构图。在一个实施例中,通过形成穿过插入体的通孔、从周围区域除去高-k陶瓷材料等来对插入体进行构图。

图5示出管芯或芯片组件的另一个实施例。组件500包括连接到封装体衬底530的芯片或管芯510。封装体衬底530具有与其集成的电容器520。电容器520类似于前面参照图1和2描述的插入体120的电容器元件。注意,电容器520包括均为薄片形式的第一导电层560、介电层570和第二导电层580,且介电层570设置于第一导电层560和第二导电层580之间。在一个实施例中,如参照图3所述,使用例如铜或镍的金属的第一导电层560和第二导电层580以及介电常数较高(高-k)的陶瓷材料的介电层570来形成电容器520。形成电容器520的方法可以遵循图3的方法,但是电容器在形成后连接到封装体衬底530,而非连接到插入体。图5示出了延伸穿过电容器520的导电通孔590。导电通孔590连接到块550,该块550在一个实施例中与芯片或管芯510上的接触焊盘对准。

在前面的详细说明中,参照其具体实施例。然而,显而易见的是,在不脱离所附权利要求书的较宽的精神和范围的情况下,可以对本发明进行各种修改和改变。因此,说明书和附图是作为示例性的而非限制性的。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号