首页> 中国专利> 具有不同几何形状的喷嘴的吹灰器喷嘴组件

具有不同几何形状的喷嘴的吹灰器喷嘴组件

摘要

根据本发明的教导,一种吹灰器结构结合设置在一喷嘴段(302)主体上的一个下游喷嘴(308),以及相对于所述下游喷嘴(308)的位置纵向设置在距喷嘴段的远端(307)更远的位置的一个上游喷嘴(310)。所述上游喷嘴(310)的几何形状与所述下游喷嘴(308)的几何形状不同。通过具有不同几何形状的喷嘴(308、310),每个喷嘴(308、310)能够单独地为每个喷嘴(308、310)所经历的流动条件被最优化。

著录项

  • 公开/公告号CN1902457A

    专利类型发明专利

  • 公开/公告日2007-01-24

    原文格式PDF

  • 申请/专利权人 钻石能量国际公司;

    申请/专利号CN200480040269.7

  • 申请日2004-10-27

  • 分类号F28G1/16(20060101);

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人董敏

  • 地址 美国俄亥俄

  • 入库时间 2023-12-17 18:08:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-03-15

    专利权人的姓名或者名称、地址的变更 IPC(主分类):F28G1/16 变更前: 变更后: 申请日:20041027

    专利权人的姓名或者名称、地址的变更

  • 2012-07-11

    授权

    授权

  • 2007-03-21

    实质审查的生效

    实质审查的生效

  • 2007-01-24

    公开

    公开

说明书

技术领域

本发明基本上涉及用于清洗大型燃烧装置的内部表面的吹灰装置。更加具体地,本发明涉及具有增强的清洗性能的用于吹灰器吹灰管的喷嘴的新结构。

背景技术

吹灰器用于面向大型燃烧装置,比如通用锅炉和处理恢复锅炉的热交换器表面来射出吹风介质流,比如蒸汽、空气或水。在操作中,燃烧产品造成炉渣和灰烬硬壳形成于热交换器表面上,降低了系统的热性能。吹灰器周期性地操作以清洗表面来恢复期望的操作特性。通常,吹灰器包括一个吹灰管,其与吹风介质的压力源相连。吹灰器还包括至少一个喷嘴,吹风介质以流动或喷射状态从喷嘴排出。在一个缩回吹灰器中,随着吹风介质从喷嘴排出,吹灰管周期性地前进到锅炉内部并从之缩回。在一个固定吹灰器中,吹灰管固定在锅炉内的某一位置,但是在吹风介质从喷嘴排出的同时其可以周期性地旋转。在任一类型中,排出的吹风介质对积聚在热交换器表面上的沉积物的冲击将沉积物移除。基本上公开了吹灰器的美国专利包括有US3439376;3585673;3782336;4422882,这些专利在此结合以供参考。

典型的吹灰器吹灰管包括至少两个喷嘴,它们典型地沿直径取向,以在彼此180°的方向上排出流体流。这些喷嘴可以直接相对,也就是在沿着吹灰管的同一纵向位置或者彼此纵向分离。在后一种情况下,更靠近吹灰管远端的喷嘴被典型地称为下游喷嘴。沿纵向距远端最远的喷嘴一般被称为上游喷嘴。喷嘴通常但不总是定位成它们的中间通道垂直于吹灰管的纵向轴线且与之相交,并且定位在吹灰管的远端附近。

多种清洗介质被用于吹灰器。蒸汽是通常使用的。通过清洗介质的冲击造成的机械和热冲击的结合来清洗燃烧装置的内表面内的炉渣和灰烬硬壳。为了将这种效果最大化,吹灰管和喷嘴被设计用来产生在被清洗表面上具有高峰值冲击压力的清洗介质的相干流。喷嘴性能通常通过测量冲击位于距喷嘴给定距离处的喷嘴的中心线的交点处的一个表面的动压来量化。为了将清洗效果最大化,通常优选地是随着其排出喷嘴,可压缩的吹风介质流被完全膨胀。完全膨胀指的是这种情况,其中排出喷嘴的流体流的静压接近锅炉内的环境压力。喷射经过喷嘴时承受的膨胀程度部分地依赖于喉部直径、喷嘴内的膨胀区的长度以及膨胀角度。

用于可压缩流体,比如空气或蒸汽的经典超声喷嘴设计理论需要喷嘴具有经常被称为喉部的最小的流动截面面积,接着是一个膨胀的截面面积(膨胀区),这个膨胀区允许随着流体经过喷嘴而其压力减少,并且加速流动到速度高于声速。多种喷嘴结构已经设计出来以优化流体流或喷射随着其排出喷嘴的膨胀。限制吹灰器喷嘴可以具有的实际长度是一种需要,因为吹灰组件必须经过在锅炉外壁中的一个小开口,被称为壁盒。对于长的缩回吹灰器,吹灰管典型地具有大约3到5英寸的直径。用于这种吹灰管的喷嘴不能延伸超过吹灰管的外圆柱表面很长距离。在两个喷嘴在直径上相对置的应用中,强调了对喷嘴长度延伸的严格限制,以避免在喷嘴之间的直接物理干涉或者避免有流体进入喷嘴入口发生无法接受的限制。

在允许较长的吹灰器喷嘴的努力中,吹灰器吹灰管的喷嘴经常纵向移动。尽管这种结构基本上增强了性能,然而已经发现上游喷嘴展现了比下游喷嘴更好的性能。因此,在喷嘴之间导致了不期望的清洗效果的差别。

发明内容

根据本发明,提出了喷嘴结构上的改进,用于使上游和下游喷嘴的性能最佳化。

简言之,本发明的第一实施例包括设置在一喷嘴段主体上的一个下游喷嘴,以及相对于所述下游喷嘴的沿纵向设置在距下游喷嘴的远端更远的位置的一个上游喷嘴。所述上游喷嘴的几何形状与所述下游喷嘴的几何形状不同。通过具有不同几何形状的喷嘴,每个喷嘴能够单独地被最优化用于每个喷嘴所经历的流动条件。因此,经过每个喷嘴的流动膨胀可以被最优化用于每个喷嘴经历的流动条件。

在多种结构中,每个喷嘴的几何形状可以通过一个或多个参数限定,比如膨胀区的膨胀长度、出口端的出口面积或直径、以及喉部面积或直径。在一些结构中,下游喷嘴的膨胀长度不同于上游喷嘴的膨胀长度。在特殊实施例中,下游喷嘴的出口面积对喉部面积的比率不同于上游喷嘴的出口面积对喉部面积的比率。一个喷嘴的膨胀长度对出口直径的比率可以不同于其它喷嘴的膨胀长度对出口直径的比率。而且,下游喷嘴的膨胀长度对喉部直径的比率可以不同于上游喷嘴的膨胀长度对喉部直径的比率。

附图说明

本发明的进一步的特征和优点将通过下面的讨论和附图而变得清楚,其中:

图1是一个长的缩回吹灰器的示意图,示出了可以与本发明的喷嘴装置结合的一种吹灰器。

图2是根据现有技术的吹灰器喷嘴段的截面图。

图2A是与图2相似的截面图,但是示出了喷嘴头的作为选择的停滞区。

图3是结合了根据本发明第一实施例的结构的吹灰管喷嘴段的透视图。

图4是根据如图3所示的本发明的第一实施例的吹灰管喷嘴段的截面前视图。

图5是根据本发明的另一个实施例的吹灰管喷嘴段的截面视图,该喷嘴段具有相对于吹灰管纵轴线是弯曲的上游喷嘴。

图6A和6B是根据本发明的再一个实施例的吹灰管喷嘴段的截面视图。

图7描绘了将图6A和6B的吹灰管的总压力损失与喷嘴长度相联系的一个特征曲线。

图8描绘了将喷嘴中心线处的总压力与同喷嘴的长度相关的沿着同一径向平面内的喷嘴壁的总压力相比较的一个特征曲线。

图9描绘了将图7和图8的特征曲线的结合,用以确定喷嘴的最佳结构。

具体实施方式

后面的优选实施例描述实质上仅仅是示例性的,决不是用于限制本发明或者限制本发明的应用或使用。

在图1中示出了代表性的吹灰器,并且总体上由参考标号10表示。吹灰器10主要包括壳体组件12、吹灰管14、进给管16和支架18。吹灰器10示出了其正常的缩回静止位置。在致动时,吹灰管14延伸进入一个燃烧系统并且从中缩回,比如一个锅炉(未示出),并且可以同时旋转。

壳体组件12包括一个基本上矩形的壳体盒20,该壳体盒形成用于整个单元的外壳。支架18沿着设置在壳体盒20相对侧上的两对引导轨道,轨道包括一对下轨道(未示出)和一对上轨道22。一对有齿架(未示出)刚性连接于上轨道22并且能够使支架18纵向移动。壳体组件12支撑于一个壁盒(未示出),该壁盒固定在锅炉壁上或者其他安装结构上,并且被后支撑架24进一步支撑。

支架18驱动吹灰管14进出锅炉并且包括驱动马达26和被机架30封闭的齿轮箱28。支架18驱动与有齿架啮合的一对小齿轮32以使支架和吹灰管14前进。支撑辊34啮合导轨以支撑支架18。

进给管16连接于后支架36的一端并且传导清洗介质流,该介质流通过提升阀38的作用来控制。提升阀38通过与支架18啮合的联杆40致动,以在吹灰管14延伸的情况下开始清洗介质的排出,并且一旦吹灰管和支架返回到静止的缩回位置就切断流体流,如图1所示。吹灰管14包覆配合进给管16,并且它们之间的流体密封由垫圈提供(未示出)。像空气或蒸汽那样的吹灰介质流入吹灰管14内且通过一个或多个安装在喷嘴段52的喷嘴50排出,该喷嘴具有一远端51。远端51被一个半球壁53闭合。喷嘴段52可以例如通过焊接与吹灰管14相连,或者喷嘴段可以限定为吹灰管的端部。喷嘴50可以焊接在组件52内钻出的孔中,或者喷嘴可以被切割成喷嘴段,使得喷嘴和组件是单一件。

盘卷弹性电缆42将电能传导给驱动马达26。前支撑架44在吹灰管纵向和旋转运动期间支撑吹灰管14。对于长度很长的吹灰管,可以具有一个中间支撑46以防止吹灰管的过度弯曲偏移。

现在参考图2,提供了根据现有技术的喷嘴段52的更详细的视图。如图所示,喷嘴段52包括在直径上相对设置的一对喷嘴50A和50B。喷嘴50A和50B从远端51偏移,喷嘴50B被称为下游喷嘴(靠近远端51),并且喷嘴50A被称为上游喷嘴(远离远端51)。

清洗介质,典型的为在大约150磅/平方英尺(psi)或更高压力下的蒸汽,在如箭头21所指方向上流入喷嘴段52内。清洗介质的一部分进入并且从上游喷嘴50A排出,如箭头23所指。箭头25所指的介质流的一部分经过喷嘴50A且继续向着下游喷嘴50B流动。介质流的一部分直接排出喷嘴50B,如箭头27所指。如上面所述,与上游喷嘴50A相比,下游喷嘴50B典型地表现了较低的性能。这是由于箭头29所指的经过上游喷嘴50A和下游喷嘴50B的清洗介质流在吹灰管14的远端51达到完全停止(停滞),因此在下游喷嘴50B之上的远端51处产生了一个停滞区31。因此,箭头33所指的清洗介质不得不再加速,回流且与进入的介质流27混合。箭头27所指的向前流和箭头33所指的向后流的混合导致由于在喷嘴入口的液压损失而能量损失,并且还导致介质流分布不均。在现有技术的结构中,与在远端的停滞情况相关的能量损失以及在喷嘴入口的液压损失,以及入口流轮廓的变形被认为是对下游喷嘴的较低性能负有责任。

如前面提到的,与喷嘴50A相比下游喷嘴50B的相对较低的性能具有多种解释。这些发明人已经发现通过使用不同几何尺寸的上游和下游喷嘴能够增强喷嘴的性能。

设计像喷嘴50A和50B那样的有效的收敛扩散拉瓦尔喷嘴的一个关键参数是喉部对出口面积比率(Ae/At)。具有理想喉部对出口面积比率的喷嘴将在喷嘴出口平面获得均匀的完全膨胀的介质流。在扩散部分加速的气体量通过下面的方程给出,为了简化计算,将清洗介质流的特征描述为一维的。

>>>>A>e>>>A>t>>>=>>1>>M>e>>>>>[>>(>>2>>γ>+>1>>>)>>>(>1>+>>>γ>->1>>2>sup>>M>e>2sup>>)>>]>>>>(>γ>+>1>)>>>2>>(>γ>->1>)>>>>>->->->>(>1>)>>>s>

其中,

Ae=喷嘴出口面积

At=喉部面积,也等于理想声速平面的面积

方程(1)中的出口马赫数Me通过理想气体的连续方程以及等熵关系与喉部对出口面积比率相关(参见Michael A.Saad,“可压缩流体流动”,Prentice Hall出版社,第二版,98页)。

出口马赫数Me还通过下面的能量关系与出口压力相关:

>>>P>e>>=>>P>o>>>>[>1>+>>>γ>->1>>2>sup>>M>e>2sup>>]>>>γ>>1>->γ>>>>->->->>(>2>)>>>s>

其中,

γ=清洗流体的比热比。对于空气γ=1.4,对于蒸汽γ=1.329

Pe=喷嘴出口静压,磅/平方英寸

Po=总压力,磅/平方英寸

Me=喷嘴出口马赫数

从方程(1)和(2),喷嘴出口压力Pe可以与喉部对出口面积比率直接相关。因此,对于给定的清洗压力,通过喉部对出口面积比率的适当选择可以获得近似大气的喷嘴出口压力。

在方程(1)中,马赫数与喉部对出口面积比率之间的关系是建立在这样一种假设的基础上,即,流体在收敛发散喷嘴的最小横截面面积的平面达到声速,也就是在名义上的喉部达到声速。然而,实际上,特别是在吹灰器应用中,流体在喉部没有达到声速,并且在同一平面上也不均匀。实际的声速平面通常从喉部进一步向下游串连(skewer),并且其形状变得更加不一致和变成三维。

声速平面的扭曲主要是由于流体不均匀地分配进喷嘴入口截面。在吹灰器应用中,如图2中对于喷嘴50A的箭头23和对于喷嘴50B的箭头33和27所示,清洗流体偏离其中心轴线90°到达喷嘴。通过这种结构,进入喷嘴的流动趋向于(favor)喷嘴入口截面的下游一半,因为进入角度不很陡峭。

声速平面的扭曲和紊乱因此影响了在扩散部分的清洗流体的膨胀,并且导致出口压力和马赫数的不均匀分布。这些发现与对现有的一个传统吹灰器喷嘴的测量和预测的出口静压一致。

为了说明声速平面中的变动,出口的实际马赫数可以如下与理想的喉部对出口面积相关:

>>>>A>e>>At>>·>>>A>t>>>A>>t>_>a>>>>=>>1>>M>>e>_>a>>>>>>[>>(>>2>>γ>+>1>>>)>>>(>1>+>>>γ>->1>>2>sup>>M>>e>_>a>>2sup>>)>>]>>>>(>γ>+>1>)>>>2>>(>γ>->1>)>>>>>->->->>(>3>)>>>s>

其中,

At_a=实际声速平面的有效面积

Me_a=在喷嘴出口的实际马赫数的平均值

出口马赫数以及静压的不均匀分布的程度分别在吹灰器的上游和下游喷嘴50A和50B之间变化。看起来下游喷嘴50B比上游喷嘴50A展示出更多的不均匀出口条件,这被认为是造成其相对较差性能的一部分原因。

下游喷嘴50B相对于远端51的位置不仅造成很大的液压损失,而且还进一步造成输入蒸汽流与喷嘴入口的不对齐。再次,在喷嘴入口的较大的流体的不均匀分布将转化成声速平面的更大的变动和扭曲以及因此更差的性能。对于现有技术结构,与上游喷嘴50A相比,下游喷嘴50B的比率(At/At_a)更小。

在设计更有效的吹灰器喷嘴的时候,需要将理想的和实际的面积比率(At/At_a)保持更接近统一。已经提出了一些方法来完成这个目标。对于上游喷嘴,“At/At_a”比率部分地受图2A中所示的尺寸“X”和“α”影响,(At/At_a)=f(α,X)。尺寸X表示喷嘴50A和50B之间的纵向间距。

较小的间距X将造成入口蒸汽流27变得与上游喷嘴轴线更加不对齐。举个例子,具有五英寸间距X的喷嘴段比具有四英寸间距X的喷嘴具有相对更好的性能。

在间距X越大越有益的同时,由于机械原因在大多数吹灰器应用中期望保持X最小。在这种情况下,应该应用一个最适宜的间距X,这个间距应该将流动扰动最小化并且还满足机械要求。而且,减小图2A所示的流体流的进入角(α)将减少在喷嘴入口的流动分布不均,并且潜在地减少进口损失。间距X还必须根据吹灰管14的前进的螺距来选择,因为优选的是每个喷嘴的喷射不撞击同样的表面。

对于下游喷嘴50B,“At/At_a”比率部分地受图2A中所示的尺寸“Y”影响,(At/At_a)=f(Y)。尺寸Y限定为远端51的内表面和下游喷嘴50B的入口轴线之间的纵向间距。

再参考图2A,远端平面相对于下游喷嘴50B的位置影响进入喷嘴的流体流的对齐并且造成更大的流动分布不均。举个例子,Y1(代表了现有技术)是喷嘴中心轴线和吹灰管的远端51之间的最小的有利距离。具有这种结构,喷嘴性能相对较差。Y2是在表示为51’的修改的远端表面的基础上的改进的距离。在Y2的情况下,清洗流体25不流经下游喷嘴50B,因此消除了由箭头29和33表示的流动停滞。相反流动被有效地引导到喷嘴入口。因此,如图2A所示,如果尺寸Y假设在沿着喷嘴段52的纵向轴线的左手方向上是正的,那么在负的Y方向上就不会有任何清洗介质的充分流动。而且,如果喷嘴50B的限定一Z轴线的纵向轴线(以虚线示出)假设在从喷嘴的排出方向上是正的,那么进一步的事实就是一旦沿着喷嘴段52到达流体首先开始进入下游喷嘴50B的纵向点,就完全不会有任何具有负的Z分量的速度向量。通过这种方式,在喷嘴入口的液压和能量损失被最小化,从而改善了下游喷嘴50B的性能。而且,通过这种改善,清洗流体更加均匀地进入下游喷嘴50B,因此将声速平面的扭曲最小化,这接着又增强了流体膨胀以及总压力向动能的转化。Y的最适宜的值是大致等于Y2,这个值是下游喷嘴50B的入口端的直径的一半。

另一方面,对51”提供一个远端内表面的形状是没有益处的。在这种结构中,入流面积被减少,并且流体流相对于喷嘴中心轴线被进一步不对齐(进入角度ε被增加),这将导致流动分离和对声速平面的更大的扭曲。

现在参考图3和图4,示出了根据本发明的第一实施例的教导的一个吹灰管喷嘴段102。吹灰管喷嘴段102包括具有一外表面105的一个中空的内部主体或增压空间104。吹灰管喷嘴段的远端总体上以参考标号106表示。吹灰管喷嘴段包括径向设置且纵向间距的两个喷嘴108和110。优选地,吹灰管喷嘴段102以及喷嘴108和110形成一个一体件。作为选择,将喷嘴焊接在喷嘴段102内也是可能的。

图4详细示出了喷嘴108和110。如图所示,喷嘴108设置在吹灰管喷嘴段102的远端106,并且一般地认为是下游喷嘴。纵向远离远端106设置的喷嘴110一般地认为是上游喷嘴。

所示的上游喷嘴110是已知的拉瓦尔结构的典型的收敛扩散喷嘴。特别的,上游喷嘴110限定与吹灰管喷嘴段102的内部主体104连通的一个入口端112。喷嘴110还限定一个出口端114,清洗介质通过该出口端被排出。收敛壁116和扩散壁118形成喉部120。喷嘴110的排出的中心轴线122基本上垂直于吹灰管喷嘴段102的纵向轴线125。然而,还有可能是排出的中心轴线122在大约70度(70°)的角度到基本上垂直于所述纵向轴线的角度之间取向。喷嘴110的扩散壁118限定从排出的中心轴线122测量的一个扩散角1。喷嘴110进一步限定一个膨胀区域124,该膨胀区域具有在喉部120和出口端114之间的一个长度L1。

下游喷嘴108也包括围绕轴线136形成的一个入口端126和一个出口端128。不进入上游喷嘴110的清洗介质的一部分在入口端126进入下游喷嘴108。清洗介质进入入口端126并且通过出口端128排出喷嘴108。收敛壁130和扩散壁132限定下游喷嘴108的喉部134。喉部134的平面基本上平行于喷嘴段的纵向轴线125。下游喷嘴108的扩散壁132是直的,也就是形状为圆锥形,但是其他形状也可以使用。喷嘴108的中心轴线136在大约70度(70°)的角度到基本上垂直于吹灰管喷嘴段102纵向轴线125的角度之间取向。喷嘴108限定从排出的中心轴线136测量的一个扩散角2。在喉部134和出口端128之间限定一个膨胀区域138,该膨胀区域具有一个长度L2。

因为喷嘴的性能部分地依赖于通过喷嘴排出的清洗介质喷射的膨胀程度。优选地,下游喷嘴108和上游喷嘴110具有不同的几何尺寸。同样,每个喷嘴的性能可以为各自喷嘴经历的流动状况而进行优化,因为一个喷嘴的流动状况可以与另一个喷嘴的流动状况不同。

举个例子,在一些结构中,下游喷嘴108的喉部134的直径可以大于上游喷嘴110的喉部120的直径。而且,膨胀腔138的长度L2可以大于上游喷嘴110的膨胀腔124的长度L1。在一个作为选择的实施例中,喉部134的直径至少比喉部120的直径大5%,并且长度L2至少比长度L1大10%。因此,下游喷嘴108的L/D比率可以大于上游喷嘴110的L/D比率。在某些实施例中,下游喷嘴108的Ae/At比率可以不同于上游喷嘴110的Ae/At比率。而且,在一些实施例中,下游喷嘴108的膨胀腔138的长度L2对出口端128的排出面积Ae的比率可以不同于上游喷嘴110的膨胀腔114的长度L1对出口端114的排出面积Ae的比率。

如图4所示,由箭头152表示的经过上游喷嘴110的清洗介质流通过收敛通道142引导。收敛通道142形成于上游喷嘴110和下游喷嘴108之间的吹灰管喷嘴段102的内部104。收敛通道142优选地是通过在下游喷嘴喉部134表面周围设置一个空气动力收敛轮廓主体144来形成。收敛通道142逐渐减小吹灰管喷嘴段102在上游喷嘴110的入口端112和下游喷嘴108的入口端126之间的内部104的横截面。主体144的顶端148在与喷嘴108的入口端126同样的平面上。在优选实施例中,轮廓主体144是吹灰管喷嘴段102和下游喷嘴108的一个一体的部分。轮廓主体144具有一个倾斜的轮廓使得清洗介质流将被导向下游喷嘴108的入口端126。因此,收敛通道142呈现出用于吹出介质的横截面的流动面积,该面积从刚刚经过上游喷嘴110到下游喷嘴108平滑地减少,并且使清洗介质流转向以在减小液压损失的情况下进入下游喷嘴。

当喷嘴段102在操作的时候,清洗介质在箭头150所示的方向上在吹灰管喷嘴段102的内部104中流动。清洗介质的一部分通过入口端112进入上游喷嘴110。清洗介质然后进入喉部120,在这里介质可以达到声速。介质然后进入膨胀腔124,在这里被进一步加速并在出口端114排出上游喷嘴110。

不进入上游喷嘴110的入口端112的清洗介质的一部分如箭头152所示流向下游喷嘴108。清洗介质流入形成于吹灰管喷嘴段102内部104的收敛通道142内。收敛通道142引导清洗介质到下游喷嘴108的入口端126。因此,清洗介质不是充分地纵向流过下游喷嘴108的入口端126。此外,一旦介质流到达入口端126,在负的“Z”反向(定义为与轴线136对齐并且在流体排出方向上为正的)上就没有流动的速度分量。由于收敛通道142的存在,清洗介质流被更加有效地驱动到喷嘴入口126。与进入下游喷嘴108的喉部134的清洗介质相关的能量损失被减少,因此增加了下游喷嘴108的性能。与现有技术不同,流动的介质不必在通过下游喷嘴的一个区域内完全停止并且然后再加速以进入喷嘴108的入口端126。而且,因为对于上游喷嘴110和下游喷嘴108来讲具有不同的几何形状也是可能的,所以进入下游喷嘴108的膨胀区138的清洗介质与在上游喷嘴110的膨胀区124中的清洗介质膨胀得不同,以补偿在喷嘴108和110之间的任何喷嘴入口压力差。排出下游喷嘴108的清洗介质的动能更加接近排出上游喷嘴110的清洗介质的动能。

现在参考图5,示出了根据本发明的另一个实施例的吹灰管喷嘴段202。吹灰管喷嘴段中空的内部204限定一个纵向轴线207。吹灰管喷嘴段202具有一个下游喷嘴208,其设置在吹灰管喷嘴段202的远端206。上游喷嘴210与下游喷嘴208纵向间距。在这个实施例中,下游喷嘴208具有与第一实施例的喷嘴108同样的结构。然而,上游喷嘴210的几何形状不同。在这个实施例中,上游喷嘴210具有弯曲的内部形状,使得入口端212向着如箭头211所示的清洗介质流弯曲。如从入口端212到出口端218所测量的,排出端216的中心轴线是弯曲的而不是直的。上游喷嘴210具有收敛壁220以及连接收敛壁的扩散壁222。收敛壁220和扩散壁222限定一个喉部224。喉部224的中心轴线是弯曲的,使得在喉部224和喷嘴段202的纵向轴线207之间限定的角度Ψ3是在0到90度范围内。角度Ψ3优选地是等于大约45度。

图6A和6B所示的本发明的另一个实施例的吹灰管喷嘴段302限定一个内部表面304和一个外部表面306。喷嘴段302具有设置在远端307的一个下游喷嘴308和具有一入口端312和一出口端314的一个上游喷嘴310。上游喷嘴310具有通过收敛壁318和扩散壁320限定的一个喉部316,在入口端312和出口端314之间延伸的排出中心轴线321,以及通过扩散壁320限定的一个喷嘴膨胀区322。出口端314的平面324与吹灰管喷嘴段302的外部表面306对齐。喷嘴段302进一步具有一个“薄壁”结构还形成斜坡表面328和330以及一个尖端332,在所述薄壁结构中外壁具有几乎同样的厚度。

清洗介质在箭头334的方向上从喷嘴段的近端流向上游斜坡328。下游斜坡330允许清洗介质平滑地流经上游喷嘴310,到达下游喷嘴308的入口端336,如箭头338所示。斜坡328的倾斜角Ψ2是在上游喷嘴310的中间轴线322和上游斜坡328之间测量。斜坡330具有相似的倾斜角度,该角度从中间轴线322和下游斜坡330之间测量。斜坡328和330提供了清洗介质到下游喷嘴308的入口端336的平稳的流动,如箭头338所示。而且,斜坡328和330帮助减少影响上游喷嘴310的湍流涡旋,并且将流过上游喷嘴310以进给下游喷嘴308的流动338的压降最小化。

当1)上游和下游喷嘴具有同样的性能,并且当2)每个喷嘴向着排出压力接近环境压力的喷嘴出口加速清洗流体时上面讨论的多种喷嘴装置的性能是最适宜的。也就是说,同样的喷嘴性能可以是在距锅炉壁一个给定的距离处具有同样的清洗能量或者冲击压力(“PIP”)。注意到,随后的讨论仅仅是为了解释的目的而具体针对图6A和6B所示的实施例。这些讨论也可以应用于其它任何前面讨论过的实施例。

回忆起喉部对出口比率(见方程(1)和(2))是为了最佳的流体膨胀而设计喷嘴时的一个关键参数。具有理想的喉部对出口比率的喷嘴将在喷嘴出口平面获得均匀的完全膨胀的流动。对于一个给定的喷嘴尺寸,例如上游喷嘴310,出口面积依赖于喷嘴膨胀长度“L”和膨胀角度“β”,如图6B所示。理想地,期望具有较长的膨胀长度L和最小的膨胀角度β,以在喷嘴膨胀壁处没有流体分离的危险的情况下获得最佳的喉部对出口比率,因为流体分离以有害的方式影响流体膨胀。也就是说,如果膨胀角度β太大,那么可以导致流体分离。另一方面,如果角度β太小,喷嘴长度L将必需过长以满足喉部对出口面积比率的要求。不希望喷嘴长度过长,因为这将1)违反吹灰装置必须通过壁盒开口的要求,以及2)限制通过下游喷嘴的流体。

上游喷嘴长度受到对流体流阻塞所造成的压力损失的限制。将总的压力损失同喷嘴长度L相关联的一个特征曲线可以通过实验测试或计算流体动力(“CFD”)分析来容易地形成。而且,压力损失可以表现为在上游和下游喷嘴的入口处的总压力的比率,也就是Pup/Pdn,作为L/D的一个函数,其中D是喷嘴段302的增压直径(图7)。

注意到,膨胀角β是根据公式的喷嘴出口面积和喷嘴长度的一个函数:

L=(De-d)/(2·Tan(β))                方程(4)

其中,De=喷嘴出口直径。因此,较大的喷嘴长度L将产生较小的膨胀角度β,反之亦然。因此,如通过图7所理解的,喷嘴长度L或者膨胀角度β是选择的,使得压力损失不是在特征曲线的陡曲部分。

因此,有利的是具有较大的膨胀角度β和较短的喷嘴长度L以使流体阻塞最小化。然而,如果膨胀角度β超过了一个上限,就会发生流体分离,这将减少声速平面的有效面积,如方程3所描述的,这影响了喷射膨胀和出口马赫数。图8的特征曲线将膨胀角度或者喷嘴长度与流体分离相关。特别地,流体分离通过将喷嘴中心线处的确定为Poc的总压力与沿着喷嘴壁但在同一径向平面内的确定为Por的总压力进行比较而被量化。

图8表明较长的喷嘴(小的膨胀角度)使流体分离最小化并且沿着径向方向产生均匀的总压力。再次,喷嘴长度L或者膨胀角度β是选择的,使得总的压力比率不是在特征曲线的陡曲部分。在一些设备中,膨胀角度不再大于10°,以避免严重的流体分离。

值得注意的是,图8是以0度进入角进入喷嘴喉部的流体流的代表。然而对于大多数情况,进入角度δ不是0,如图6B所示,并且因此当绘制特征曲线的时候要考虑总的角度(δ与β的和)。

理想的,通过执行不同的斜坡设计、倾斜的和/或曲线的喷嘴,进入角度δ被最小化。最小化进入角δ的其它方法包括优化曲率的收敛区的半径“R”。例如,CFD分析可以用来发现产生最小进入角的最佳半径R。

通过将图7和图8的特征曲线结合,如图9所示,喷嘴长度L或者膨胀角度β可以选择以满足通过上游喷嘴310的最小压力损失标准并且没有流体分离。

例如一个例子,具有一个上游喷嘴的3.5英寸外径的吹灰管被选择在大约175磅/平方英尺(psi)的吹压(Po)下操作,该上游喷嘴具有1英寸直径的喉部(d=1英寸)。所需的出口面积或出口直径通过方程(1)和(2)来计算,也就是Ae=1.618平方英寸或者De=1.435英寸。一旦个别的喷嘴出口面积已知,就可以计算喷嘴长度和膨胀角度。

从图9中看出,最佳喷嘴长度小于增压内径的一半,也就是L/D≈0.45。因此,如果增压内径D是大约3.1英寸,那么上喷嘴的长度L就是大约1.4英寸。根据方程(4)的等效的膨胀角度就是接近8.8°。

现在看下游喷嘴308,下游喷嘴的喉部尺寸稍微大一些,以弥补由于上游喷嘴主体造成的流动阻塞而在总压力中的损失。而且,从图7中的特征曲线看出,下游总压力Pdn比上游压力Pup大约小20%。为了弥补用于清洗的总能量中的不足,因此期望较大的下游喷嘴。作为一个方针,喉部尺寸增加10%能够使得喷嘴冲击能量或PIP增加大约20%。因此,对于这个例子,下游喷嘴具有直径大约1.1英寸的喉部。并且从方程(1)和(2)可以看出,下游喷嘴的出口直径是De=1.486英寸。

一旦出口直径已知,下游喷嘴303的长度就可以建立在与图8相似的特征曲线上。再次,实验测试和/或CFD分析可以用来建立这种曲线。对于这个例子,图8可以用来为下游喷嘴选择一个L/D,这个值不如用于上游喷嘴的值保守。举个例子,如果L/D≈0.52,那么适当的喷嘴长度是大约1.6英寸,适当的膨胀角度β’是大约6.9°。

前面的讨论公开并描述了本发明的一个优选实施例。通过这些讨论以及附图和权利要求,本领域技术人员很容易意识到,在不脱离如随后的权利要求所限定的本发明的实质精神和合理范围的情况下,本发明可以作出修改和变化。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号