首页> 中国专利> 确定汽车围绕汽车竖轴线的旋转中心的装置

确定汽车围绕汽车竖轴线的旋转中心的装置

摘要

本发明建议一种确定汽车围绕汽车竖轴线的旋转中心的装置,其根据一个偏航率和一个浮动角确定该旋转中心。

著录项

  • 公开/公告号CN1874919A

    专利类型发明专利

  • 公开/公告日2006-12-06

    原文格式PDF

  • 申请/专利权人 罗伯特.博世有限公司;

    申请/专利号CN200480032191.4

  • 发明设计人 T·利希;M·施米德;

    申请日2004-07-22

  • 分类号B60T8/00(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人苏娟;蔡民军

  • 地址 德国斯图加特

  • 入库时间 2023-12-17 17:59:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-07-12

    未缴年费专利权终止 IPC(主分类):B60T8/00 授权公告日:20080611 终止日期:20180722 申请日:20040722

    专利权的终止

  • 2008-06-11

    授权

    授权

  • 2007-01-31

    实质审查的生效

    实质审查的生效

  • 2006-12-06

    公开

    公开

说明书

技术领域

本发明涉及一种按照独立权利要求前序部分所述的确定汽车围绕汽车竖轴线的旋转中心的装置。

发明内容

按本发明的用于确定汽车围绕汽车竖轴线的旋转中心的装置具有的优点在于,本装置可检测旋转中心的移位,因此,行驶动力参数关系到实际正确的旋转中心。在围绕汽车竖轴线的离心运动中开始时旋转中心总是在汽车前部的区域中。在离心运动的过程中旋转中心则朝向汽车的重心运动。此时该旋转中心移动可以以有利的方式被应用于正确地确定行驶动力参数。因此主动的调节系统如行驶动力调节装置(ESP)就可以更安全地调节并且人员保护装置如安全带拉紧器或气囊也可以明显更高安全并更可靠地被激活。特别是对于包含了主动和被动安全性的联系的翻滚感测来说,按本发明的装置是特别适用的。在此,尤其重要的是,正确地获得汽车重心上的横向速度,从而就可以避免在一个翻滚过程情况中相应的错误-和/或过早的激发。有利的是,该旋转中心移动根据浮动角和偏航率来确定。该浮动角可确定汽车纵轴和速度矢量之间的夹角。偏航率是汽车围绕汽车竖轴线的转动。

通过在从属权利要求中描述的措施和改进方案就能实现对独立权利要求中说明的装置的有利改进,所述装置用于确定汽车围绕它的汽车竖轴线的旋转中心。

特别有利的是,该装置在确定旋转中心时附加地考虑浮动角随着时间的变化。一大的浮动角变化表示了汽车的失控并且可以应用于启动旋转中心的计算。

有利的是,不仅偏航率而且浮动角都可以通过另外的行驶动力参数如汽车横向加速度或汽车横向速度和汽车纵向加速度和汽车纵向速度被确定。特别是浮动角可以通过在汽车纵向上和汽车横向上的行驶动力参数被等效地确定。因此测量偏航率和浮动角就不是必需的了。

另外有利的是,在汽车尾部的区域中设置用于检测浮动角的传感机构。作为选择可也可以将这种传感机构设置在汽车的前部中。这种传感机构优选是光学的。也就是说,测量原理是光学的。对此作为例子可以使用一个光学的传感机构,其监视这个可行驶的路基。在此,道路表面的随机的微型结构被成象到传感器中一个周期性的棱形格栅(Prismagitter)上。通过将变化了的微型结构乘以格栅的周期性的结构所产生的暂时的频率则通过传感器场被积分,以便获得一个平均值。为了使测量精度最佳,格栅周期一般位于100和800微米之间并与可行驶路面的测位频率光谱(Ortsfrequenzspektram)相一致。通过进一步的信号处理即通过与汽车所驶过的距离成比例的信号周期的数量就可以求出该速度。特别是通过格栅表面的分块就能实现对速度在两维方向上的确定。另外的方案是,识别该行驶方向并因此可识别浮动角。但是另外的用于确定浮动角的测量方法也是可以的。为此一般说来所有能够在路基上实施速度测量或位置测量的传感器原理都是算数的。除了光学的传感器外此处同样可能的是基于雷达的传感器或超声波传感器。另一种用于获得浮动角的测量方法还可以基于一个测位系统例如全球定位系统。

可以借助偏航率和浮动角确定旋转中心,即将为此所储存的偏航率和浮动角的数值设置在一个表格中,以便以后由此来确定该旋转中心。也就是说,用相应的汽车事先进行实验,以便由此求出这些在以后能够访问的用于确定实际的旋转中心的数值。作为选择可能的是,以实验方式或者以解析方式确定一个表达浮动角和偏航率以及实际的旋转中心之间相互关系的函数。

如上面所述,实际的旋转中心对于行驶动力调节装置是有用的,因为该行驶动力调节装置借助实际的旋转中心就可以更精确地确定行驶动力参数、特别是汽车横向速度。因此就可以使汽车调节装置获得关于实际行驶状态的更精确的计算并确保相比现有技术更安全可靠的汽车的调节。而且对于一个操控该人员保护装置如安全带拉紧器和气囊的人员保护系统来说,实际旋转中心的获知对于最佳的操控是有巨大优点的,因为此处行驶动力参数也可以输入到激发算法中并因此使这些行驶动力参数可以更好地被确定。

附图说明

在附图中描述本发明的实施例并在下面的说明书中作详细解释。

附图示出:

图1是按本发明装置的方框线路图,

图2是一个流程图,

图3是汽车的浮动角,

图4是汽车的离心运动,和

图5是在离心运动期间旋转中心的移动。

具体实施方式

来自USA的数据证明了在汽车倾翻时被动安全性的意义。在1998年中所有死亡性单车事故的一半都要追溯到倾翻事故上。在总的事故发生中汽车倾翻占据了约20%的份额。但是在临界的行驶机动性中则由于汽车结构的原因会强制地产生下面的情况:如果汽车基于外部的环境进入了离心状态,则因此汽车的旋转中心总是开始于前轮上。按照情况则由于旋转速率可能导致,汽车可以完全地通过前轮转动或者该旋转中心移动。通常,旋转中心在沿汽车重心的方向上移动,也就是说汽车围绕重心转动。但是也存在的方案是,旋转中心甚至在沿后桥的方向上移动。因此按照本发明建议,应确定旋转中心移位,以便使这个旋转中心移位可以考虑用于确定行驶动力的参数。因此就能实现根据随时间改变的旋转中心相对一个任意的在汽车几何形状中存在的点例如汽车重心来正确描绘行驶动力参数例如浮动角。首先这适用于为了确定浮动角应用传感器的情况,其中将测得的参数相对一个在汽车几何形状中存在的参考点例如汽车重心作变换。由此获得的优点在于,可以实现相对参考点亦即汽车重心正确地计算该行驶动力参数。这导致的结果是,可能的人员保护装置如安全带拉紧器或者头部气囊可能明显更安全地并且以更高的可靠性被激活。另外这对于一个翻滚感测来说是至关重要的,翻滚感测则包含着主动与被动安全性的联系。对此重要的是,应该正确的获知在重心上横向的速度,依此可以避免相应的错误-和过早激发。

另一个优点则产生于浮动角为一种行驶动力学上支持的调节方式。因为此处必需一种合适的相对汽车轴线的变换,故可以实现一种改进的调节参数的估算并且汽车的稳定性得以提高。

图1表示了按本发明装置的一个方框线路图。一个浮动角传感器S被连接在处理器10的第一数据入口上。这个处理器10可以是一个微型处理器或微型控制器。特别是处理器10可以被安置在一个控制装置中,例如一个用于行驶动力调节或人员保护系统的控制装置中。在处理器10的一个第二数据入口上连接一个驶偏传感器11。通过一个第一数据入-/出口该处理器10与一个贮存器12连接。在贮存器12中可持久地贮存数据。贮存器12也可以具有一个瞬时的贮存器区域。通过一个第二数据入-/出口,该处理器10与一个人员保护系统RHS连接。因此可以将实际的旋转中心传输到人员保护系统RHS去,以便根据其可以激活如空气囊或安全带拉紧器或翻车保护弓形架的人员保护装置。还有一个行驶动力调节装置EPS通过一个第三数据入口与处理器10连接,以便获知实际的旋转中心。而且对于由行驶动力调节装置负责的汽车稳定性来说,这个实际旋转中心的获知是有巨大优点的。

基于实际的浮动角和偏航率,处理器10通过应用一个储存在贮存器12中的表格就可确定实际的旋转中心。

对于浮动角变化适用于下面的等式:

>ver>>β>·>>=>>ω>z>>->>>a>y>>>v>x> >*>>cos>2>>>(>β>)>>->>>a>x>>>v>x> >*>sin>>(>β>)>>*>cos>>(>β>)>>>

由此人们可以通过积分计算浮动角:

>>β>=>>β>0>>+>∫ver>>β>·>>dt>.>>

其中参数ωz表示偏航率,αy表示横向的加速度,αx表示纵向的加速度,vx表示纵向上的速度和β表示浮动角。在正常的行驶状态中浮动角处在4°到8°的范围内并且是一个对于回拉系统的算法并非关键的参数。而且在这个区域中行驶动力调节装置ESP起调节作用,因此危险状态被识别并且在相应的汽车面临失控威胁的状况下通过精确地制动单个车轮使汽车稳定。在行驶动力调节装置ESP不再可能调节的情况中则汽车肯定失控行驶,导致浮动角大于10°并且因此导致汽车围绕其竖轴线地旋转,同时汽车或者平移或者没有平移。

为了确定变化的旋转中心可以应用一个类似形式的算法,其根据浮动角建立、浮动角变化可主动地调用。因为通常在前部区域中发生(greift)旋转时,就可以通过浮动角以及偏航率建立一个函数即例如从一个浮动角为例如25°和一个偏航率为50°/每秒起该转动的重心向汽车重心移动。在增长的浮动角和偏航率情况下就会强制性地产生汽车围绕汽车重心的旋转。因此旋转中心的变化也可以描述为浮动角、偏航率和必要时该浮动角变化的函数。

在一个失控过程被获知以后,为了确定旋转中心的变化可以应用一个简单的查找表格(Look-Up-Table),它首先描述了在汽车重心至旋转中心的间距和偏航率之间线性的关系。也就是说,浮动角用作识别失控过程的条件,同时偏航率因此被用于确定实际的旋转中心。下面的表格提供了一个例子用于偏航率和检测浮动角的传感器至旋转中心的间距。由这个间距和传感器至重心的间距就获得实际的旋转中心离重心的间距。

  偏航率Wz[°/s]  ->传感器至旋转中心的间距ι传感器,旋转中心  10  最大->按照失控方向至前部区域例如右边或左边的传感器位置例如7m  20  4.8m  30  4.5m  40  4m  50  3.8m  60  3.54m  70  3.25m  80  3m  >=90  传感器至汽车重心的间距-这是公知的例如2.95。

图2以一个流程图解释了本发明装置实现的过程。在方法步骤200中借助传感器S检测浮动角。在方法步骤201中检查,这个浮动角是否超过一个确定的界限,此处作为界限是10°。但是也可以采用8°或一个近似值。如果浮动角处于这个值之下,则因此没有出现离心过程,并被跳回到方法步骤200去。但是如果浮动角在10°之上,则因此跳到方法步骤202去,以便应用如上所述的偏航率来确定实际的旋转中心。为此在方法步骤203中借助上面所述的表格或一个等式来确定旋转中心变化,以便确定相应的数值,例如重心至旋转中心的间距,进而能够最佳地实现行驶动力参数的转换。在方法步骤204中确定旋转中心,即假设在汽车的前部区域中的起始旋转中心和旋转中心变化相互是关联的,从而确定实际的旋转中心。

图3表示了此处要被考虑的基本的行驶动力参数。汽车30沿着一个轨迹31运动。汽车30具有一个在汽车纵向上的速度分量Vx和一个在汽车横向上的速度分量Vy。这两个参数产生一个描述轨迹31上切向的矢量VcM。在矢量VcM和Vx之间存在夹角β。这个夹角即是浮动角。

图4描述了在离心运动中的初始状态和末端状态。在图4a中一个汽车40设有一个重心CM和一个检测浮动角的传感器S,其中传感器S被安置在汽车尾部例如尾部保险杠上。传感器S至重心CM的间距通过在汽车纵向上的参数1x和在汽车横向上的1y来确定。此时图4b表示了汽车围绕前桥的旋转。旋转中心D在汽车41的汽车前部上给出。重心CM、当然还有传感器S的安装地点都是不变的。传感器S至旋转中心D相对纵向来说此处具有间距1d。但是旋转中心D在离心运动期间是移动的,因此在图4c中描述这个末端状态,在那里旋转中心D与重心CM相吻合。传感器S因此至重心CM或旋转中心D在纵向上具有相同的间距,也就是说1x=1d。

传感器S位于汽车尾部上并例如测量该纵向的速度Vx,传感器和横向速度Vy,传感器。传感器具有至前桥的间距和至重心的间距

由此在考虑了传感器位置的条件下即可得出重心的速度VCM

vCM=v传感器z·ι传感器,CM

在此基本的假定是,旋转围绕重心开始。这在一个离心过程的开始时是不符合的并且在离心运动期间也不定是必然符合的。更确切的说产生一个确定的取决于当时相应偏航率的依赖关系,即,使汽车转动的转动能量是否足够。这就意味着,上面被推导出的速度使旋转的份额失真了,因为旋转中心至传感器的间距是一个与时间相关的参数:

vCM=v传感器z·ι传感器,旋转中心(t,ωz)。

在开始离心时基本上得出传感器至前桥的差值作为间距,因为汽车的旋转总是围绕前轮能被导入的。按照地基、偏航率等存在的方案是,汽车围绕前桥旋转但是旋转中心被从前桥向重心地移动。如果这个情况出现了,则因此汽车将围绕着重心旋转并且上面的原始公式又符合了。

图5以一种快速图表来解释旋转中心的移动。在开始时汽车在位置50中具有重心59和旋转中心58及传感器S。此处至传感器的间距是最大的。在下一个步骤中旋转中心已运动至点501,因此目前汽车51围绕着旋转中心501转动。在图52中旋转中心移动至位置502并且此时是进一步向重心59移动靠近了。在图53中旋转中心又己经稍稍进一步移动了,而且在图54中,旋转中心504己经是在风挡玻璃的区域中了。在图56中旋转中心505进一步靠近重心59了,然后在图57中旋转中心506就到达了重心59处。在偏航率和浮动角增长的情况下旋转中心就朝汽车重心的方向移动。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号