首页> 中国专利> 用于无线电基站中的无线电设备控制节点与远程无线电设备节点之间的通信的接口、装置及方法

用于无线电基站中的无线电设备控制节点与远程无线电设备节点之间的通信的接口、装置及方法

摘要

描述了一种用于在无线电基站中的无线电设备控制(REC)节点与无线电设备(RE)节点之间的通信的接口、装置以及方法,所述无线电基站利用多个天线载波通过无线电接口收发信息。所述REC节点与所述RE节点相分离且通过传输链路相耦合。产生控制信息和用户信息,以通过传输链路从REC节点和RE节点中的一个传输到另一个。描述了很多有利的接口特征。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-05-26

    授权

    授权

  • 2007-01-03

    实质审查的生效

    实质审查的生效

  • 2006-11-08

    公开

    公开

说明书

技术领域

本发明涉及分布式无线电基站,其中基站包括与发生RF处理的一个或更多个远程无线电单元相耦合的主基带处理单元,并且更具体地,本发明涉及主基带处理单元与所述一个或更多个远程无线电单元之间的无线电接口。

背景技术和发明内容

在典型的蜂窝式无线电系统中,无线用户设备单元(UE)通过无线电接入网络(RAN)与一个或更多个核心网络进行通信。用户设备单元(UE)可以是诸如移动电话(“蜂窝式”电话)和具有移动终端的膝上型电脑的移动站,并由此例如可以是与无线电接入网络进行语音和/或数据通信的便携式、小型、手持、内置计算机、或者车载移动设备。另选地,无线用户设备单元可为固定的无线设备,例如作为无线本地环路等的一部分的固定蜂窝式设备/终端。

无线电接入网络(RAN)覆盖被划分为小区的地理区域,每个小区由一个无线电基站来进行服务。小区是由基站处的无线电设备提供无线电覆盖的地理区域。各小区通过在各小区内广播的唯一标识来识别。无线电基站与该基站范围内的用户设备单元(UE)通过空中接口进行通信。在无线电接入网络中,若干个基站典型地与一个称为基站控制器(BSC)或无线电网络控制器(RNC)的控制节点(例如,通过陆上线路或微波链路)相连接。该控制节点监管并协调所连接的多个无线电基站的各种行为。该控制节点典型地连接到一个或更多个核心网络。

蜂窝式通信系统中的常规无线电基站通常位于单个位置处,并且基带电路与无线电电路之间的距离相对较短,例如为大约一米。分布式无线电基站包括无线电设备控制(REC)和无线电设备(RE)。两个部分可以是物理分离的(即,RE可靠近天线,而REC位于便于接入处),或者如在常规无线电基站设计中将两者置于同一地点。无线电设备控制(REC)执行基带信号处理,而各无线电设备(RE)在基带与无线电频率之间进行转换,并通过一个或更多个天线发射并接收信号。各RE服务于特定地理区域、扇区、或小区。独立的专用光和/或电链路将无线电设备控制(REC)连接到多个远程无线电设备(RE)中的每一个。然而,以下所用术语“链路”是指逻辑链路,而并不限于任何具体物理介质。各链路从REC向RE下行载送数字信息,并从RE向REC上行载送数字信息。

理想地,在REC与一个或更多个RE之间具有标准化的公共接口。这种标准化的接口使得能够实现对无线电基站灵活高效的产品区分以及对RE和REC的独立技术改进。优选地,这种标准限定包括用户平面数据、控制和管理(C&M)平面传输机制以及同步在内的针对传输、连通性以及控制的必要项。标准化对于硬件相关层(例如,物理层)尤为有利,以确保仅需要进行有限的硬件改造就可以在接口两侧实现技术改进。一个有利的结果是在功能性、管理以及特性方面的产品区分不再受限。

理想地,这种接口支持如下其它特征:

●极高带宽利用,其中带宽支持尽可能多的天线载波

●极低延迟(不包括缆线延迟)

●时间和频率分布方面的高性能

●灵活控制和管理信令带宽

●即插即用启动

●灵活的线路比特率

●灵活的物理接口

利用用于在无线电基站(利用多个天线载波通过无线电接口收发信息)中的无线电设备控制(REC)节点与无线电设备(RE)节点之间进行通信的接口、装置以及方法来实现这些和其他特征。REC节点与RE节点相分离且通过传输链路相耦合。产生控制信息和用户信息,用以通过传输链路从REC节点与RE节点中的一个传输到另一个。用户信息包括多个数据流。各数据流对应于与每一无线电载波一个天线相关的数据。将控制信息和用户信息格式化为多个时分复用(TDM)帧。各基本TDM帧包括用于控制信息的控制时隙和用于用户信息的多个数据时隙。各数据时隙对应于天线载波之一的数据流。然后帧通过传输链路被发送至另一节点。在宽带码分多址(CDMA)环境下的示例实施中,帧的时间段对应于一个CDMA码片时间段。

各天线载波在帧中具有对应的时隙,使得可将各天线载波的数据采样插入该天线载波的对应时隙中。帧中的对应时隙位置可以是固定的或者为可变的。控制信息包括多个不同的控制流,并且这些控制流中的一部分包括在控制时隙中。不同的控制流例如可以包括四个控制流:无线电接口和定时同步信息、控制和管理(C&M)信息、层1(L1)控制信息、以及扩展信息。该控制和管理信息包括快控制和管理信息以及慢控制和管理信息,而L1信令表示快控制和管理信息以及慢控制和管理信息的比特率。

可将控制时隙设置到64个子信道中。各个这种子信道对应于每第64个控制时隙。然后64个子信道可以被分配来载送四个控制流。多个基本帧可组合为一个超帧,并且多个超帧可组合为一个无线电帧。超帧的一个或更多个边界用来将各控制时隙映射到各自分配的子信道。超帧内的四个控制字中的每一个载送控制流的一个子流。

控制信息包括用于在REC与RE之间取得同步的已知码元。同步包括检测已知码元来检索一个或更多个超帧边界。周期性地提供已知信号,并且在无需响应于检测到已知信号发送反馈信号的情况下获得同步。在一个非限制的示例实施中,已知信号为K28.5码元。

REC与RE之间的启动通信包括传输链路的一个或更多个特性的协商(negotiate)。协商开始于REC通过接口发送传输,各传输利用几个不同线路比特率中的一个。RE试图检测各个这种传输的线路比特率。如果RE检测到REC传输中的一个,则RE采用相同的线路比特率来回应REC。类似地,REC和RE中的一个或全部两个发送用于一个或更多个控制和管理流的最高支持比特率。具有最高控制和管理比特率的节点采用另一节点支持的最高速率。另选地,REC提出较低的C&M比特率。针对最高支持版本的REC-RE接口通信协议发生类似的往来协商。

另一特征包括校准或补偿与传输链路/内部接口相关联的传输时间延迟。更具体地,RE获得从REC接收到帧结构时与将帧结构发送至REC时之间的RE时间差。类似地,REC确定在从RE接收到帧结构时与将帧结构发送至RE时之间的REC时间差。通过减掉RE时间差和REC时间差来确定往返延迟。

结合附图和详细说明,进一步说明这些和其他特征及优点。

附图说明

图1例示了包括若干节点B或无线电基站的UMTS系统;

图2A-2C例示了一些非限制的示例REC/RE拓扑;

图3例示了REC/RE与各种信息流或平面之间的CPRI;

图4与图3类似,并包括服务接入点;

图5示出了CPRI协议概况;

图6是示出在REC和RE中的每一个中的特定功能组件的功能框图;

图7示出了针对特定的示例CDMA码片周期和CPRI线路比特率的基本帧结构;

图8示出了针对特定的示例CDMA码片周期和更高CPRI线路比特率的基本帧结构;

图9示出了针对特定的示例CDMA码片周期和更高CPRI线路比特率的基本帧结构;

图10示出了帧结构的包装(packed)复用构成和灵活复用构成;

图11A和11B示出了在一个非限制的示例实施例中基本帧、超帧以及UMTS无线电帧之间的关系;

图12概念性地示出了REC和RE节点中的成帧器/去帧器(framer/deframer)如何将用户信息与控制信息复用到帧结构中;

图13例示了在一个非限制的示例实施例中采用的示例控制信息子信道结构;

图14例示了在一个非限制的示例实施例中的一个超帧内的控制字和子信道;

图15是例示REC与RE之间的示例启动过程的状态图;

图16是识别REC与RE之间的各种时间延迟和偏差的图;以及

图17按时间示出了在图16中示出的各端口处的输入和输出信息。

具体实施方式

出于说明而非限制的目的,下面的说明阐述了例如特定实施例、过程、技术等的具体细节。但是本领域技术人员应当明白,除了这些具体细节,还可以采用其他实施例。例如,尽管利用非限制示例便于进行下述说明,但是本发明可以应用于采用多个基站的任意类型的无线电通信系统中。在某些情况下,略去对公知方法、接口、电路和信令的详细说明,以使说明不被非必要的细节掩盖。另外,在某些图中示出单独的块。本领域技术人员应理解,利用单独的硬件电路、利用软件程序和数据、结合经合适编程的数字微处理器或通用计算机、利用专用集成电路(ASIC)、以及/或者利用一个或更多个数字信号处理器(DSP),可以实现这些块的功能。

由于诸如GSM的第二代蜂窝式电信系统的特定数据处理限制,开发了第三代系统来提供例如使得能够发送和接收高质量图像和视频的高比特率服务,并提供对万维网的高数据速率接入。将这些第三代移动通信系统称为通用移动电信系统(UMTS)。宽带码分多址(WCDMA)是用于通过无线电/空中接口的通信的主要第三代接入技术。UMTS系统包括多个逻辑网络组件,每个逻辑网络组件都具有定义的功能。图1示出了示例UMTS系统。将网络组件分组为无线电接入网络(RAN)和核心网络(CN),无线电接入网络有时被称为UMTS陆地RAN(UTRAN),其处理全部无线电相关功能,而核心网络负责对呼叫进行切换和路由,以及与诸如PSTN、ISDN、PLMN以及因特网的外部网络的数据连接。UTRAN覆盖被划分为多个小区的图形区域,每个小区由一个无线电基站来提供服务。小区是无线电设备提供无线电覆盖的地理区域。用户设备(UE)连接用户与无线电/空中接口。

下面的描述集中针对节点B,所述节点B在Iub接口与无线电/空中接口Uu之间转换数据流。如图3所示,此处将把REC连接到一个或更多个RE的无线电基站内的内部接口称作通用公共无线电接口(CPRI)。虽然设想为公共接口,但CPRI接口也可用作专用接口。下面的说明基于术语UMTS,但并不仅限于UMTS系统,相反可以用于任何分布式无线电基站。

图2A示出了一个REC与一个RE之间的一个点对点CPRI链路。图2B例示了一个REC与一个RE之间的多个点对点CPRI链路,而图2C例示了一个REC与若干个RE之间的多个点对点CPRI链路。尽管图2C示出了“星形”拓扑,但也可采用其他拓扑,例如,可将REC和RE按照若干个RE级联的结构相耦合。

无线电设备控制(REC)节点经由UMTS无线电接入网络中的Iub接口提供到无线电网络控制器的接入,而无线电设备(RE)节点用作与用户设备的空中接口(在UMTS网络中空中接口被称为Uu接口)。REC执行数字基带域的无线电功能,而RE执行模拟无线电频率(RF)功能。功能分离使得可以限定基于同相和正交(IQ)复数数据的通用CPRI接口。继续说明非限制UMTS示例,REC涉及Iub传输、无线电基站控制和管理以及数字基带处理。RE提供诸如滤波、调制、变频以及放大的模拟和无线电频率功能。表1中示出了针对UMTS FDD标准的REC与RE之间的功能分离的概况。

表1

REC的功能                RE的功能

  下行链路  上行链路  下行链路  上行链路  无线电基站控制和管理  Iub传输    RRC信道滤波  Iub帧协议  D/A转换  A/D转换
  信道编码  信道解码  上变频  下变频  交织  解交织  对各载波的开/关控制  自动增益控制  扩展  解扩  载波复用  载波解复用  扰频  解扰  功率放大和限制  低噪放大  增添物理信道  到信号处理单元的信号分布  天线监管  发送对各物理信道的功率控制  发送功率控制及反馈信息检测  RF滤波  RF滤波  帧和时隙信号产生(包括时钟稳定)               测量              测量

除了用户平面数据(IQ数据),还在REC与RE之间交换控制和管理(C&M)控制信号以及同步控制信号。利用层1和层2协议,将包括控制和用户数据在内的全部信息流或“平面”复用到一个数字串行通信线路中。参见图3。如图4所示,不同的信息流经由适当的服务接入点(SAP)接入层2。

由CPRI来定义物理层(层1)和数据链路层(层2)的协议。层1限定了电特性、光特性、不同数据流的时分复用、以及低级信令。层2限定了介质接入控制、流控制、以及控制和管理信息流的数据保护。存在多个协议平面或流。控制平面包括用于呼叫处理的控制信息。同步平面在REC与RE之间传送同步和定时信息。管理平面包括用于CPRI接口和RE的操作、管理以及维护的管理信息。用户平面包括必须从无线电基站传送到用户设备(反之亦然)的用户数据。

将用户数据按照复数数据的形式传送,这里将复数数据称为IQ数据,其中“I”对应于复信号的实部或同相分量,而“Q”对应于复信号的虚部或正交分量。经由一个物理CPRI链路可以发送若干个IQ数据流,并且各IQ数据流反映针对一个载波的一个天线(称为天线载波(AxC))的数据。一个AxC与用于一个载波(例如,在一个独立天线振子处的UTRA-FDD载波)的接收或发送的数字用户数据量相关。换言之,AxC为要在特定天线上以特定频率传输的数据。由于在本说明中采用了CDMA方法,所以各AxC包含彼此重叠的多个UE的信息。在示例实施例中,AxC“贮存器”或时隙包含针对一个UMTS码片持续时间的一个AxC的用户数据(例如,IQ采样)。

为信息平面或数据流定义层2服务接入点(SAP),并将其用作性能测量中的基准点。将图4中示出的这些服务接入点表示为SAPCM、SAPS以及SAPIQ。下行链路方向是从REC到RE,而上行链路方向是从RE到REC。

图5例示了物理层34(层1)和数据链路层36(层2)的CPRI协议的概况。层1限定了例如电特性、光特性、不同数据流的时分复用、以及低级信令。层2限定了介质接入控制、流控制、以及控制和管理信息流的数据保护。控制平面包含用于用户平面控制的控制数据流。RE不“了解”关于正在建立或释放的不同呼叫的任何情况。控制平面典型地设置频率和每AxC的输出功率,并读取每AxC的测量。管理平面载送用于对CPRI链路和无线电设备的操作、管理以及维护的管理信息。在无线电设备控制器12中的控制和管理实体与无线电设备14之间交换控制和管理数据,并将其提供给更高的协议层。通过CPRI链路,将控制和管理平面映射到单个控制流上。

用户平面包括要从无线电基站传送到用户设备(反之亦然)的数据。如上述方法,在图5中由块40来表示用户平面IQ数据。经由一个物理CPRI链路可以发送若干个IQ数据流,并且再次说明,每一个IQ数据流对应于一个天线载波(AxC)的数据。

同步平面在无线电设备控制器12与无线电设备14之间传送同步和定时信息。同步数据用于在图6中示出的SERDES(串行器/解串器)76和86中执行的编码(例如,8B/10B编码)。需要同步数据来对齐接收端的解串器与发送端的串行器。同步数据还用于检测码片、超帧、和无线电帧边界、以及下述的相关帧编号。由图5的块42表示的带内信令包括与系统启动的物理REC/RE链路相关的信息、层1链路维护、以及与层1用户数据具有直接时间关系的时间关键信息。块44表示为供应商特定信息保留的信息流。

通过时分复用(TDM)方案将不同天线载波的IQ数据复用到传输链路上。将控制和管理(C&M)数据作为带内信令(用于时间关键信令数据)进行发送或者由位于在适当的层2协议上方的层3协议来发送。CPRI支持两个不同的层2协议,即高数据电平链路控制(HDLC)46和以太网48。控制和管理数据以及同步信息被与IQ数据时间复用。

图6更详细地例示了REC和RE节点。由控制器70(例如,CPU)来管理REC节点12。将成帧器/去帧器72耦合至控制器70。将与针对一个载波的一个天线(即,一个天线载波(AxC))的数据相对应的各数据流提供给成帧器72,该成帧器72将全部数据流/AxC、控制和管理信息、同步信息以及层1(L1)信息复用到一个下面将详述的特定帧结构中。然后将特定RE的帧结构提供至与该RE14相对应的串行器/解串器单元(SERDES)76,SERDES76在与该RE14相对应的输出端口(未示出)上产生串行流。类似地,在输入端口(未示出)上接收来自各RE的信息,由SERDES76将其解串(即,变为并行形式),并将其提供至去帧器72。去帧器72提取数据流、控制管理以及层1定时和维护信息,并将其分布到适当的SAP。本地定时单元74为REC12提供频率和时间基准。

RE14具有类似的结构,并由控制器80(例如,CPU)来管理。将控制器80耦合至CPRI成帧器/去帧器82。成帧器/去帧器耦合至一个或更多个天线振子,其中各天线振子接收对应的数据流。成帧器/去帧器82利用串行器/解串器86提取从REC12接收到的控制和管理数据以及层1维护数据,并通过未示出的控制链路将其提供至控制器80。成帧器/去帧器82还将控制管理数据、层1数据、本地定时单元84提供的定时数据以及数据流信息组合在一个帧结构中,并经由串行器/解串器86将该帧结构按照串行形式提供至REC。从RE14的模拟无线电部分接收数据流信息用以复用到基本帧结构中。

REC12通过CPRI链路规律地发送REC的本地定时单元74产生的“时间标记”,该时间标记可由各RE14很容易检测并识别。将输出或输入接口端的时间标记用于将时间与接口上的唯一载波时刻相关联。在示例实施中,时间标记为REC12每十毫秒发送的K28.5、10比特码元。当RE14接收到该时间标记时,将RE的本地定时单元84设置为预定值,例如零。这样,通过令本地定时单元84“顺从”于REC的本地定时单元74产生的定时标记而使其同步。

通过CPRI接口按帧来载送TDMA信息。在非限制性示例实施中,图7中示出的基本帧的长度为1WCDMA码片周期一>Tchip=1/3.84MHz=260.416667ns。基本帧包括16个字,索引为W=0…15。将具有索引W=0的字用作控制字(CW)。基本帧的16个字中的剩余15个字(W=1…15)专用于图中示出的作为IQ数据块的用户平面IQ数据。字长T取决于总数据率,该总数据率被称为CPRI线路比特率。可获得三个各具有不同字长的可选数据率:614.4兆比特/秒(字长T=8);图8中示出的1228.8兆比特/秒(字长T=16);以及图9中示出的2457.6兆比特/秒(字长T=32)。

各个字对应于8位字节。利用索引B可以寻址图7中的一个字内的各位,其中B=0为最低位,而B=T-1为最高位。利用索引Y可以寻址图8和9中的一个字内的各位,其中B=0为Y=0的最低位,B=7为Y=0的最高位,B=8为Y=1的最低位,依此类推。在图7至9的右侧以代表一位的各个球来表示多个位的传输顺序。在8B/10B编码之后,从位“A”开始将十个码组(“ABCDEI FGHJ”)作为串行数据流而发送。在8B/10B编码中,将一个编码位加入三个最高位中,并将另一个编码位加入五个最低位中。

AxC贮存器载送基本帧中的IQ数据块。该AxC贮存器包含来自同-AxC的NIQ采样,其中N为过采样率。根据基本帧中的“包装位置”或者“灵活位置”来发送AxC贮存器中的IQ采样。压缩位置和灵活位置均示于图10中。在包装位置中,无需在基本帧中的各AxC贮存器之间设置任何保留位且按照AxC号递减次序连续发送各AxC贮存器。对于灵活位置,更高级应用程序判定AxC贮存器的第一数据位将位于IQ数据块中的哪个地址处。未由AxC贮存器使用的位可被处理为保留位“r”。

图11例示了分级嵌入基本帧与UMT无线电帧之间的超帧结构。“W”代表基本帧中的字数,而“Y”代表各字内的字节数。再次说明,在本示例实施中,基本帧对应于UMTS中的单个码片周期。超帧包括256个基本帧,由变量X来表示超帧号。在示例实施中的256个基本帧对应于66.67微秒。将150个超帧包装为单个UMTS无线电帧,在示例实施中,UMTS帧为10毫秒。由变量“Z”来表示各超帧号。超帧结构用于将不同的控制流(及其子流)复用到控制时隙上。最小(就比特率而言)的特定控制流为每超帧一个控制时隙。最小控制流的示例为同步对准流的定时标记(例如,K28.5码元)。选择256个基本帧作为一个超帧在将带宽分配给不同的控制流方面提供了精细的粒度,并简化了实施。

数据控制信息被一同复用在基本帧中。图12例示了在第一复用级1处如何利用一序列控制字(CW)复用多个天线载波AxC1…AxCN(每个具有多个用户数据(IQ)采样U1、U2…等)。依次地,各控制字对应于在第二复用级2处被复用到控制字流的各个控制信息。控制信息包括定时、层1(L1)信令、C&M信息、以及扩展信息。这对应于图5中示出的对不同控制流的逻辑复用。另外,可在第三级3处复用不同的定时信息与不同的层1信令。这对应于图5中示出的对SYNC内的不同信息和L1带内信令42的逻辑复用。图12中未示出不同应用程序到C&M平面上的复用。

为了清晰定义图12中的复用器,优选地,将控制字(CW)组织到子信道中。级2复用器在子信道上工作,并且四个输入中的每一个分配一个或更多个子信道。在示例实施中,定义了64个子信道。各子信道包括每个第64控制字(CW)。超帧中的第一CW属于子信道0。在超帧内各子信道具有4个CW(CW 0-CW3)。子信道0具有在该超帧内的基本帧号0、64、128以及192中的CW。子信道63具有在该超帧内的基本帧号63、127、191以及255中的CW。

图13中示出了该超帧中的CW组成。子信道的索引范围从0到63。一个子信道内的控制字索引(Xs)具有四个可能值——0、1、2和3。由下面等式给出超帧内的控制字索引:X=Ns+64×Xs,其中Ns为超帧中的字号。图12中的级3复用器在将高达四个子流复用到一个子信道上的CW级上工作。按照每超帧一个CW的增量来分配子流。另外,将级3复用器与超帧开端对准,以简化在接收端的解复用。

图13和14中例示了子信道中的控制字的组成。在图13中,很清楚同步时间标记(在图13中称为同步字节)对应于Xs=0和Ns=0处的第一控制字/子信道CW0。如上所述,通过RE检测该控制字内包含的同步时间标记来实现REC与RE之间的同步和定时。除了已知码元,各超帧开始处的时间标记可以是唯一的(下面将描述一个示例)。子信道1包括慢C&M链路,其中慢C&M链路是基于HDLC并在1228.8线路比特率下具有0.24、0.48或0.96Mbps的带宽。慢C&M链路包括载送协议层L2+消息的HDLC帧。子信道2包括层1带内协议信息,该层1带内协议信息包括接口版本、慢C&M链路比特率(若存在的话)、L1控制(例如,RE、SAP使用的重置等)、L1状态(信号存在和质量,端点错误等)。子信道2的最末控制字包括指针“p”,其指向快C&M链路的开端的地址/索引,在本示例中,该地址/索引为在18与61之间的范围内某处的子信道号。慢C&M链路包括载送L2+消息的以太网帧。利用以太网的快C&M在1.22.8线路比特率下具有0.96mbps×N的带宽,其中N为分配的子信道数。为帧或其他用途保留子信道3-15,并且子信道16上至快C&M的指针子信道包括供应商特定信息。供应商特定子信道使得可以在协议中加入附加项来实现产品区别。除了同步字节,子信道0还载送超帧号(CW1中的HFN)和节点B帧号(CW2和CW3中的BFN)。BFN标识在通过空中接口发送的无线电信号中的无线电帧。

图14例示了一个超帧内的控制字和子信道。BFN每150超帧/一个无线电帧进行改变。为了快速与无线电BFN帧结构同步,通过无线电Uu接口传送超帧号(HFN)。RE在接收到一个超帧后可以确定无线电接口(例如,Uu)帧结构。整体传送当前BFN,并且在接收到的超帧开始处的无线电帧内的偏差为无线电帧的[HFN(接收到的)/150]。

L1信令传送服务接入点缺陷指示符(SDI)位等。SDI位表示在C&M链路、同步链路以及IQ数据链路上可获得并可操作更高的协议层(L3及更高)。如果在REC或RE中的传输TDM成帧器检测到至少一个链路缺失(故障情况),则设置SDI位。在检测到SDI位时,接收节点停止释译C&M、同步以及IQ链路并进入“安全状态”。快速通知缺陷链路是非常重要的,这是因为故障IQ链路或同步链路可能导致传输不符合规定要求的无线电信号。故障C&M链路可能进一步干扰重构,而其接着还会破坏这种规定要求。当然,可以发送其他的指示符来实现这些功能中的一个或更多个。

TDM结构要求发送节点REC/RE和RE/REC接收节点都准确知道超帧何时开始。从而,接收节点必须能够检测超帧的第一基本帧、第一基本帧的第一八位位组或字节、以及第一个字节的第一位。通过发送唯一的、已知码元作为超帧中的第一个字来实现全部三个同步级。一个示例为具有总共10位的8B/10B码的K28.5码元。这些位中的两个是冗余位,用于差错检测和/或纠错。当然,还可以采用其他已知码元。控制子信道0的四分之一(即,第一控制字X0)可以用于传送K28.5码元以降低复杂度。利用K28.5码元,RE实现时钟和数据恢复。通过初始发送K28.5码元,REC限定了超帧中的字边界。如果接收字节在操作期间失去了数据恢复,则传送附加K28.5码元。从而,CPRI接口在全部级上自同步,无需来自时钟的RE和数据恢复状态的反馈。除了接口的正常操作以外,也无需特殊动作来恢复同步。

在REC和RE节点处,CPRI接口的启动需要最少的启动信息,即启动为即插即用。这在采用大量无线电基站时尤为理想。启动过程必须实现L1同步位对准和超帧对准。在启动期间,REC和RE协商3个接口特性:接口的线路比特率、协议修订、以及C&M链路特性。因为不存在强制线路比特率或C&M链路特性,因此REC和RE在启动过程期间必须尝试不同的配置直到检测到通用匹配。通用匹配不必是最优的。相反,第一通用匹配允许在下面的通信中使用适当配置的性能交换。

图15例示了示出各种启动状态和转换的启动状态图。在等待(stand-by)状态期间,没有通过CPRI进行发送或接收。操作者可以指定包括线路比特率、C&M链路特性等在内的适合的启动配置。REC和RE还可了解先前成功的配置。在状态B(称作“L1同步和速率协商”)下,REC和RE都实现层1(L1)同步,并确定接口的线路比特率。REC在首次进入L1同步状态时以可获得的最高比特率通过CPRI进行发送,并试图以相同的线路比特率通过CPRI从RE接收。如果REC没有实现同步(即,REC没有以适当重复速率(每超帧1个)接收(1)K28.5码元以及(2)增量HFN),则REC在时间间隔T1之后选择另一线路比特率,其中时间间隔T1例如为0.9-1.1秒。在各T1间隔之后,选择用于接收和发送的新的线路比特率(假设有可用的线路比特率)。可以按照循环方式(即,第一最高、第二最高、…、最低,并从最高线路比特率重新开始)从可用组中选择线路比特率。

RE在首次进入L1同步状态时试图以最高可用线路比特率通过CPRI进行接收。如果RE没有实现同步(即,REC没有以适当重复速率(每超帧1个)接收K28.5码元以及增量HFN),则REC在T1’之后选择另一线路比特率,其中T1’例如在3.9-4.1秒之间。在各T1’间隔之后,选择用于接收的新的接收线路比特率(假设有可用的线路比特率)。再一次地,可以按照循环方式从可用组中选择线路比特率。当RE实现同步时,RE开始以可以成功进行接收的相同线路比特率通过与REC的CPRI接口进行传输。此时,利用对准的上行链路和下行链路超帧结构对层1进行同步。

在成功完成L1同步与线路比特率协商之后,下一启动状态是协议安装。在这一状态期间,确定CPRI的公共协议版本。如果REC和RE中的一个或两个可以采用CPRI的多个修订版,则在试图提取传送的C&M链路之前必须找出公共修订。否则,不能释译层1信令(并且由此不能释译关于可能的C&M链路的信息)。REC和RE协商如下:各节点提出其所支持的最高协议修订版。所提出的修订版最高的节点退回到与另一节点相同的修订版(如果可能),或者提出低于另一节点的其他修订版(如果可能)。如果一个节点提出低于另一节点所支持的最低修订版的修订版,则不能获得公共协议,且启动失败。如果两个节点提出同一修订版,则利用所提出的协议修订继续启动。

在层1同步和协议版本一致之后,启动移至状态C&M平面(L2+)安装来确定公共C&M链路比特率。对于快C&M链路和慢C&M链路并行进行协商。对于两个链路,各个节点提出其所支持的最快可能比特率,即快C&M支持的最快比特率和慢C&M支持的最快比特率。所提出的比特率最高的单元退回另一节点提出的比特率(如果可能)或者提出比另一节点提出的比特率要低的其他比特率(如果可能)。当然,如果没有发现公共的C&M快和慢比特率,则启动失败。如果没有安装快或慢C&M链路,则CPRI接口为“无源链路”,其可与具有C&M链路的另一接口并行使用,例如,当C&M载送接口没有足够的空间来传送全部AxC时。图15中示出无源链路状态。

如果快和慢C&M链路速度一致,则启动进行到供应商特定协商状态。在该状态期间,REC和RE中的更高级应用程序协商CPRI使用。关于性能和性能限制的该特定信息交换基于供应商特定要求形成CPRI的优选结构。此时,完成了启动,开始正常操作。

与同步相关的是对于与CPRI接口相关的延迟进行校准/补偿的问题。CPRI提供了用以校准REC与RE之间的延迟的机制。如图16中所示,定义了用于REC与RE处的输入与输出信号之间的延迟校准和定时关系的具体基准点。基准点R1到R4分别对应于REC的输出点(R1)、RE的输入点(R2)、RE的输出点(R3)以及REC的输入点(R4)。天线示出为“Ra”用作标记。

图17示出了下行链路与上行链路帧定时之间的关系。T12是从REC的输出点(R1)到RE的输入点(R2)的下行链路信号的延迟。T34为从RE输出点(R3)到REC的输入点(R4)的上行链路信号的延迟。Toffset为R2处的RE输入信号与R3处的RE输出信号之间的帧偏差。T14为R1处的输出信号与R4处的输入信号之间的帧定时差(往返延迟)。

RE将RE输出信号(上行链路)的帧定时确定为相对于RE输入信号(来自REC的下行链路信号)的帧定时的固定偏差(Toffset)。该固定偏差(Toffset)为大于或等于0并小于256×Tc的任意值。不同的RE可采用不同的Toffset值。在这种情况下,REC应预先知道各RE的Toffset值(例如,预定值或者RE通过更高层消息通知REC)。另外,如果延迟(T12+T34)超过一个超帧,则RE将从REC到RE的下行链路BFN和HFN上行发送回REC以去除模糊(ambiguity)。

假设上行链路和下行链路方向上的CPRI接口延迟相等,则可以通过各个节点测量发送与接收的超帧结构之差Toffset来确定接口延迟。RE将差值Toffset报告给REC作为Toffset RE。可如下计算往返延迟:往返延迟=Toffset REC-Toffset RE。单向延迟几乎为往返延迟的一半。为了简化对长缆线(例如,延迟>一个超帧/2)的延迟测量,RE基于接收到的超帧号产生其所发送的超帧号。因此Toffset RE长为0与1超帧之间。

可在广泛的执行例和实施例中实践本发明,并且本发明并不限于上述CPRI示例。在瑞典在先申请中描述的CPRI规范v.1.0(2003-09-30)中提供了该特定CPRI示例实施的更多细节,在此通过引用并入其内容。

尽管说明包括各种示例实施例,但应理解权利要求并不限于这些。相反,权利要求旨在覆盖各种其他实施例、执行例、修改例以及等同设计。

本申请要求2003年9月30日提交的题为“Common Public RadioInterface”的瑞典临时申请第SE 0302596-2号的优先权,在此通过引用并入其内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号