首页> 中国专利> 用于将电能从轨道传输给磁悬浮铁路上的车辆的装置

用于将电能从轨道传输给磁悬浮铁路上的车辆的装置

摘要

本发明涉及一种用于将电能从轨道(2,3)传输给磁悬浮铁路上的车辆(1)的装置。本发明的装置的特征在于,它以非接触方式工作,藉此,设计成发射线圈并与电压源(46)相连的至少一个主导体(44)被应用于轨道(2,3)上,并且至少一个安装在车辆(1)的磁体后箱(15)上的接收线圈(47)被应用于车辆上。

著录项

  • 公开/公告号CN1842430A

    专利类型发明专利

  • 公开/公告日2006-10-04

    原文格式PDF

  • 申请/专利权人 蒂森克鲁伯快速运输有限公司;

    申请/专利号CN200580001034.1

  • 发明设计人 P·贝克尔;W·哈恩;L·米勒;

    申请日2005-03-09

  • 分类号

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人郑修哲

  • 地址 德国卡塞尔

  • 入库时间 2023-12-17 17:46:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-04-20

    授权

    授权

  • 2007-04-25

    实质审查的生效

    实质审查的生效

  • 2006-10-04

    公开

    公开

说明书

技术领域

本发明涉及一种如权利要求1的前序部分所述类型的装置。

背景技术

普通磁悬浮车辆的车载能量通常借助于线性发电机以一种非接触的方式产生,该线性发电机被结合到至少一个预定用于承载和/或引导磁悬浮车辆的磁体装置的磁极中,并且该线性发电机例如与长定子共同作用(例如,DE 34 10 119 A1)。能量的传输依赖于磁悬浮车辆的速度,这就是为什么现有技术的装置只是从约100km/h的速度起才覆盖磁悬浮车辆的全部能量需求的原因。因此,在磁悬浮车辆的速度较低时或为零时(例如,在车站),就需要附加的能源。这一方面包括沿磁悬浮车辆内携带的大功率的蓄电池,另一方面包括外部装置,例如,沿着轨道的低速段铺设的接触轨,安装在磁悬浮车辆上的接触轨集电器被指定给所述接触轨。后者使得在操作故障的情况下必须只有在可利用到外部供电的地方才停止磁悬浮车辆。另外,用于这些装置上的财政花费相当大。最后,由于蓄电池中的放电程序或由于机械磨损和破裂,它们需要经常维护。

发明内容

因此,现在本发明所要解决的技术问题是以这样一种方式来构造上面所述类型的装置,使得通过使用简单的和低成本的结构装置来保证有效的和持久的能量传输。

权利要求1特征部分的技术特征用于解决该问题。

根据本发明的装置具有的优点是低磨损和破裂,以及当在冬季工作时也很少需要维护。另外,主导体可以以较低的成本进行制造并且可以沿着整个轨道以可忍受的成本花费进行安装,因此在出现故障的情况下可以在轨道上任何一点停止磁悬浮车辆或以降低的速度操作车辆。另外,将接收线圈固定于磁体后箱上所具有的优点是,其可以与磁体装置结合成一个整体的模块化装置,并且接收线圈相对于主导体的位置经受较少的波动,仿佛接收线圈安装在例如车体上,其中车体通过弹簧支撑在磁体后箱上。

从下面的从属权利要求中将会明了本发明的其它优点。

附图说明

下面将通过优选实施例并基于所公开的附图对本发明进行更详细的描述,附图以不同的比例制作,其中:

图1示意性地示出了通过普通磁悬浮车辆的装备有长定子的轨道区域的部分剖面图;

图2和3分别显示了从轨道侧和从外侧观察的具有两个图1的磁悬浮车辆的磁体装置的模块的透视图;

图4示意性地显示了用于图2和图3的磁体装置的控制回路;

图5示出了与图3相对应的模块,但是在拆去前罩之后并且可以看清安装于磁体后箱内的不同部件;

图6示出了具有进一步细节的图5中的磁体装置的示意性正视图;

图7示出了沿图6中线VII-VII的截面;

图8示出了具有本发明的磁极的单独激励的图6中的磁体装置的示意性电路图;

图9示出了类似于图1的部分截面图,但是以一个更大的比例显示了从轨道到磁悬浮车辆的非接触电力输送;

图10示出了具有用于非接触电力输送的接收线圈的磁体装置的从轨道梁侧部观察的正视图,

图11示出了沿图10中线XI-XI的截面;

图12示出了根据图10的磁体装置的透视正视图;和

图13为图11中X的放大图;

图14为从前部(即从安装在磁悬浮车辆上的磁体后箱侧)观察的、结合到图12的磁体装置中的接收线圈的半绕组的部分的充分放大的示意性透视图;

图15为从后部(即从安装于导轨横梁上并显示在图9中的主导体侧)观察的、与图14相对应的半绕组;

图16示意性地显示了在绕组端部被弯曲约90度的角度后、在图15中可观察到的的半绕组的部分;

图17和图18示意性地显示了与图14和图15相对应的半绕组的视图,但是绕组端部已经被弯曲约180度的角度;和

图19示意性地显示了通过图16的半绕组和主导体的放大的截面图。

具体实施方式

图1示意性地说明了通过磁悬浮车辆1的截面,所述磁悬浮车辆通常可移动地安装于沿着道路的纵向延伸的导轨上,所述导轨包括由钢和/或混凝土制成的横梁(支撑)2以及安装于其上的导轨板3。磁悬浮车辆1由长定子电机推动,该长定子电机由固定于导轨板3下面并且在它们的纵向上一个位于另一个之后排列的定子叠片4构成。该定子叠片4包括未示出的交替排列的齿和槽,被供以变化的振幅和频率的三相电流的绕组插入其中。长定子电机的自身励磁场通过至少一个用作支承磁体5的第一磁体装置产生,所述支承磁体通过至少一个侧托架6固定于所述磁悬浮车辆1上并且所述支承磁体包括朝向如图1中所述的定子叠片4的向下开口槽的磁极。支承磁体5不仅提供励磁场,而且实现在磁悬浮车辆1的工作期间通过在所述支承磁体5和所述定子叠片4之间保持一个限定的气隙7(如10mm)而支承和悬浮。

为了引导磁悬浮车辆1,导轨板3包括侧向固定的导向轨8,该导向轨与同样安装于托架6上的引导磁体9面对并且在车辆工作期间用于保持与在自身和导向轨8之间的间隙7相应的间隙7a。

如图2和图3中所示,图1中所示的支承磁体5和引导磁体9形成了固定于托架6上并且包括用于“支撑”(承载)和“引导”功能的磁体装置10,10a的一个模块。然而,很明显,沿运动方向看,多个这样的模块可以以侧向布置并排地一个接一个地安装于磁悬浮车辆1上。

用于“承载”功能的磁体装置10包括12个彼此前后排列的磁极11,图2中示意性表示的其中一个所述磁极11a的绕组12和铁心14串联地电连接并且通常被以铸造用树脂层或类似形式的防腐层包围。各个磁极11的所述铁心14通过磁极背(未示出)彼此连接并且通过也未示出的磁极板及穿过这些磁极板的杆固定于下文称为磁体装置10的磁体后箱15的装置上。经由主弹簧与磁体后箱15接合的是托架6,托架与抗弯曲的下部结构或悬浮框架16连接(图1),悬浮框架16包括纵向和横向连接器并且支撑所述配有乘客车厢的磁悬浮车辆1的车身17。

磁悬浮车辆1和它们的磁体装置通常为本领域技术人员所熟知,例如,通过出版公开物US-PS 4,698,895,DE 39,28 277A1以及PCTWO 97/30504A1获知,为简单起见,这些出版物通过参考作为本发明公开的一部分。

根据图4的控制回路18用于控制磁极11的绕组12,从而在磁悬浮车辆1行驶过程中保持间隙7为常数。该控制回路包括至少一个间隙传感器,或最好几个间隙传感器19(见图2),所述间隙传感器接界于与磁极11相同的平面,间隙传感器19通过感应或电容装置测量间隙7的实际尺寸并且用作控制回路18的实际值传送装置。通过间隙传感器19传送的电信号被传送到控制器20,在那里与一个额定值进行比较,该额定值通过线路21输入并固定地预选或改变。其中,控制器20为致动器22确定一个差动或致动器信号,该致动器进而通过绕组12以间隙7大致为恒定尺寸并且在行驶过程中保持该尺寸的方式控制电流。

控制回路18所需的工作电压通过图4中所示的并且包括线性发电机的绕组23的供电单元供应,如在图2中作为例子示出的磁极11a的放大细节,所述绕组安装在至少一个磁极内,  并与长定子共同作用以提供例如达到300V的交流电压,其依赖于磁悬浮车辆1的速度。该电压在例如具有一个升高限制器的变压器24中转换成一个工作需要直流电压(例如440V),所述电压一方面供应给控制器20和致动器22,另一方面通过线路26传递给磁悬浮车辆的车载电网。

尽管控制器20、致动器22和变压器24迄今为止已经配置在任何地方,最好在车体17的地板内,因此需要大量的如图3中附图标记27所指示的电缆线路,本发明建议将这些部件完全容纳在磁体装置10的磁体后箱15内。这尤其从图5中得到,图5示出了在移去指向导轨板3的罩28(图2)后的磁体后箱15的视图。例如,附图标记29示出了在磁体后箱15内的孔,其用于容纳没有更详细地说明但在图6和图7中示出的抽屉形装置30并安置控制回路18及其部件20和22,以及供电单元的变压器24。有利的是,该抽屉形装置30被如此构造以便于当组装时,可以建立正确的连接而不需要任何进一步的额外工作,也就是,孔29和抽屉形装置30设有共同作用的插入式和拔出式装置或类似装置。

在磁体后箱15内容纳控制回路18和变压器24是没有任何问题,因为在已知的磁体装置10中的磁体后箱15基本由具有U形剖面的中空体组成,因此提供了充足的空间。因为事实上只有通向车载电网的线路26以及任何为控制和诊断目所需的线路必须从磁体后箱15外面铺设,因此可以在很大程度上省去布设电缆27。所有其他的线路可以铺设在磁体后箱15内并且从那里以最短的距离铺设至间隙传感器19以及绕组12和23。从而可以得出,包括磁极11、控制回路18、供电单元23和24以及铺设电缆的整个磁体装置10形成了自主的机电一体化模块,其中集成了悬浮性能所需要的所有功能。如果需要,在磁体后箱15内可以安装附加的缓冲蓄电池,其在磁悬浮车辆1静止或行驶速度过低的情况下提供所需要的能量。

除了用于“承载”功能的磁体装置10外,图2中所示的模块还具有用于“引导”功能的具有磁极32的磁体装置10a。磁体装置10a被靠近磁体后箱15a(图3)设置并且有利地容纳在例如3096mm的相同栅距内,该栅距也适用于磁体装置10。通过与间隙传感器19类似,其他间隙传感器19a被指定给磁极32并且连接于其它未示出的构造如控制回路18的控制回路,用于保持磁极32和侧向导向轨8(图1)之间的间隙7a为常数。上文借助控制回路18的描述也适于其它控制回路。由于引导磁体通常没有线性发电机的绕组,因此到这些控制回路的电力有利地借助供电单元23和24供应。与磁体装置10相比,在磁体装置10a中只有三个磁极32,由每排三绕组的两排形成。

指定用于“承载”功能的磁体装置10包括12个磁极11,该12个磁极被组合以形成两组,每组由六个直接并排的磁极构成。这些组中的每个组由一个控制回路18控制并且有利地由单独指定给每个组的供电单元23,24供应电流。这样做的好处在于,一方面,在一个组出现故障的情况下,其他的组可以继续工作。另一方面,在一个组出现故障的情况下,具有抗弯曲的纵向和横向连接器的相关悬浮框架16通过一个指定组的邻近磁体装置被保持在合适的位置,而不会使磁悬浮车辆1着陆在滑轨上或者使磁体装置10撞击到长定子。然而,它也伴随有下面将概述的两个缺点。

每六个磁极11的分组式组合的第一个缺点是,在它们的绕组12中会产生相对高的电压。这主要由电容式过压产生,该电容式过压来自于磁极11的绕组的由导电带的制造以及如此产生的寄生电容。由绕组的电感和寄生电容形成的电振荡电路产生了谐振,当磁体装置10受到激励时,谐振可能将带来如此高的电压和电流以至于会损坏绝缘。另一个缺点是,不得不为控制回路18提供特殊的安全装置,该安全装置在致动器22(图4)不正常工作时防止磁极11的指定组撞击长定子。

为了避免上述缺陷,本发明建议为每个组只提供一个磁极11或最多两个磁极11。磁极11的这种分配如图6-图8所示。磁体装置10在这里包括具有绕组12a等的11a到11l的12块磁极、只有部分描绘的间隙传感器19以及线性发电机的绕组23。另外,包含控制回路18和供电单元的磁体后箱15和抽屉形装置30在图2中表示。包含在抽屉形装置30中的部件在图8中显示,然而为了更好的理解位于磁体后箱15下面。附图标记34表示凹进部分,图1和图2的托架6的末端进入其中。另外,图6表示了图2中不能看到的磁极后部35,其将磁极11的铁心14彼此连接。最后,图6和图8显示了六个磁极11a到11f或11g到11l,每组形成了一个以熟知的方式连接于用于磁悬浮车辆1的车体17(图1)的悬浮框架16的半磁体A和B。

如图8中所示,磁极11单独电控制并且彼此独立。为了这个目的,磁极单元36a到36f的每一个被指定给半磁体装置A中从11a到11f的每个磁极,每个磁极单元包含指定的控制回路18和设有如上所述类型的升高限制器或类似装置的指定的变压器24。另外,每个磁极绕组12(例如,尤其是磁极11d的绕组12d)通过导线37连接到一个相关的磁体单元(例如,尤其是磁极单元36d)及包含于其中的控制回路18,每个线性发电机绕组23(例如,尤其是磁极11d的绕组23d)通过导线38连接到相关的磁极单元36d和包含于其中的图4中的变压器24。以上同样适用于所有其他磁极11,如特别在图8中通过磁极11f的放大图所示。另外,现有的间隙传感器19通过导线39连接到所有磁极单元36,以便将间隙7的相关实际值传送给它的控制回路18。另一个半磁体B被相应地构造。

由于所描述的设置,每个半磁体A,B包含每个具有一个指定的磁极单元36的六个磁极11。因此,如果一个磁极11或相关的磁极单元36有缺陷时,因为与有缺陷单元相邻的磁极可以很容易取代它的功能,所以不会存在磁极装置10或半磁体A,B全部受到损害的危险。因此,不需要提供具有对抗致动器22的非正常控制的特殊安全装置的控制回路18,也不会出现有害的电容式过压。如果磁极11不是单独致动而是成对致动的话,那么将会获得相应的优点。特别的优点是,在任何一个部件故障时,只有一个或最多两个磁极11将不工作而不是半磁体的六个磁极或整个磁体装置10的12个磁极不工作。另外,电压水平下降了,因此使车载电网所需要的电压降低。

另外,图8还显示了一个关于形成磁体装置10的始端和末端的磁极11a和11l的特别的特征。由于这些磁极11a、11l被构造为半磁极,因此没有用于连接线性发电机绕组23的空间,相关磁极单元36a和36l有利地供有来自车载电网的电流,如图8中通过线路40所显示的。

随后的用于控制引导磁体的磁极32的过程相似。

借助线性发电机的车载能量的产生仅仅在磁悬浮车辆1达到某个最小速度的轨道段有效。在其它轨道段,电能因此借助安装在轨道上并指定有机械或机械-气动集电器41(图8)的电接触轨产生。集电器41构成了除绕组23之外的供电单元的整体部分,如果实行独立的磁极控制的话,其根据图8被连接于每个单独的磁极单元36。另外,集电器41的输出通过一个合适的变压器42,例如,包含升高限制器的变压器42,通向导线40。如图2和图5所示,集电器41被集成在例如被罩28空气动力学地罩住的磁体后箱15中,并且因此如线性发电机的绕组23一样被集成在磁极装置10的自主式模块中。

由于接触轨和机械集电器41因为容易磨损和破裂的原因并不总是合乎需要的,尤其在高速度时,因此本发明的另一个基本特点是以不同的方式提供从轨道3到磁悬浮车辆1的能量传输,也就是,非接触的并优选是感应的。特别如图9中所示,其描绘了基本相应于图1的一个示意性剖视图,但是以放大的比例。

根据图9所示,在已经设置用于集电器41(图8)的电流轨的轨道处,提供有构造为传输线圈的主导体44,其优选地包括往复地运行并且有利地在轨道2,3的整个长度上延伸的线路段44a,44b。两个线路段44a,44b固定在横梁2上,例如,通过由绝缘体组成的保持器45。另外,主导体44连接到例如300V的优选高频率的电压源46(仅仅示意地显示)。

代替集电器41,在磁悬浮车辆1上安装一个接收器或接收线圈47。接收线圈47被优选地构造成不围绕主导体44,而是以一个小间距与其相对。因此,可以像控制回路18的其它所述部件和根据本发明的供电单元那样将接收线圈47容纳在磁体后箱15中并且用由电绝缘材料组成的罩18覆盖它。

根据本发明的特别优选实施例,保持器45为铰接构造,使得主导体44被铰接地安装并且可旋转到横梁2的顶部或底部,也可以被分段地折合。因此,可以避免在工作过程中对工作存在干扰的主导体44的完全拆除。

图10-图13以与图5类似的图显示了接收线圈47的构造,并且由于冗余的原因,线圈47有利地具有每个指定给上面所述的半个磁体A,B中的一个的两个半部47a,47b,因此在该实施例中每个部分具有约1500mm的长度。在图10和图12中以粗线表示的每个半部47a,47b优选地包括多个平行的导体47c(图13),所述导体47c相对于主导体44被如此设置以便被由导体44或分别由线路段44a,44b产生的同心磁场线穿透,因此由主导体44供应的约为300V的电压可在其未显示的连接端被输出耦合。因此,两个连接端可以类似于图8连接到磁极单元36或变压器42。很明显,如果磁悬浮车辆1在纵向两侧装有磁体装置10,10a,那么有利地适合的主导体44被设置在横梁2的两侧。

接收线圈47优选地与所需连接部件(例如,插塞连接器)一起加工成一个预制的模块化组,并且被如此地安装在磁体后箱15或罩28处和/或整体地形成在磁体后箱15或罩28中,从而接收线圈47形成了由磁体装置10形成的自主式模块的一部分。

电力的非接触传输的一个基本优点是,它以机械低磨损的方式工作,并且如同应用接触轨的情况,能量输出耦合与行驶速度无关。另外,由于每个磁体装置10具有两个线圈半部47a,47b,因此获得了多重冗余。进而,可以省去线性发电机的绕组23并且如果适当设计,可以省去甚至升高限制器以及车载蓄电池。如果需要,可以通过设置在轨道旁的简单的铅蓄电池来保证应急供电。

接收线圈47或半绕组47a,47b优选地分别以所谓的分层绕组的方式构造。如图13,14和15所示,对于半绕组47a,它们包括位于一个平面中的多个层48。各个层48优选地由具有圆形或方形横截面的导体制造并且具有基本直的、彼此平行地沿着磁体装置10(图12)延伸的第一和第二纵向段48a,48b以及连接它们的端部的绕组端部48c。纵向段48a,48b相对于主导体44的线路段44a,44b平行延伸并且用于产生电压。第一纵向段48a被指定给线路段44a,第二纵向段48b被如此地指定给主导体44的线路段44b,使得每个线路段44a,44b大约设置在由被指定的纵向段48a,48b形成的层部分的中间,如在图14中特别显示的。与此对比,半绕组47a的导体大致在垂直于线路段44a,44b的绕组端部48c的区域中延伸,因此一方面它们不会有助于或至少仅仅稍微有助于电压的产生,另一方面在磁体装置10的纵向上具有一个根据图14中的尺寸l的相对大的空间需要。由于实际的原因,绕组端部48c另外还不能越过磁体装置10(图12)的纵向端部伸出,因此它们产生了以下缺点,即减少了用于产生电压的纵向段48a,48b的有效长度并因此妨碍了理想电压的产生。

为了避免这个缺陷,本发明建议在绕组端部48c的区域中以一定角度从由纵向段48a,48b形成的绕组平面向后弯曲接收线圈47和/或它的半绕组47a,47b。图16中示意性地显示了以约90度的角度弯曲绕组端部48d,图17和图18示意性地显示了以约180度的角度弯曲绕组端部48e。当根据图9和图12的接收线圈47被安装于面对主导体44的磁体后箱15的前端时,绕组端部48d因此垂直于磁体后箱15的前端设置,这就是为什么后者配有容纳弯曲的绕组端部48d的相应的槽和/或凹进部分的原因。通过使绕组端部48e弯曲180度,这些凹进部分可以相应地构造得较浅。

由于接收线圈47和/或它的一半47a,47b的所有各个层48一个位于一个上面地平行于绕组平面安置,所以每个单独的层48可在相同的位置弯曲而不会使相邻的层48阻碍该过程。因此,整个绕组出现较尖锐的拐点,结果接收线圈47和/或半绕组47a,47b的纵向段48a,48b实际上可以在磁体装置10的整个长度上延伸并且因此构造得比图14中所示尺寸长2·l。不言自明,图16到图18中所示的90度和/或180度的弯曲特别代表优选实施例,但是也可以具有其他弯曲角度,尤其是90度到180度之间的角度也是可以的。另外,绕组端部48c也可以朝向相对侧弯曲,这依赖于磁体装置10的排列和构造。最后,本发明使接收线圈47由多于两部分47a,47b构造成为可能,而这不会大大减小所涉及的纵向段48a,48b的总长度。如果沿着磁悬浮车辆有多个磁体装置10和/或接收线圈47,那么线路段48a,48b的有效长度会大大增加。

图14到图18所示的装置在主导体44和接收线圈47之间或线路段44a,44b与纵向段48a,48b之间分别产生了一个相对小的磁耦合。另外,在由金属组成并且设置在接收线圈47后部的磁体后箱15的部件(图9)中存在涡流损耗的风险。因此,已经建议在与主导体44相对的接收线圈47的一侧设置一个用于集中由主导体44产生的并在图19中示意地显示的磁场线49a,49b的装置。该装置尤其包括由具有高磁导率和高电阻的材料构成的部件。用于该目的的一种特别优选的材料为铁素体,尤其是软铁素体,然而,由于其由铁磁粉末制成并且通过挤压和随后的烧结生产,因此其比较易碎、具有机械敏感性以及因此差的可加工性。通过已经建议的设置,用于集中磁场线的装置因此不是由大面积的板状部件构成,而是由多个相对小的材料带和连接部件构成,该连接部件通过粘结或相似方法彼此连接从而形成格子框架并且其具有用于本发明目的的足够的机械稳定性。在接收线圈47由至少两个半线圈47a,47b组成并且每个半线圈以其纵向段48a,48b位于两个线路段44a,44b之一的相对位置的情况下(图9和图12),那么对于每个半线圈47a,47b提供相同的排列。如果提供一件式接收线圈47,那么在这个意义上同样适用它。因此,在下文中只更详细地说明提供给半线圈47a的布置。

根据本发明的一个实施例,该实施例可从图14到图18中明显看到并且图19中对其进行了补充说明,该实施例被认为是当前最好的,在半线圈47a的与线路段44a相对的一侧上设置多个第一材料带50a,所述材料带基本与线路段44a垂直设置并且与由纵向段48a形成的绕组平面平行。在半绕组47a的远离线路段44b的一侧,具有相应的布置,提供了多个第二材料带51b,其有利地设置在与第一材料带51a相同的平面中。两个材料带50a,50b都具有这样一个长度,该长度稍大于与由纵向段48a,48b形成的层部分的高度相对应的尺寸,而它们彼此相对的端部不重叠。每个单独的材料带50a,50b设置得象栅格并且以预先选定的距离彼此平行。

第一材料带50a的端部由第一连接部件51a连接,该连接部件基本与线路段44a平行。因此,第二材料带50b的端部由第二连接部件51b连接。构造得像栅格框架的模块化部件因此被形成,其以一种这里没有更详细说明的方式固定于磁体后箱15。

通过例如胶粘彼此连接的材料带50a,50b和连接部件51a,51b优选地都由铁素体制成。另外,如图19中示意性显示的,它们有利地紧邻地设置在纵向段48a,48b的后部,并且以这样一种方式,使得它们造成由线路段44a,44b产生的场强线49a和/或49b的集中。相对于图19,可以设想,电流目前以从附图平面向外的方向流经线路段44a并且以进入附图平面的方向流经线路段44b。由于材料带50a,50b的高的磁导率,磁场线49a,49b在线路段48a,48b的紧邻后部闭合,如图19中用箭头示意性表示的,因此大大增加了有利于电压产生的磁耦合。同时,由于材料带50a,50b的高电阻,可以避免大的涡流损耗的出现,更是因为材料带50a,50b和连接部件51a,51b对位于其后部的磁体后箱15的那些部件磁屏蔽的原因。最后,连接部件51a,51b在栅格框架结构内使磁通量基本上均匀分布。材料带50a,50b和连接部件51a,51b的长度可以被适当地选择从而可以尽可能多地收集和/或集中磁场线49a,49b。

如图14中示意性显示的,材料带50a,50b和连接部件51a,51b两者优选地具有矩形横截面并因此分别具有窄边和宽边52,53和54,55。宽边53,55优选地平行于绕组平面设置。另外,连接部件51a,51b的宽边55根据本发明抵靠着材料带50a,50b的宽边53,藉此获得了相对大的连接和/或结合区域以及相对小的磁转变阻力,尽管有不可避免的气隙,这导致磁路进一步的改进。当将连接部件51a,51b固定于材料带50a,50b的面向线路段44a,44b的侧面上时,其另外提供了优点,即连接部件51a,51b大体上位于与半绕组47a的纵向段48a,48b相同的平面上,尤其如图19所示。因此,它们不需要额外的空间,尤其是如果它们的厚度不大于纵向段48a,48b的厚度时,这在磁意义上是足够的。

材料带50a,50b和连接部件51a,51b例如由最大长度为100mm、最大宽度为15mm和最大厚度为3mm的铁素体棒制成。通过线路段44a,44b之间的距离约为150mm、每个由纵向段48a,48b形成的层部分的高度约为30mm,如果例如提供10层,则材料带50a,50b的长度可例如达到100mm,并且它们在平行于主导体44方向上彼此之间的距离可达到例如15mm。在这种情况下,接收线圈47距离主导体44的距离达到例如40mm。另外,很明显,在纵向段48a,48b的纵向,如果半绕组47a,47b比可以没有任何问题地被加工的连接部件51的长度充分地长,则数个由材料带50和连接部件51形成的栅格框架可以连续地设置。

本发明并不限制于上面所描述的可以采用很多方法修改的实施例。特别是,这适用于每辆磁悬浮车辆上存在的磁体装置10,10a的总数和用于支承磁体、引导磁体或支承磁体和引导磁体的组合的设计的由磁体装置10,10a建造模块。另外,每个支撑和引导磁体的磁极11、32的数目可以以与所描述的方式不同的方式选择。最后,不言自明的是,不同的特点可以应用于不同于上文所描述和显示的其它组合中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号