首页> 中国专利> 薄板状物的位移量检测方法和位移量修正方法

薄板状物的位移量检测方法和位移量修正方法

摘要

在薄板状物的取出、接纳时,进行支承臂的末端执行器(11)上薄板状物的适当位置和错动位置的检测,并且有效地进行其修正作业。检测机构(18)设置于支承臂(14)上,检测机构(18)呈コ字形体,其开口位于末端执行器(11)侧,并且在薄板状物(2)通过时不造成妨碍,具有进深。

著录项

  • 公开/公告号CN1802736A

    专利类型发明专利

  • 公开/公告日2006-07-12

    原文格式PDF

  • 申请/专利权人 日商乐华股份有限公司;

    申请/专利号CN03826756.X

  • 发明设计人 崎谷文雄;

    申请日2003-07-07

  • 分类号H01L21/68;B65G49/06;B25J13/08;

  • 代理机构北京三幸商标专利事务所;

  • 代理人刘激扬

  • 地址 日本国广岛县

  • 入库时间 2023-12-17 17:25:12

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-01-09

    授权

    授权

  • 2006-09-13

    实质审查的生效

    实质审查的生效

  • 2006-07-12

    公开

    公开

说明书

技术领域

本发明涉及对为了进行搬运和加工而放置时,必须要求较高的位置精度的薄板状物进行操作的运送机器人,本发明特别是涉及用于使下述的薄板状物在盒和各种处理装置之间移动的运送装置,该薄板状物指半导体晶片、液晶显示板用衬底、等离子显示器衬底、有机场致发光衬底、无机场致发光衬底、印刷电路布线衬底等的薄板状物。

背景技术

一般,半导体、液晶用衬底等的薄板状物的制造在高清洁的环境,所谓的清洁室内进行。该清洁室中的上述薄板状物的搬运通过将薄板状物接纳于盒内的托架上,借助盒运送用大型机器人等针对每个盒进行搬运。

图13表示本申请人在过去使用的操作装置1。在该装置中,具有用于设置盒3的多个台24、进行各种处理的处理装置6、在盒3和上述处理装置6之间运送薄板状物2的公知的产业用的运送机器人4、将该运送机器人4移向处理装置6、盒3的送出入口25的正面的直线移动机构5,采用这些部分而进行加工处理的薄板状物2从盒3的托架26上取出,移动到处理装置6的放置台23上,并且放置于该台上。

然后,在处理装置6的内部,对薄板状物2进行各种加工处理。此时,具有对于放置薄板状物2的位置精度,具有较高精度要求的加工处理。比如,进行将2个薄板状物2进行贴合的处理的情况,必须在不产生相应的倾斜、位置的错动的情况下,相对此时的处理装置的规定放置位置,将第1块薄板状物2与第2块薄板状物转交到预先指示位置。

但是,上述盒3的托架26上的薄板状物2按照沿左右方向具有某种程度的富裕的方式放置,由此,各自适当地在稍稍错动的状态接纳。因此,如果在该错动的状态下将薄板状物2运送给处理装置6,则具有无法进行正确的放置,造成处理制品的优良品率(合格率)降低的问题。

用于解决该问题的已有方式是这样的,在处理装置附近单独设置用于检测上述位置错动状态的检测机构,用它检测薄板状物的错位,并且计算错位量,对其进行修正,下面根据图13,对这一系列的步骤进行描述。

在本实施例中,检测机构18设置于直线移动机构5上。

首先,通过直线移动机构5的动作使运送机器人4移向放置于台24上的盒3的正面,接着,使该机器人的臂动作,从盒3的内部将薄板状物2取出到末端执行器11上。然后,再次通过直线移动机构5的动作将运送机器人4移动到检测机构18的正面位置,并且按照放置于末端执行器11上的薄板状物2的端缘隔断检测机构18的光轴的方式使臂12、13旋转。另外,对在该旋转中将薄板状物2的缘部隔断检测机构18的光轴而获得的位置信息和通过指示而预先获得的位置信息进行比较,由此,计算位移量。然而,根据该计算值,运送机器人4移向处理装置6的送出入口25的正面,并且通过支承臂14的动作将末端执行器11的薄板状物2放置于放置台23上,此时,将其放置于根据上述计算值而修正的位置。通过以上方式,薄板状物2在该适当位置进行必要的处理,然后,再次通过运送机器人4,从处理装置6返回到盒3(再接纳)。

上述的检测机构18也可像图示实例那样设置于运送机器人4的移动途中,像上述那样使用,但是也可分别设置于多个处理装置的前面侧。在这里,检测机构18为由投光器19和感光器20构成的光学式的透射型传感器,其为光轴垂直,在装置中间处设置1个的结构。

另外,通过预先指示而获得的位置信息指在运送机器人4的末端执行器11上的薄板状物2位于适合的规定位置时,该薄板状物2的缘部隔断检测机构18的光轴时的位置信息。

此外,上述装置的运送机器人4为清洁室用标量(scalar)型的运送机器人4,其由以吸引方式保持薄板状物2的末端执行器11、可使以可旋转的方式支承末端执行器11的支承臂14(在图示实例中,由底臂13和顶臂12的2个部件构成)旋转的旋转部15、可沿高度方向移动旋转部15的升降机构16、基座17构成。

在图13所述的操作装置1中,为了检测,必须使运送机器人4停止在处于将薄板状物2从盒3向处理装置6搬运的途中的检测机构18的部位,相对上述盒的取出和再次接纳的1个循环所需要的运送时间增加,由此,生产效率变差。

还有,检测机构18设置于运送机器人4的直线移动机构5上,为了在运送机器人4的移动中,由于防止对该支承臂等的妨碍,必须增加投光器19和感光器20的距离,但是,像这样延长光轴的检测机构18的价格非常高,并且具有光轴调整非常困难等的问题。如果通过调整不充分的检测机构18进行测定的话,则具有测定精度降低,产生不良状况的问题。

在JP特开平9-36201号文献中公开的图2的方案中,提出针对各处理装置的薄板状物6的每个放置台18,设置多个检测机构31的装置。在该装置中,为了检测薄板状物6的位移量,必须以放置台18的数量设置检测机构,于是,成本增加,并且必须调整每个检测机构31,作业效率降低。

在JP特开平9-162257号文献中公开的图7的方案中,人们提出有检测机构14设置于运送机器人的末端执行器31c上的装置。在该运送机器人中,由于必须单独地设置旋转检测机构14的马达等的动力源,故具有花费单独费用,机构复杂,并且动作控制也困难的问题。

发明内容

本发明是本申请人所采用的操作装置的改进,其特征在于在于包括操作装置的位置的基准坐标系统的条件下,检测取出到末端执行器上的薄板状物的位移量时,在末端执行器的支承臂上安装检测机构,在支承臂的旋转动作时,末端执行器上的薄板状物的缘部和检测机构的光轴交叉,将由此获得的数值与预先指示的薄板状物的该数值进行比较,计算修正位移量。

另外,按照本发明,其特征在于上述的修正位移量的检测在薄板状物被从盒的托架中取出的支承臂动作中进行。

此外,按照本发明,安装于支承臂上的位移量检测机构由コ字形体构成,并且按照其开口位于末端执行器侧的方式设置于末端执行器近侧的支承臂上,此外,上述开口具有薄板状物的缘部可通过的间隙尺寸。

还有,本发明与安装于コ字形体的位移量检测机构的开口侧的由投光器和感光器构成的透射型传感器的数量和设置有关,即,在设置多个的场合,按照距支承臂的旋转中心的距离不同的关系错开地安装,由此,通过支承臂的旋转,同时地检测薄板状物的缘部的多个部位。

再有,按照本发明,根据在支承臂的旋转动作中,通过安装于支承臂上的コ字形体的检测机构自动地计算的修正位移量为基础,按照基准坐标,将操作装置修正而移动到规定位置,将薄板状物放置于放置台上的适当位置。

即,本发明的操作装置1在从盒中取出而移动薄板状物2时,自动地计算末端执行器的放置错动量,并且对其进行修正,可将其放置于处理装置的适当位置上,该具体的结构包括公知的机器人,该机器人以持握或吸附方式运送薄板状物2;直线移动机构5,该直线移动机构5包括可沿薄板状物2的盒3延伸的方向移动该运送机械人4的球螺轴等;放置台23,该放置台23通过运送机器人4放置薄板状物2,并且包括通过在水平面内使该放置台直线移动或旋转的方式进行薄板状物的定位的对齐装置等。

另一方面,包括操作装置的位置的基准坐标系统指操作装置1通过来自控制机构7的动作命令而进行动作时的操作装置1的起动位置、设置操作装置1的位置、以包括转交位置等的空间作为假想的坐标。

此外,本发明的检测机构18比如,为光学式的透射型和反射型的传感器等,最好为非接触的,检测薄板状物2的缘部的传感器。该检测机构18由投光器19和感光器20构成,该投光器19和感光器20对准コ字形体的固定部件21的前端附近处,光轴按照垂直的方式或倾斜状设置,薄板状物的缘部隔断光轴,由此,检测其位置。

附图说明

图1为表示本发明的运送机器人4的一个实施例的立体图;

图2为表示设置于运送机器人4上的检测机构18的局部剖开的立体图;

图3(a)~(c)为运送机器人4通过1个传感器计算位移量的状态的使用说明图;

图4为上述采用2个传感器的场合的作用说明图;

图5为用于计算薄板状物2的倾斜状态的作用说明图;

图6为说明修正作用的俯视图;

图7为说明倾斜的薄板状物2的修正作用的俯视图;

图8为表示检测机构设置于底臂13上的运送机器人4的俯视图;

图9(a)~(c)为表示上述的薄板状物的位移量计算的说明图;

图10为表示运送机器人4的另一实例的立体图;

图11为表示运送机器人4的还一实例的立体图;

图12为表示运送机器人4的再一实例的立体图;

图13为过去的,具有薄板状物的位置检测机构的操作装置的整体立体图。

具体实施方式

图1为对通过图13而描述的本申请人的已有实例进行改进的操作装置1,本发明的改进点在于去除设置于处理装置6的前面、直线运动机构5上的检测机构18,即,检测机构呈独特的コ字形体而设置于支承臂14上。

下面对本发明的优选的实施例进行描述。另外,下述的实施例不构成对本发明的范围的限定。因此,如果是本领域的普通技术人员,可在本发明的原理的范围内采用其它的实施例。

图2为本发明的检测机构18的局部放大的立体图。在该检测机构18中,在具有扁平的开口和进深的コ字形体的固定部件21的前端附近设置投光器19和感光器20,并且在该安装中,コ字形体的开口按照朝向末端执行器11侧的方式设置。此时,投光器19和感光器20也可分别设置1个,但是,可按照像图2所示的那样,朝向里侧位置错开的方式设置多个。

按照本发明,在检测机构18伴随支承臂14的旋转动作旋转时,保持于末端执行器11上的薄板状物2的缘部通过コ字形体的固定部件21的开口,隔断从投光器19朝向感光器20的光轴,由此,进行薄板状物2的位置检测。由此,在薄板状物2的缘部可在没有障碍地通过的范围内设计コ字形体的开口间隙P和其进深S的尺寸。

上述薄板状物2的末端执行器11上的错位、倾斜等的计算通过由X、Y的坐标系统表示支承臂14的旋转的方式进行,具体来说,将支承末端执行器11的支承臂14的枢轴定义为X、Y坐标的原点O,X轴表示运送机器人4使直线移动机构5移动的方向,Y轴表示与其相垂直的方向。下面对该计算方法进行描述。

在图3(a)~(c)中,在顶臂12上设置检测机构18,末端执行器11上的薄板状物2的虚线表示处于适合状态的场合,实线表示错动状态的场合。首先,为了获得适合状态(指示位置)的数据,按照下述的方式进行处理。支承臂14旋转,顶臂12上的传感器31从图3(a)的位置A旋转到检测图3(c)的薄板状物2的缘部的位置B,由此,可获得该旋转角度(测定值),具体来说,在起始点A的坐标为(XA、YA),指示位置B的坐标为(XB、YB)时,测定旋转角度,根据该测定的旋转角度计算指示位置。

计算上述指示位置的坐标的式为下述的式。

> >>>>>cos>θ>>B>>>>->sin>>θ>B>>>>>>>>sin>θ>>B>>>>>>cos>θ>>B>>>>> >>>>X>A>>>>>>>Y>A>>>>>>= >>>>X>B>>>>>>>Y>B>>>>>>>s>...式(1)

如果将式(1)展开,则为下述的那样。

XB=XAcosθB-YAsinθB                       ...式(2)

YB=XAsinθB+YAcosθB                       ...式(3)

在这里,计算指示位置B(XB、YB)的数值。

接着,针对通过实线所示的薄板状物2的错动,测定支承臂进一步旋转的,即,图3(c)的坐标(XC、YC),计算该位移位置的坐标的式如下所述。

> >>>>>cos>θ>>C>>>>->sin>>θ>C>>>>>>>>sin>θ>>C>>>>>>cos>θ>>C>>>>> >>>>X>A>>>>>>>Y>A>>>>>>= >>>>X>C>>>>>>>Y>C>>>>>>>s>...式(4)

如果将上述式展开,则

XC=XAcosθC-YAsinθC                       ...式(5)

YC=XAsinθC+YAcosθC                       ...式(6)

在这里,计算位移位置C(XC、YC)的数值。

但是,为了计算X轴方向的位移量LC,求出上述指示位置和位移位置的X坐标值的差,其计算式为下面所述。

LC=|XC-XB|                                 ...式(7)

通过式(2)和式(5),位移量LC像下述这样表示。

LC=|XA(cosθB-cosθC)-YA(sinθB-sinθC)|     ...式(8)

其为位移量Lc。

按照本发明,相对コ字形体的检测机构18,可具有2个或以上的传感器,下面通过图4,对安装2个传感器的实例进行描述。2个传感器以适当的间距而设置,由此,使相应的旋转半径不同,通过支承臂14的旋转,以良好的效率进行薄板状物2的缘部的2个部位的位置检测。另外,在该实例的场合,可根据检测到的测定值计算薄板状物2的X轴方向的位移量和薄板状物的倾斜度40。

图4(a)~(c)与图3相同,该图是通过图解计算机构而表示的。在图中,标号32、33表示2个传感器,该图给出由末端执行器11上的虚线表示的薄板状物2的指示位置,相对该情况,实线表示错动的状态的场合。图4(b)为通过支承臂14的旋转计算指示位置的状态,图4(c)为计算错动的位置的状态的说明图。

首先,指示位置的计算可通过下述的式计算。

> >>>>>cos>θ>>E>>>>->sin>>θ>E>>>>>>>>sin>θ>>E>>>>>>cos>θ>>E>>>>> >>>>X>D>>>>>>>Y>D>>>>>>= >>>>X>E>>>>>>>Y>E>>>>>>>s>...式(9)

> >>>>>cos>θ>>H>>>>->sin>>θ>H>>>>>>>>sin>θ>>H>>>>>>cos>θ>>H>>>>> >>>>X>G>>>>>>>Y>G>>>>>>= >>>>X>H>>>>>>>Y>H>>>>>>>s>...式(10)

如果将式(9)展开,则

XE=XDcosθD-YDsinθD                       ...式(11)

YE=XDsinθD+YDcosθD                       ...式(12)

如果将式(10)展开,则

XH=XGcosθH-YGsinθH                       ...式(13)

YH=XGsinθH+YGcosθH                       ...式(14)

其表示指示位置E(XE、YE)、H(XH、YH)。

相对该情况,位移位置F(XF、YF)、I(XI、YI)可通过下述的式计算,

> >>>>>cos>θ>>F>>>>->sin>>θ>F>>>>>>>>sin>θ>>F>>>>>>cos>θ>>F>>>>> >>>>X>D>>>>>>>Y>D>>>>>>= >>>>X>F>>>>>>>Y>F>>>>>>>s>...式(15)

> >>>>>cos>θ>>I>>>>->sin>>θ>I>>>>>>>>sin>θ>>I>>>>>>cos>θ>>I>>>>> >>>>X>G>>>>>>>Y>G>>>>>>= >>>>X>I>>>>>>>Y>I>>>>>>>s>...式(16)

如果将式(15)展开,则

XF=XDcosθF-YDsinθF                        ...式(17)

YF=XDsinθF+YDcosθF                        ...式(18)

如果将式(16)展开,则

XI=XGcosθI-YGsinθI                       ...式(19)

YI=XGsinθI+YGcosθI                   ...式(20)

其表示位移位置的2点F(XF、YF)、I(XI、YI)的计算值。

下面根据图5,对薄板状物的倾斜度40的计算方法进行描述。

按照本发明,薄板状物的倾斜度40是使薄板状物在末端执行器11上产生局部的旋转的,其表示形成指示位置的标准的薄板状物2的中心线41(与Y轴平行)和发生位移的薄板状物2的中心线43按照角度θL倾斜时的角度θL。但是,实施例的薄板状物2呈长方形的平面形状,薄板状物2的中心线43和其缘部侧面平行。在该实例的场合,为了计算薄板状物的倾斜的角度θL的数值,可通过计算从已发生位移的薄板状物2的2个检测位置F朝向I的矢量FI,与已指示的薄板状物的中心线41上的单位矢量y之间的角度而求出该角度θL的数值。

矢量FI表示为:

>ver>>F>→>>I>= >>>>X>I>>>>>>>Y>I>>>>>>- >>>>X>F>>>>>>>Y>F>>>>>>= >>>>X>FI>>>>>>>Y>FI>>>>>>>s>...式(21)

Y轴上的单位矢量Y表示为:

>ver>>Y>→>>= >>>0>>>>>1>>>>>>s>...式(22)

因此,矢量FI和矢量Y之间的角度θL可像下述这样表示。

>>|ver>>Y>→>>|>|ver>>F>→>>I>|>=>cos>>θ>L>ver>>Y>→>>·ver>>F>→>>I>>s>...式(23)

将式(21)和式(22)代入式(23)中,求解θL

θL=YFI/(XFI2+XFI2)1/2              ...式(24)

其为表示薄板状物的倾斜度的角度θL的计算值。

(放置位置的修正方法)

本发明为了对位移的薄板状物2进行修正并放置,根据在先获得的位移量和倾斜度,对薄板状物2的位置进行修正,根据图6对该修正的方式进行说明。

在图中,标号4表示运送机器人,标号5表示其直线移动机构,考虑以运送机器人4的旋转部15的旋转中心为原点O的坐标。然而在该坐标中,直线移动机构5的移动方向为X轴,Y轴表示在原点O与X轴相垂直的方向,并且该Y轴为将薄板状物放置于指示位置的方向。

在本图中,为了对薄板状物2的X轴方向的位移量LC进行修正,通过借助前述式(24)求出的计算值而进行该修正。其为将位于通过实线表示的位移位置的薄板状物2修正到由虚线表示的指示位置的场合,可相对直线移动机构,沿X轴的正向,按照距离LC=XA(cosθB-cosθC)-YA(sinθB-sinθC)移动运送机器人4。

图7表示倾斜的薄板状物2的修正的方法,在该图中,除了在顶臂12上设置2个传感器32,33以外,其它的方面相对图6没有变化。

为了将实线的倾斜的薄板状物2修正到虚线的适合位置(指示位置),则采用运送机器人4的旋转部15,沿逆时针方向按照角度θL=YFI/(XFI2+XFI2)1/2旋转。通过该旋转,薄板状物2的缘部上的点F向点J转移,产生点F和点J的X轴方向的位移量LJ。为了对其进行修正,通过直线移动机构5,按照作为位移量的距离LJ使运送机器人4移动。

作为沿上述X轴方向的移动量的距离LJ的计算方法如下所述。

> >>>>>cos>θ>>L>>>>->sin>>θ>L>>>>>>>>sin>θ>>L>>>>>>cos>θ>>L>>>>> >>>>X>F>>>>>>>Y>F>>>>>>= >>>>X>J>>>>>>>Y>J>>>>>>>s>...式(25)

如果将式(25)展开,则

XJ=XFcosθL-YFsinθL                     ...式(26)

YJ=XFsinθL+YFcosθL                     ...式(27)

其为位移位置的坐标J(XJ、YJ)的计算值。

接着,对指示位置E和上述的计算值J进行比较,通过下述式计算X轴方向的位移量L。

LJ=XJ-XE                                 ...式(28)

由此,计算出旋转后的薄板状物2沿X轴的负向按照距离LJ发生位移,如果通过直线移动机构5,使运送机器人4沿X轴的正向按照距离LJ移动,则可将其放置于规定的位置。

在上述的实施例中,对检测机构18设置于顶臂12上的实施例进行了说明,但是在图8所示的运送机器人4中,检测机构18设置于底臂13上。在该运送机器人4中,为了在旋转时避免检测机构18和顶臂12的碰撞,将底臂13和顶臂12连接的支承轴29比过去的场合长,沿高度方向按照距离T而设置间隙。

另外,本实施例的末端执行器11设置于底臂13的底部。

图9(a)~(c)通过图解方式表示在通过图8的运送机器人4,取出薄板状物2(转交)时,计算产生的末端执行器11上的错动(位移量)的方式。在图中,标号31表示检测机构18的传感器,在图中,示出由末端执行器11上的虚线表示的薄板状物2的指示位置,相对该情况,实线表示按照距离LN错动动的状态的位置。

在本实例中,以旋转部15的旋转中心为坐标的原点O,设置于底臂13上的检测机构18的传感器31旋转。可根据此时获得的测定值,采用上述计算式同样地计算位移量。

图9(a)表示传感器31位于上述动作起始点K(XK、YK)的状态。

图9(b)表示传感器31从上述动作起始点K(XK、YK),按照角度θM旋转,位于指示位置M(XM、YM)的状态。

图9(c)表示传感器31进一步旋转,直至达到距上述动作起始点的角度θN,位于检测位置N(XN、YN)的状态。

采用该运送机器人4,计算薄板状物2的位移量的步骤与上述的检测机构18设置于顶臂12上的场合相同,其结果是,如下述的公式那样,获得位移量LN

LN=XK(cosθN-cosθM)-YK(sinθN-sinθM)      ...式(29)

在上述实施例中,对设置1组支承臂12(在下面将其称为“单臂”)结构的运送机器人4进行说明,但是,图9表示具有2组支承臂12(在下面将其称为“双臂”)的结构的运送机器人4。

另外,在本图的运送机器人4中,旋转部15和底臂13形成一体,代替使底臂13动作,而使旋转部15旋转,由此,可进行与图1的运送机器人4相同的动作,可采用相同的计算方法,计算位移量。

在本实例中,针对安装于与旋转部15形成一体而旋转的2组的底臂13、13上的1组的顶臂12,设置长度大于过去的场合的支承轴29,由此,沿高度方向形成间隙(距离T),以避免旋转中的缓冲。另外,在另一实例中,检测机构18设置于顶臂12的顶部,但是,设置于有形成上述间隙的顶臂12的底部。

在图10中,对底臂13和旋转部15形成一体的运送机器人4进行了描述,但是即使在像图1所示的运送机器人4那样,底臂13和旋转部15可单独地动作,具有2组支承臂14的运送机器人4的情况下,仍可实施本发明。

在上述运送机器人4中,支承臂14的结构为顶臂12和底臂13的2个臂的结构,但是,在图10的运送机器人4中,支承臂14为仅仅1个顶臂13,检测机构18安装于臂12中的与末端执行器11相反一侧的侧面上。

另外,图12的运送机器人4的支承臂14由与上述实例不同的3个,即,顶臂12、中间臂28、底臂13构成。在该运送机器人4中,检测机构18设置于顶臂12上,但是,也可设置于中间臂29或底臂13上,这包括在本发明的实施的范围内。

按照本发明,通过将检测机构18以独特的结构而安装于运送机器人的支承臂14上,在运送机器人4取出薄板状物2(转交)的动作中,可自动地并且快速地进行其位移量检测,大大有助于装置整体的成本降低和生产性的提高。

此外,由于在コ字形体的检测机构18中,投光与感光之间的光轴较短,故该传感器的调整、维修非常容易,价格也较低。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号