首页> 中国专利> 使用高阶离轴对准信号确定对准位置的方法

使用高阶离轴对准信号确定对准位置的方法

摘要

一种使用高阶离轴对准信号确定对准位置的方法,包括如下步骤:(a)在扫描过程中使用光电传感器进行信号测量,得到多级次信号;(b)校正各级次信号间的相位偏移;(c)确定各级次信号的对准位置;(d)根据各级次信号的对准位置确定最终对准位置。本发明在确定对准位置时使用了高阶对准信号,通过计算各级次信号的对准位置来确定最终的对准位置,大大提高对准位置的计算精度。

著录项

  • 公开/公告号CN1779572A

    专利类型发明专利

  • 公开/公告日2006-05-31

    原文格式PDF

  • 申请/专利权人 上海微电子装备有限公司;

    申请/专利号CN200510030577.8

  • 发明设计人 孔正国;

    申请日2005-10-14

  • 分类号G03F7/20(20060101);H01L21/027(20060101);

  • 代理机构31002 上海智信专利代理有限公司;

  • 代理人王洁

  • 地址 201203 上海市张江高科技园区张东路1525号

  • 入库时间 2023-12-17 17:16:35

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-04-24

    专利权人的姓名或者名称、地址的变更 IPC(主分类):G03F7/20 变更前: 变更后: 申请日:20051014

    专利权人的姓名或者名称、地址的变更

  • 2009-03-11

    授权

    授权

  • 2006-07-26

    实质审查的生效

    实质审查的生效

  • 2006-05-31

    公开

    公开

说明书

技术领域

本发明涉及半导体集成电路光刻生产设备中的一种对准技术处理方法,特别涉及一种使用高阶离轴对准信号确定对准位置的方法。

背景技术

在采用光刻机进行集成电路芯片生产过程中,为了实现光刻机期望的精度指标,需要精确建立光刻机各坐标系之间的关系,使掩模、掩模台、物镜、硅片、硅片台能够在一个统一的定标系统中工作。从技术特点上可以将光刻机中的对准分为:同轴对准、TTL(Through The Lens)对准以及离轴对准。同轴对准系统主要用于执行掩模台到硅片台的对准,通过测量硅片台上的对准标记相对于参考光栅的位置来实现。TTL对准系统用于掩模和工件台之间的对准。对准系统必须能够精确的测定硅片台坐标系统中的指定对准标记的位置,而离轴对准系统通过测量硅片或硅片台LIS(Lens Image Sensor)基准板上的对准标记相对于参考光栅的位置来实现执行硅片到硅片台的对准。离轴对准中采用自己的光学系统,其使用的透镜没有同轴对准和TTL对准中使用的曝光投影物镜那样的复杂。离轴对准过程中,位于离轴光学模块上标记的位置固定不变,作为参考标记,硅片台上的标记沿着参考标记进行扫描,扫描过程中需要测量硅片台上对准标记相对参考标记的位置。激光通过离轴光学系统投影到对准标记上后经过反射并衍射成明暗相间的像后,在参考标记上进行扫描,为了避免标记几何形状的不规则而带来对最终对准位置的影响,采用一种较合理的方法计算出最终的对准位置,是离轴对准技术中关键的一种技术。

发明内容

本发明的目的在于提供一种运用多级次信号来计算标记的对准位置的方法,提高对准位置的计算精度。

本发明是通过以下技术方案实现的:一种使用高阶离轴对准信号确定对准位置的方法,包括如下步骤:

(a)在扫描过程中使用光电传感器进行信号测量,得到多级次信号;

(b)校正各级次信号间的相位偏移;

(c)确定各级次信号的对准位置;

(d)根据各级次信号的对准位置确定最终对准位置。

其中,所述步骤(b)包括如下步骤:

在各级次信号中确定参考级次信号;

确定其余各级次信号相对于参考级次信号的相位偏移;

利用相位补偿的方法对相位偏移的差值进行补偿。

所述参考级次信号可以是第1级信号或者第3级信号。

所述步骤(c)包括如下步骤:

确定第1级信号与期望对准位置最接近的峰值位置,将该位置作为第1级信号的对准位置;

确定各级次信号与第1级信号的对准位置最接近的峰值位置,将该位置作为各级次信号的对准位置。

确定第1级信号的对准位置包括如下步骤:

确定一个离实际对准位置较接近的位置作为期望位置;

选定两种周期信号;

确定两周期信号第1级信号对应的期望重合的峰值中与期望位置最接近的峰值位置;

将确定的峰值位置作为两周期信号各自的第1级信号的对准位置。

所述信号是周期为8.0um和8.8um的周期信号。

所述步骤(d)中的最终对准位置是通过对各级次信号的对准位置加权处理得到的。

进行所述加权处理前还需确定参与加权的级次,确定参与加权的级次的方法包括如下步骤中的一种或多种:

(1)硅片质量通过验证,用于过滤掉所有参与验证的级次中测量得到的硅片质量值小于用户定义的阈值的级次;

(2)多段相关系数通过验证,用于过滤掉所有参与验证的级次中测量得到的多段相关系数值小于用户定义的阈值的级次;

(3)级次峰值位置验证,用于过滤掉所有参与验证的级次中测量得到的余弦顶点位置与余弦顶点位置总和的平均值之差值大于用户定义的范围的级次;

(4)根据硅片质量进行动态选择可用级次,将各级次中测得的硅片质量值进行排序,然后根据用户设定的可用级次的数目,进行级次的筛选;

(5)根据多段相关系数值进行动态选择可用级次,将各级次中测得的多段相关系数值进行排序,然后根据用户设定的可用级次的数目,进行级次的筛选。

所述加权处理中的加权因子可通过如下方法中的一种确定:

静态方法,根据经验公式直接确定加权因子值;

动态硅片质量方法,根据计算得到的硅片质量的值确定加权因子值;

动态多段相关系数方法,根据计算得到的多段相关系数的值确定加权因子值;

预估计方法,通过单级次信号同最终对准位置之间存在的经验公式关系,计算求得的各级次信号的峰值位置与该经验值之间的误差,利用最小二乘法的方法推导出了其加权因子的计算值以及最终的对准位置的计算公式。

所述多级次信号包括1-10级信号。

本发明一种使用高阶离轴对准信号确定对准位置的方法,在确定对准位置时使用了高阶对准信号,通过计算各级次信号的对准位置来确定最终的对准位置,大大提高对准位置的计算精度。

附图说明

图1是用低级次信号和高级次分别对标记进行采样分析时检测到标记边缘特征示意图;

图2是各级光信号的时域图;

图3是各级信号之间存在实际工程原因造成偏移的示意图。

具体实施方式

在光刻机的研发阶段,对准技术对整个光刻机精度的影响是很大的。对准过程的处理结果直接影响到最终生产出的芯片的质量。而在对准过程中,运用离轴对准确定硅片和硅片台的严格位置关系成了关键的一部分。为了更加精确的计算标记所处的对准位置,在离轴对准技术中采用了运用多级衍射光来进行对准位置的计算,利用该方法能够很大程度上提高对准位置的计算精度。

请参阅图1,图1是用低级次信号和高级次分别对标记进行采样分析时检测到标记边缘特征示意图。根据图像处理中信号重构图像的原理,低频信号在参与重构时对图像的边缘很不敏感,第1级信号能够探测到的信号边缘是1,而只有考虑到较高频率的信号才能很好的反映更加精确的图形边缘信息,高级次信号能够探测到的信号边缘是2。针对光刻机中标记的成像特点,如果仅仅采用第1级信号来确定标记的对准位置3,往往会因为标记在进行打磨抛光的时候形成本身的不对称或者有微量的旋转而导致计算出的第1级信号峰值位置处对应的对准位置跟实际标记的对准位置不符,产生了偏移。为了避免上述情况,在离轴对准中采用多级信号来综合的确定标记对准位置4,这样计算的标记对准位置就不会很大程度上受标记本身几何尺寸的影响。

通过安装在参考标记上的光电传感器对扫描过程中进行信号测量,将得到各级的信号,经过适当的硬件处理后,由离轴对准软件运用它们进行标记对准位置的计算。在本发明的实施例中采用了7级信号,但本发明不仅限于采用7级信号的情况。以下是本次设计中采用的各个计算步骤的详细说明:

首先,要进行各级次信号间的相位偏移校正。由于光学器件和机器布置上的缺陷,实际工程中测得的各级信号之间会存在相位上的误差,信号相互间表现出来的就是存在相位上的偏移,为了使得对准位置更能够与实际情况相符,首先需要对该偏移量进行校正。处理方法是以某个级次为参考级次,比如采用第1级,计算出其它各级次相对第1级的相位偏移,利用相位补偿的方法对该相位差进行补偿,使得在各级次信号之间的相位偏移量得到校正。

这里以第1级光信号为参考信号,对各级信号相互之间的偏移进行说明。光栅扫描时,利用传感器测得各级信号,理论上在光强达到最大的地方,所有信号都是峰值出现的地方,图2所示。但是由于工程实际中造成的误差影响,使得各级信号在峰值一致出现的地方出现误差,图3所示。这里根据各级信号在时域上偏移量求出对应相位偏移,利用计算出的该相位偏移量更新需要校正的级次相位。计算方法如下:

phase_order_i_correct=phase_order_i+exp_shift/period_order_i

其中exp_shift是根据最新测试出的信号时域偏移量;

phase_order_i_correct是校正后级次的相位;

phase_order_i是校正前级次的相位;

period_order_i是级次信号对应的周期;

通过这种相位补偿,使得各级次信号相对之间的位置达到很高的精度要求,为以后的确定对准位置时降低了实际工程中造成的误差影响。

其次,确定各级次信号的对准位置。包括确定第1级信号与期望对准位置最接近的峰值位置,将该位置作为第1级信号的对准位置;确定各级次信号与第1级信号的对准位置最接近的峰值位置,将该位置作为各级次信号的对准位置。

在需要进行各级次信号峰值位置的确定时,首先需要确定第1级次的峰值位置,然后依据第1级次的峰值位置去确定其它高阶级次的峰值位置。

为了确定第1级次的峰值位置可采用两种方法:

(1)采用8088捕获

本发明中采用两种周期信号(周期8.0um和周期8.8um)来进行对准位置的计算。8088捕获算法实际上就是一种扩大捕获范围的粗搜索峰值位置的方法。对准位置理论上就是采集到的余弦信号的某个峰值位置,为了能够更加精确的找到这个峰值位置,首先需要确定一个离实际的对准位置较接近的位置,这里称它为期望位置(由光刻机的测试软件系统测试得到的某个位置)。该位置与实际对准位置的最大距离不应该超过信号周期的一半,否则认为期望位置是无效的。这里由于同时使用8.0um和8.8um两种周期信号,两信号理论上每隔88um会出现一次峰值重合,因此这里期望位置离实际对准位置的偏差应该在44um之内。有了期望位置,可以通过一套搜索的办法来找到离期望位置最近的两周期信号峰值信号理论上重合的峰值位置,把其中8.0um的峰值位置确定为第1级信号的峰值位置,这时,第1级次信号的峰值位置就确定了。

(2)以期望值确定

如果不采用两种周期信号的捕获方法,这时就直接以离期望位置最近的第1级信号的峰值为该级信号的峰值位置。

当第1级信号的峰值位置确定后,计算其它高级次的峰值位置时候,以第1级信号的峰值位置为期望位置进行搜索离其最近的峰值设为各个高级次的峰值位置。这里认为各个级次信号的对准位置就是其计算后的峰值位置。

最后,由各个级次信号的对准位置确定最终的对准位置。在完成第1级次峰值位置和所有较高级次顶点位置的计算之后,这时需要从这些子对准位置信息中确定一个最终的对准位置,这由制定的硅片处理技术来判定对准位置。这里采样加权方法来确定最终的对准位置。

在对各个级次进行加权处理之前,需要对各个级次进行验证,以确定最终参与加权处理的级次。这些方法包括:

1.硅片质量(Wafer Quality:WQ值)通过验证

过滤掉所有参与验证的级次中测量得到的WQ值小于用户定义的阈值的级次。意思是如果该级次中的WQ值小于预先给定的WQ值的时候,该级次就被过滤掉,不参与后面的加权处理过程。

2.多段相关系数(Multiple Correlation Coefficients:MCC值)通过验证

此流程就会过滤掉所有参与验证的级次中测量得到的MCC值小于用户定义的阈值的级次。

3.级次峰值位置验证

过滤掉所有参与验证的级次中“测量得到的余弦顶点位置与余弦顶点位置总和的平均值之差值”大于“用户定义的范围的级次。

4.根据硅片质量进行动态选择可用级次

将各级次中测得的WQ值进行排序(降序),然后根据用户设定的可用级次的数目,进行级次的筛选。用户选择了n个,就取前面n个级次。

5.根据MCC值进行动态选择可用级次

将各级次中测得的MCC值进行排序(降序),然后根据用户设定的可用级次的数目,进行级次的筛选。用户选择了n个,就取前面n个级次。

以上的验证中,在软件实现中都设有开关,以确定是否使用该验证方法,可以只用一种,也可以全部使用,有用户选择其开关状态来决定进行的验证方法。

在通过各种级次的验证流程后,对通过验证的所有级次进行的峰值位置进行加权处理得到最后的对准位置。这里首先需要确定加权因子,确定加权因子的方法包括:

1.静态方法

考虑根据经验直接输入加权因子的大小。

2.动态硅片质量(Wafer Quality:WQ值)方法

根据计算得到的硅片质量的大小确定加权因子的大小。

3.动态多段相关系数(Multiple Correlation Coefficients)方法

通过计算得到的多段相关系数的大小(MCC值)确定加权因子的大小。

前面三种方法都是确定一个确定的系数值,设为Weight factor,得到加权处理的方法:

>>WS>_>aligned>_>pos>=>>>ΣP>>(>n>)>>*>weight>_>factor>>>Σweight>_>factor>>> >

4.预估计方法

通过单级次信号同最终对准位置之间存在的经验公式关系,计算求得的各级次信号的峰值位置与该经验值之间的误差,利用最小二乘法的方法推导出了其加权因子的计算值以及最终的对准位置的计算公式。利用计算出的对准位置的计算公式和采用的加权因子便可以计算出该次扫描结果的对准位置。

相关的公式如下:

首先根据最小二乘法确定每级次的加权因子大小,设为A(n):

这里的A(n)就是我们要计算的加权因子。

然后加权计算最终的对准位置:

>>P>=>>1>>>Σ>>n>=>1>>7>>A>>(>n>)>>>>*>>Σ>>n>=>1>>7>>[>A>>(>n>)>>*>P>>(>n>)>>]> >

其中:A(n)是计算得到的各级次的加权因子;

      P(n)是测量得到的各级对准位置;

      P是最终得到的对准位置。

本发明一种使用高阶离轴对准信号确定对准位置的方法,在确定对准位置时使用了高阶对准信号,通过计算各级次信号的对准位置来确定最终的对准位置,大大提高对准位置的计算精度。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号