首页> 中国专利> 用于散射光和荧光检测的便携式流式血细胞计数器

用于散射光和荧光检测的便携式流式血细胞计数器

摘要

一种设备(10)具有检测、分析和识别血液或其他所研究的流体中的散射光和多色荧光的能力。待检样品可注入一次性的微流体盒(14)中,后者可插入一个可手持的或是可植入体内的小型便携式流式血细胞计数器(10)中。该血细胞计数器(10)在生物战病原体检测、血液学、其他临床和研究领域可得到重要应用。

著录项

  • 公开/公告号CN1739020A

    专利类型发明专利

  • 公开/公告日2006-02-22

    原文格式PDF

  • 申请/专利权人 霍尼韦尔国际公司;

    申请/专利号CN200380108998.7

  • 申请日2003-11-25

  • 分类号G01N21/64;G01N15/14;G01N21/53;G01N21/05;G01N33/487;A61B5/00;A61B5/145;A61B5/15;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人杨凯

  • 地址 美国新泽西州

  • 入库时间 2023-12-17 16:59:29

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-11-04

    未缴年费专利权终止 IPC(主分类):G01N21/64 专利号:ZL2003801089987 申请日:20031125 授权公告日:20120229

    专利权的终止

  • 2012-02-29

    授权

    授权

  • 2006-04-19

    实质审查的生效

    实质审查的生效

  • 2006-02-22

    公开

    公开

说明书

本发明申请属于2000年8月2日提出的、美国专利申请序号为09/630,924的专利申请的部分延续申请,并请求该专利申请的权益。

           对相关同时待决申请的交叉引用

本申请与如下同时待决美国专利申请相关:1.序号为09/630,927、发明人为Cabuz等、申请日为2000年8月2日、标题为“用于流式血细胞计数的光学检测系统”;2.序号为09/630,924、发明人为Cabuz等、申请日为2000年8月2日、标题为“便携式流式血细胞计数器”;3.序号为09/630,923、发明人为Cabuz等、申请日2000年8月2日、标题为“用于流式血细胞计数的流体驱动系统”;4.序号为09/896,230、发明人为Fritz、申请日为2001年6月29日、标题为“用于流式血细胞计数的光学检测系统”;5.序号为09/404,560、发明人为Cabuz等、申请日为1999年9月23日、标题为“用于比例压力或流量控制的可寻址阀阵列”,本申请以参照方式结合上述专利申请的全部内容。

                    背景技术

本发明一般涉及流式血细胞计数器,更确切的说,本发明与感应液流之中的微生物颗粒或成分的光学特性的便携式流式血细胞计数器相关。

流式血细胞计数是一种通过感应微生物颗粒或成分的特定光学性能来确定这些颗粒或成分的某些物理或化学性能的技术。为了实现这个目的,例如,在一种鞘液内使用液动式聚焦手段把微粒排列成一个纵列。然后,这些微粒被一束光束进行逐个查询。每个微粒将光束进行散射,并产生一个散射特性。通常通过测量在不同散射角处的光强度来辨识微粒的散射特性。然后,可以从散射特性中确定每个微粒的特定物理和/或化学特性。

流式血细胞计数目前被广泛用于许多种不同应用之中,这里仅试举几例:血液学、免疫学、遗传学、食物科学、药学、微生物学、寄生虫学和肿瘤学。许多商业化的流式血细胞计数器的一个局限在于它们是相当大的台式设备,它们必须保持在中央试验室的环境中。因此,那些流式血细胞计数器通常不能远距离使用或是被用于连续的血液学监测。

                     发明内容

本发明通过提供一种可远距离使用于家中或野外等场所的小型便携式和可佩戴的流式血细胞计数器,克服了之前同类产品的许多弊端。那样的一种流式血细胞计数器通过为个人提供详尽的血液评估和揭示统计趋势,有助于提高对患者的医疗水平。通过在早期监测出某种感染,该种感染可能更易进行治疗。

在军事应用方面,本发明的便携式小型流式血细胞计数器通过在早期便检测出由生物病原体引起的感染,能够挽救许多人的生命。我们知道生物科学的日益活跃增大了人们意外接触危险的生物病原体的可能性。因为这些病原体易于制造,由此便产生了它们可能被恐怖分子、地区势力或是发展中的第三世界国家滥用的严重威胁。国际公约虽然宣称生物战不合法,但缺少有效的监控机制来防范它们,同时强有力的证据表明这些国际公约可能被违反,这便进一步增强了对掌握强大的生物防御能力的需求。在生物战中,在接触病原体之前便检测出相关病原体,或是在感染早期检测出病原体,这两种手段可以结合使用,以确保对人体进行有效的防护。

作为人体抵御抗原的组成部分,白细胞数量在感染开始时会增加。人体内存在几种白细胞,包括中性粒细胞,淋巴细胞,单核细胞,嗜酸性粒细胞和嗜碱性粒细胞。淋巴细胞产生抗体来攻击入侵者,并标示物它们,使它们能被中性粒细胞和巨噬细胞消灭。在未经慢性疾病(如肺结核和癌症)感染的人体内,淋巴细胞在整个白血球细胞中的百分比含量增加表明发生了病毒性感染。另一方面,中性粒细胞在整个白血球细胞中的百分比含量增加表明细菌性感染正在发展之中。通过计算中性粒细胞和淋巴细胞的数量,可以发出明确的感染警告,并能区分这是病毒性感染还是细菌性感染。

感染某些细菌性病原体如炭疽杆菌的第一临床症状在1到6天后出现。在99%的情况下,出现症状的炭疽热患者无法救治,绝大部分都会死亡。然而,如果能在第一症状出现之前施治,绝大部分病人便能被治愈。因此,在症状出现之前便能产生早期警示并对血液中的异常进行诊治无疑是十分理想的。在许多情况下,那种早期警示和诊治可以改善对很多患者的诊治结果。

在本发明的一个说明例中,提供了一种便携式小型流式血细胞计数器来识别和/或计算例如血样本的一个流体样品中的选定微粒数量。一个示意性的小型便携式流式血细胞计数器包括用于接收流体样品的一个流体接收器。此外,它还提供了一个或多个库来贮存如溶剂和鞘液之类的辅助性流体。在许多商业化的流式细胞系统中,提供了一个精确流体驱动系统以便为各流体提供精确的压力。这种方法的一个局限在于,精确流体驱动系统可能较为庞大、复杂且可能还需要相当多的电能。

为了避免以上这许多局限,一个说明例中采用了一种通过闭环反馈路径进行控制的非精确流体驱动器。该非精确流体驱动器被与流体接收器和各种辅助性流体库相结合,并分别施加压力到样本流体和各个辅助性流体。为了控制样本流体和辅助性流体的速度,一个或多个阀门被与流体驱动器连接。这些阀门被用来控制通过非精确流体驱动器施加到样本流体和辅助性流体的非精确压力。

为了完成反馈环路,在流体驱动器下游提供了流量传感器来测量样本流体和辅助性流体的流体速度。一个控制器或处理器接收来自流量传感器的信号,并调节合适的阀门,以达到想要的样本流体和辅助性流体的流体速度。流量传感器最好是热风速表型的流量传感器。

在一个说明例中,非精确流体驱动器是用人工提供动力的。一个人工提供动力的流体驱动器可包括,如,一个带止回阀的球状物或一个柱塞。在任一种情况下,人工产生的压力最好被施加到第一压力室中。然后,设置第一阀门来将第一压力室中的压力有控制地释放到第二压力室。第二压力室可设有第二阀门来将第二压力室中的压力有控制地排放出去。当下游流体中的流体流量下降到第一预定值之下时,控制器开启第一阀门,当下游流体中的流体流量增加到第二预定值之上时,控制器开启第二阀门。每个阀门最好是一个能够被各自单独寻址和控制的静电驱动微阀阵列。

上述受控的样本流体和辅助性流体被供给一个流体回路,该流体回路进行流体动力聚焦,使得目标微粒沿被一种鞘液包围的核心流形成一个单一队列。一个或多个光源或光源装置提供透射该液流的光,并且一个或多个光探测器或光探测器装置检测该液流中微粒的散射特性和荧光。一个装置可能包含一个或多个光源和/或一个或多个光探测器。一个装置可能包含单一的光学器件或元件,或是这样的器件或元件的阵列。一个处理器模块采用来自光探测器的信号来识别和/或计算核心流中微粒的数量。

该小型便携式流式细胞计可能被装在一个足够小的外壳中,以让人舒适佩戴。在一个说明例中,该外壳尺寸形如一块手表。该可佩戴的外壳可包括,如一个基板、一个盖板和一个将基板固定到盖板上的铰链。非精确流体驱动器和控制阀可以被集成到盖板上,而贮液库、流量传感器和流体回路可被集成到一个插入到外壳中的可更换盒中。流体回路最好进行稀释血样,红细胞溶解和流体动力聚焦来形成流体流动和核心流。光源最好位于基板或盖板之中,并与可卸除盒的液流排成一直线。光探测器最好与光源相对布置。处理器和电池可布置在外壳的基板或盖板上。

上述光源可能包括一个或一个线型列的沿第一光源轴排列的第一光源。该第一光源轴可以相对液流的中心轴进行旋转。在每个光源附近可能放置一个透镜以将光聚焦于核心流中的微粒上。之后,单个光探测器或是成组的光探测器与光源或是每个光源成直线布置。那样一种配置可以用来确定,例如,液流中核心流是否对准和其宽度。如果核心流的微粒没有被对准,控制器便会调整样本流体或是辅助性流体的速度来将核心流对准。上述光探测器或成组光探测器也可被用来检测每个微粒的速度和大小,以及这些微粒的数量。

沿第二光源轴可以布置另外的光源或成组光源。在每个光源附近可能放置一个透镜以将光聚焦于核心流中的微粒上。之后,第二单个光探测器或是成组的光探测器被放置在每个光源的直列位置的任一侧,以测量中选定微粒产生的小角度散射(SALS)。

上述第二光源或成组光源也可与第一成组光源结合使用来确定液流中微粒的飞行时间(time-of-flight)或速度。通过获知微粒速度,控制器可以将由流体驱动器造成的微小流速变化控制在最小范围或是将其消除。

沿一个第三光源轴可设置一个第三光源或成组光源。在每个光源附近可以放置一个透镜以便为液流提供平行光。正对光源或光源组可能放置一个或多个环形光探测器,以测量液流中选定微粒产生的前向角散射(FALS)。每个第一、第二、第三光源或成组光源可包括一列激光器,如在一个共同衬底上制造的垂直腔面发射激光器(VCSEL)。每个第一、第二、第三光探测器或成组光探测器可能包括一只或一列光电光探测器,如p-i-n光电二极管、具有集成场效应晶体管(FET)电路的砷化镓光电二极管、共振腔型光电光探测器(RCPD)或其他任何合适的光探测器。

上述选定的微粒最好为中性粒细胞和/或淋巴细胞等白细胞。通过检查每个微粒的散射特性,本发明的小型便携式流式血细胞计数器识别一份血样中的中性粒细胞和淋巴细胞,并对它们进行计数,从而提供一个明确的感染警示,并能区分这是病毒性感染还是细菌性感染。

本发明的另一部分使用荧光来进一步识别和分析不同的白细胞。抗体可以与不同的白细胞相关联。抗体本身附有标示物或标签。这些白细胞可以与光发生碰撞,使得与它们相关的标签或标示物产生荧光并对外发光。这种光可以被收集起来,还可以根据需要进行过滤,并被传送至一个或多个光电光探测器。这种检测手段可被用来从其他物质中识别和监控特定子类的白细胞和基于血的蛋白质。

总之,所述的小型化便携式流式血细胞计数器具有两个光学检测子系统,即散射光系统和荧光系统。它还具有一个低功率的电子系统、一个紧凑的流体驱动系统,并可能使用直接的/未经处理的血样和一次性的微流体盒。

                   附图的简要说明

查阅如下与附图相关的详细信息有助于更好的理解本发明的其他目的和附带的许多其他优点。这些附图中,用彼此之间相类似的标号来标识各个装置之间相类似的部分:

图1是本发明的一个示意性便携式血细胞计数器的透视图;

图2是图1中便携式血细胞计数器的示意图;

图3是图2中便携式血细胞计数器盖板尚未压下时的详细示意图;

图4是图2中便携式血细胞计数器盖板已压下时的详细示意图;

图5是具有一个球状物和一个止回阀的人工流体驱动器的示意图;

图6是表示一个可寻址列的微阀的比例压力控制的曲线;

图7是表示通过图3中流体动力聚焦模块88形成液流的过程的示意图;

图8是表示用以分析图7中核心流的一列光源和一列光探测器的示意图;

图9是表示沿图8中光源轴所产生的光强度的曲线;

图10是表示图8中的示意性光源和光探测器对的示意图;

图11是表示三列彼此独立的光源和光探测器的示意图,其中每一列沿相对于图7液流的中央液流轴略作旋转的一条不同的光源轴进行配置;

图12是表示图11中所示的第一列的一个示意性光源和光探测器对的示意图;

图13是表示图11中所示的第二列的一个示意性光源和光探测器对的示意图;

图14是表示图11中所示的第三列的一个示意性光源和光探测器对的示意图;

图15是一种适于佩戴在手腕上的一种小型血细胞计数器的说明例的透视图;

图16说明了一种集成了散射光和荧光学子系统的小型血细胞计数器盒;

图17示出了对散射光和荧光探测系统的布置;

图18是血液层次结构图,强调了施加血细胞计数器的区域;

图19a和图19b示出了与所研究的细胞或细菌相关的抗体和标示物的结构;

图20示出了光与用于荧光系统的光学器件的相互作用;

图21a、21b、21c、21d、21e分别示出了与用于散射光和荧光系统的液流导槽相关的光学结构;

图22表示散射光和荧光探测系统的布置,具有与液流导槽分开的离散的透镜;

图23是具有散射光和荧光系统且适于佩戴在人手腕上的小型便携式血细胞计数器的一个说明例的透视图。

                    详细说明

图1是本发明的一个示意性小型便携式血细胞计数器的透视图。该血细胞计数器通常显示为10,并包括一个外壳12和一个可拆卸或可替换的盒14。该示意性外壳12包括一个基板16、一个盖板18和一个将基板16连到盖板18上的铰链。基板16包括光源22a和22b,以及与操作血细胞计数器相关的光学设备和必要的电子设备。盖板18包括一个人工加压单元、具有控制微阀的压力室和具有相关光学元件的光探测器24a和24b。

可拆卸的盒14最好通过一个样本收集端口32来接收样本流体。当可拆卸的盒14没有被使用时,一个端盖38可以被用来保护样本收集端口32。可拆卸的盒14最好进行血液稀释、红细胞溶解和用于形成核心流的流体动力聚焦等工作。可拆卸的盒14可以制作得与Micronics Technologies公司的流体回路相似,后者有一部分用具有蚀刻沟槽的薄板结构制成。

当盖板18处于打开位置时,可拆卸结构或盒14被插入到外壳中。可更换盒14可包含基板16上接受定位销28a和28b的孔26a和26b,这将有助于设备不同部分之间的对准和配合。同样,可更换盒14最好包括透明的液流窗30a和30b,它们与光源列22a和22b以及光探测器24a和24b排成一直线。当盖板被移动到闭合位置,并且系统受到压力时,盖板18分别通过压力供给端口36a、36b、36c给压力接受端口34a、34b、34c提供受控压力。

为开始进行测试,盖板18被拉起,同时一个新的可更换盒14被放置并对准在基板16上。一份血样被引入到样本采集器32中。盖板18被闭合,且系统受到人工按压。只要受压后,该设备便进行了一次白细胞计数测量。可更换盒14提供用以形成核心流的血液稀释,红细胞溶解以及流体动力聚焦等工作。光源22a和22b、光探测器24a和24b以及相关的控制和处理电子装置,在光散射荧光信号的基础上进行白细胞种类区分和计数工作。除了将铰接结构用于外壳12以外,还可以采用滑动式盒槽或其他任何合适的结构。

图2是图1中示意性血细胞计数器的示图。如上所述,基板16可以包括光源22a和22b,以及用于操作血细胞计数器的相关的光学元件和必要的控制和处理电子装置40。基板16也可以包括为血细胞计数器供电的电池42。如图所示,盖板12具有一个人工按压单元44,和带控制微阀的压力室46a、46b、46c,以及具有相关光学元件的光探测器24a和24b。

可更换盒14可以通过采样端口32来接收样本流体。当受到盖板18按压时,可更换盒进行本器件中的核心形成的血液稀释、红细胞溶解和流体动力聚焦等操作。核心一旦形成,便会沿一条液流路径50向下流动,并流经图1中的液流窗30a和30b。基板上的光源22a和22b以及相关的光学元件通过液流窗30a和30b将光通过和送至核心流。光探测器24a和24b以及相关光学元件同样通过液流窗30a和30b分别接收来自核心流的散射光和非散射光。控制器或处理器40接收来自光探测器24a和24b的信号,同时区分和识别核心流中选定的白细胞并进行计数。

可考虑在可更换盒14上设一个用来帮助控制各流体速度的流体控制模块48。在本说明例中,流体控制模块48包括用来感知不同流体速度的流量传感器,并将速度告知控制器或处理器40。控制器或处理器40然后调整与压力室46a、46b、46c相关的微阀以达到所要的压力,从而取得正常操作血细胞计数器所要的流体速度。

因为血液和其他生物废料能传播疾病,可更换盒14最好在液流窗30a和30b下游有一个废料库52。废料库52接收和储存可更换盒14的液流中的流体。当一项测试完成后,可更换盒可拆下并最好丢弃在一个与生物废料兼容的容器中。

图3是更详细的示意图,示出了当盖板18没有被按下时图2中的血细胞计数器。图4是一张更详细的示意图,示出了当盖被按下时图2中的血细胞计数器。如图所示,盖板18具有一个人工按压单元44、压力室46a、46b、46c和通常处于60所示位置的控制微阀。在这些图中,没有示出光源和光探测器。

有三个压力室46a、46b和46c,每一个室用于传送压力给一种流体。在本说明例中,压力室46a将压力传送给一个血样库62,压力室46b将压力传送给一个溶解(lyse)库64,压力室46c将压力传送给一个鞘液(sheath)库66。每个压力室46a、46b和46c的尺寸和形状都可以被进行调整,以传送所要的压力特性给对应的流体。

压力室46a包括一个第一压力室70和一个第二压力室72。在第一压力室70和第二压力室72之间设有第一阀门74,以将第一压力室70中的压力有控制地释放到第二压力室72。一个与第二压力室72流体连通的第二阀门76有控制地将第二压力室72中的压力排放出去。每个阀门最好是由一列可单独寻址和控制的静电驱动的微阀组成,如美国专利申请序号为09/404,560,标题为“用于比例压力或流量控制的可寻址阀门阵列”的同时待决申请中所述(本申请以参照方式结合该申请)。压力室46b和46c具有相似的阀门来分别控制传送到溶剂库64和鞘液库66的压力。此外,每个阀门还可以由一列具有可控工作循环来进行脉冲调制的静电启动微阀组成,以取得受控的“有效”流量或泄漏速率。

可更换盒14具有从盖板18接收受控压力的压力接受端口34a、34b和34c。如图所示,受控压力被传送到血液库62、溶剂库64和鞘液库66。溶剂库64和鞘液库66最好在可更换盒14被装上使用之前便已被灌注而血液库62从采样端口32灌注。一份血样被传送到采样端口32,并通过毛细管作用,被吸入血液库62。一旦血样到了血液库62,盖板18便可被闭合,系统也可以开始受压工作。

在进行流体动力聚焦前,一个流量传感器设置成与每种流体排成一直线。每个流量传感器80、100和102可测量对应流体的速度。流量传感器最好是热式风速计型流量传感器,尤以微桥型(microbridge)流量传感器为佳。微桥型流量传感器如美国专利号4478076、4478077、4501144、4651564、4683159、5050429等所述(上述专利均以参照方式结合于本申请)。来自每个传感器80、100、102的输出信号被传送到控制器即处理器40。

当血样的速度下降到一个第一预定值之下时,控制器或处理器40打开第一阀门74,当血样的速度增加到一个第二预定值之上时,它打开第二阀门76。阀门84、86、94和96以类似的方式工作以控制溶剂和鞘液的速度。

在操作过程中,为了给系统提供压力,人工按压单元44被按下。在图示的实例中,人工压力单元44包括3个柱塞,且每个柱塞进入对应的第一压力室中。柱塞在第一压力室中建立一个相对高的非精确压力。通过开启第一阀门70、84和94,在第二压力室形成较低的受控压力,这便创造了一条进入第二压力室的可控压力泄漏导槽。如果在第二压力室中产生了过高的压力,相应的排出阀76、86和96便被开启以减小压力。

当盖板18闭合时,常开的第一阀门74、84和94闭合,而排出阀76、86和96开启。当第一压力室中压力达到一个预定压力P时,排出阀76、86和96闭合,而第一阀门74、84和94被打开以在第二压力室中形成一个较低压力P’。第二压力室中的受控压力为可更换盒14的流体回路提供了必要的压力,以形成血液、溶剂和鞘液的液流。然后,通过下游的流量传感器80、100和102来测量液流速度。每个流量传感器产生一个输出信号,该信号被控制器或处理器40用来控制相应的第一阀门和排出阀的操作,以为每种流体提供一个理想且恒定的速度。

也可设置通常显示在110处的下游阀门。控制器或处理器40也可将下游阀门110关闭,直到系统受压时为止。这可以防止血液、溶剂和鞘液在回路受压之前便流入流体回路。在本发明的另一说明例中,当盖板被闭合时,下游阀门110通过机械作用打开。

图5是示意图,示出了具有一个球状物100和一个止回阀102的示意性的人工流体驱动器。止回阀102最好是一种允许空气进入第一压力室104但不允许它从其中流出的单向阀。当球状物100被按下时,其内部106的空气被迫穿过止回阀102而进入第一压力室104。最好提供另一个单向排液阀105,以使大气中的空气进入球状物100的内部106,却不能从其中流出。于是,当球状物释放时,单向排液阀105便可让替换空气流入球状物100的内部。

也可不使用人工操作的流体驱动器,而考虑使用任何相对小的压力源,包括一种静电驱动的中间泵。在美国专利号为5836750、发明人为Cabuz的专利文献中有对这种中间泵的描述,该专利以参照方式结合于此申请。

图6示出了通过一个可寻址的8×7微阀阵列进行比例压力控制的情形。为了产生图6中所示的曲线,6.5磅/平方英尺的压力被加到第一压力室120。在第二压力室122处设有一个小开口,微阀如图中124所示,它们将第二压力室122中的压力排出。通过改变闭合的可寻址微阀数目,可以改变和控制第二压力室中的压力。如该曲线图所示,第二压力室122中的压力可以从当8×7微阀阵列中没有阀门闭合时的0.6磅/平方英尺变到当所有8×7微阀阵列中的阀门闭合时的6.5磅/平方英尺。这些低功率的、微机械加工的硅质微阀可用来控制直到10磅/平方英尺或更大的压力。

图7是示意图,示出了通过图3中的流体动力聚焦功能块88来形成液流和核心流的情形。流体动力聚焦功能块88以受控的速度从流体驱动器接收血液、溶剂和鞘液。血液被与溶剂相混合,这导致红细胞被除去。溶液的pH值比红细胞低。这常被称为红细胞溶解或溶剂闲置(lyse-on-the-fly)。剩下的白细胞向下通过一个被鞘液包围的中心腔150来产生液流50。液流50包括一条被鞘液152包围的核心流160。如图所示,导槽的尺寸被减小,以使得白细胞154和156成单列排列。鞘液的速度最好约为核心流速度的9倍。然而,鞘液和核心流的速度应当保持足够低,以维持在液流导槽中的层流。

光发射器22a和22b以及相关的光学元件最好相邻地设在液流50的一侧。光探测器24a和24b以及相关的光学元件被配置在液流50的另一侧,以透过液流50接收来自光发射器22a的光和来自发射荧光的微粒的光。光探测器24a和24b的输出信号被传送到控制器或处理器40,在该处进行分析以识别核心流160中选定的白细胞和/或计算其数量。

图8是示意图,示出了通过图7中的散射来分析核心流160的一列光源22a和一列光探测器24b。光源在图中用”+”表示,而光探测器位于方框处。在所示的实例中,光源列与液流50的一侧相邻,而光探测器列与液流的对侧相邻。每个光探测器最好与其相应的光源对准。如图所示,光源列和光探测器列沿一个相对于液流50轴线202略作旋转的光源轴线200配置。

光源列22a最好是一列激光器,例如在一个共同的衬底上制造的垂直腔面发射激光器(VCSEL)。由于它们垂直发射激光,VCSEL非常适于封装在紧凑型设备如小型便携式血细胞计数器中。那样的血细胞计数器能佩戴在身上。所用的VCSEL最好是工作于波长少于传统的850nm的“红色”VCSEL,尤以波长范围处于670nm到780nm之间的为佳。红色VCSEL可具备非常适于散射光测量的波长、功率和极化特性。

某些现有技术的台式血细胞计数器采用一种单一的发射激光波长为650nm的边缘发射激光器。光束被聚焦到10×100微米的拉长形状,以补偿由于核心流没有对准和其宽度所造成的微粒位置的不确定性。与此相比,对于10×10微米发射器和100微米间距的布置,本发明的工作于670nm波长的红色VCSEL输出功率通常在1mw左右。因此,来自一个10个红色VCSEL的线性光源列的光强度可与现有技术中的某些同类产品的大体相同。

使用一个线性列的相对于液流轴202成某一角度的激光器与之前采用单一光源相比具有一些重要的优点。例如,一个线性列的激光器可以被用来确定核心流中微粒导槽的水平对准情况。造成微粒流对准存在不确定性的一个原因是核心流的宽度,这导致微粒导槽位置出现统计性波动。这些波动可以从对光探测器数据的分析中确定,且能被控制器或处理器40用来调节流体驱动器的阀门,以改变加于样本流体和辅助性流体的相对压力,来改变液流中选定微粒的对准情况。

为了确定液流50中细胞的水平对准情况,细胞通过几个由VCSEL线性列产生的聚焦光点。这些细胞造成了相应的与其成一直线的参考光探测器中信号强度的下降。信号的相对强度被控制器或处理器40用来确定微粒导槽的中心和对微粒宽度进行测量。为了确定微粒导槽和其尺寸,激光器列24最好聚焦于核心流平面中的一系列高斯光点214(光强度为1000W/cm2数量级)。光点214最好约与白细胞大小相同(10-12μm)。示意性的高斯光点如图9所示。光探测器列24a和它们的聚焦光学元件被配置在液流50的对侧。采用的透镜具有较大的F数,以便为可更换盒的血细胞计数器部分提供一个几百微米的工作空间。

采用一线性列的激光器22a而不是采用单个激光器结构的另一个优点是可以确定每个细胞的速度。微粒速度在从光散射信号中估计微粒尺寸的过程中是一个很重要的参数。在传统的血细胞计数法中,微粒速度是从泵的流速外推得出的。这种方法的局限在于泵必须很精确,血细胞计数器液流室的公差须严格控制,不能出现如泄漏之类的流体故障,并且不能引入干扰液流和核心流形成的微泡。为了确定每个细胞的速度,系统可以测量每个细胞通过相邻或连续的两点所需时间。例如,见图8,一个细胞可以通过光探测器208,然后通过光探测器210。通过测量细胞从光探测器208移动到光探测器210的所需时间,并通过得知光探测器208与光探测器210之间距离,控制器或处理器40可计算出细胞的速度。这会是一种近似的速度测量。以上通常被称为飞行时间测量法。速度一旦被获知,就可由通过该微粒中心所在的点所需的时间(几微秒)求得微粒长度和尺寸的量度。

微粒速度被认为还可用来帮助控制流体驱动器。为了减小本发明装置的大小、成本和复杂程度,图1中的可替换盒可以用塑料层叠或模压件制造。尽管那样的生产工艺可以提供较便宜的部件,这些部件的尺寸通常较不准确和较不具有可重复性,因为它们具有非对称尺寸和较大公差的横断面。这些较大的公差可能造成微粒速度发生变化,特别是使用不同盒时更会如此。为了补偿这些较大公差所产生的后果,以上所述的飞行时间测量可被控制器或处理器40用来调节加到血液、溶剂和鞘液上的受控压力,从而使得核心流中微粒具有相对稳定的速度。

为进一步评估细胞大小,可以考虑将激光束沿着或横越细胞路径进行聚焦。除此之外,可以分析穿越一个细胞的多份样本来确定其结构特征,并将形态学特征与其他细胞类型关联起来。这种做法可以提供关于细胞大小的多个参数,并有助于将各种细胞类型彼此区分开。

使用一个线性列的激光器22a而不是使用单个激光器结构的另一优点在于在穿越液流导槽时可以提供相对稳定的光照度。如图9所示,这是通过将来自相邻VCSEL的高斯光束进行重叠实现的。在现有技术的单一激光器系统中,穿越液流导槽的光照度往往随着穿越导槽位置的不同而发生变化。因此,如果一个微粒没有处于液流导槽的中心位置,随后的测量精度便会降低。

为了进行上述测量,图8中每个光探测器24a可以是单个的直线上(in-line)光探测器。然而,为了测量前向角散射(FALS)和小角散射(SALS),每个光探测器24a还要包括两个设在线上光探测器附近的环形光探测器,如图10所示。参考图10,一只VCSEL沿向上的方向发光。光是通过一个透镜220发出的,后者将光聚焦于处于核心流平面的一个高斯光点。透镜220是一种微透镜或类似的装置,它或者与VCSEL 218分开,或者与之集成。光通过核心流,并被另一个透镜222例如一种衍射光元件接收。透镜222将光传送至线上光探测器226和环形光探测器228和230。线上光探测器226检测没有被核心流中的微粒显著散射的光。环形光探测器228检测前向角散射(FALS)光,环形光探测器230检测小角散射(SALS)光。

图11示出了包括三列彼此独立的光源和光探测器的本发明的另一说明例。每一列光源和光探测器沿一个相对于液流的中心液流轴略作旋转的不同的轴线配置。通过使用三列光源和光探测器,与每列相关的光学元件可以为某一特殊应用或功能而优化。为了检测小角散射(SALS),采用正好聚焦于核心流平面的激光比较理想。为了检测前向角散射(FALS),采用经准直的光比较理想。

特别参考图11,一个第一列的光源和光探测器位于300处。光源和光探测器被沿第一光源轴配置成一线性列。第一光源轴相对于液流的液流轴作了旋转。光源和光探测器可能与上述图8的光源和光探测器相类似,并最好被用来测量,例如,液流中细胞的水平对准、微粒大小以及微粒的速度。

图12是示意图,示出了图11中的第一列300的一个示意性光源和光探测器对。如图所示,一只VCSEL 302沿向上的方向发光。光通过一个透镜304发出,光被聚焦成核心流平面上的一个高斯光点。该光透过核心流,被另一透镜306接收。透镜306将光传送至线上光探测器308。线上光探测器308检测没有被核心流中的微粒显著散射的光。

如图所示,一个第二列光源和光探测器位于310处。其光源沿一个相对于液流的液流轴略作旋转的第二光源轴配置。其光探测器包括三个线性列的光探测器。一列光探测器与上述光源线性列成直线配置。另外两个线性列的光探测器被配置在处于直线上的光探测器列的任意一侧,并且被用来测量由液流中选定微粒产生的小角散射。

图13是示意图,示出了图11中的第二列的一个示意性的光源和与之对应的光探测器。如图所示,一只VCSEL 320沿向上的方向发光。光是通过一个透镜322发出的,光被聚焦成核心流平面上的一个高斯光点。光透过核心流,并被另一只透镜324如一种衍射光元件324所接收。透镜324将光传送至线上光探测器326和与之相对应并被放置于线上光探测器326任一侧的两个光探测器328和330。

线上光探测器326可被用来检测没有被核心流中的微粒显著散射的光。因此,第二列302的线上光探测器线性列可以被用来进行与第一列300的线上光探测器列相同的测量。这两列线上光探测器列的测量结果可以被进行比较,也可以被结合起来,以得到一个更为准确的结果。另外,或者除此之外,第二列302的线上光探测器可以被用作一组冗余的光探测器以提高血细胞计数器的可靠性。

也可以考虑将第二列302的线上光探测器与第一列300的线上光探测器结合使用来更准确测定液流中微粒的飞行时间或速度。这种测量结果可以更精确,因为光探测器之间的距离可以更大。如上所示,通过得知微粒的速度,由流体驱动器造成的流速上的微小变化便可由控制器最小化或消除。

图13中的光探测器328和330被用来测量由液流中选定微粒产生的小角散射(SALS)。因此光探测器328和330最好与线上光探测器326留有足够的间隔来截取由液流中的选定微粒产生的小角散射(SALS)。

再来看图11,一个第三列光源和光探测器350最好被用来测量由液流中选定微粒产生的前向角散射(FALS)。这些光源被沿一个相对于液流的液流轴旋转的第三光源轴配置成一个线性列。每个光源最好具有一只相对应的光探测器。每个光探测器最好呈环形,并且其中央配置有一个非敏感区域或是一只独立的线上光探测器。这些环形光探测器最好被调整大小,以截取和检测由液流中选定微粒产生的前向角散射(FALS)。

图14是一张示意图,示出了图11中的第三光源和光探测器列350的一个示意性的光源和光探测器对。如图所示,一只VCSEL 360沿向上的方向发光。光通过透镜362例如一种提供基本准直的光的准直透镜发出,该准直透镜将高度平行的光送至核心流。如上所示,平行光对检测前向散射光是较为理想的。光通过核心流,并被另一透镜364接收。透镜364将接收到的光传送至环形光探测器368。

环形光探测器368的大小最好确定成能截取和检测由液流中微粒产生的前向角散射(FALS)。在环形光探测器368的中央,可设置一个非敏感区或一个独立的线上光探测器370。如果提供的是一个独立的线上光探测器370,它便可以被用来提供与第一列300和/或第二列302的线上光探测器相同的测量结果。当这样设置时,来自第一列300、第二列302和第三列350的所有线上光探测器列的测量结果可以被进行比较或是被结合起来以得到一个更加准确的结果。第三列350的线上光探测器可作为另一层次或冗余以提高血细胞计数器的可靠性。

也可以考虑将第三列350的线上光探测器与第一列300和/或第二列302的线上光探测器结合使用来更准确地测定液流中微粒的飞行时间或速度。这种测量结果可以更精确,因为光探测器之间的距离可以更大。如上所示,通过得知微粒的速度,由流体驱动器造成的流速上的微小变化便可被控制器最小化或消除。

通过使用三列独立的光源和光探测器,与其中每列相关的光学元件可为所想要进行的应用而优化。可以看出,与第一列300相关的光学元件被设计用来将聚焦良好的激光投射到核心流平面上。这将有助于为第一列300对调准、微粒大小和微粒速度等进行的测量提供分辨能力。同样的,与第二列302相关的光学元件被设计用来将聚焦良好的激光投射到核心流平面上。聚焦良好的光对于测量由液流中的选定微粒产生的小角散射是比较理想的。最后,与第三列350相关的光学元件被设计用来为核心流提供平行光。如上所示,平行光对于测量由液流中的选定微粒产生的前向角散射(FALS)是比较理想的。

图15是本发明的可被佩戴在手腕上的小型便携式血细胞计数器的一个说明例的透视图。这种血细胞计数器400可能与图1中所示的血细胞计数器相类似。一条带402将血细胞计数器400固定在使用者的手腕上。

如上所示,使用者可以得到一个可更换盒,并可将一份血样供给可更换盒的采样端口32(见图1)。可通过如戳破手指的方法来采集血样。然后使用者可以将可更换盒插入到仪器箱体中,并手工按压该系统。随后该小型便携式流式血细胞计数器便可以提供一个读数来指出使用者是否应该寻求医务治疗。该读数可以是一种视觉读数,也可以是一种可听见的声音或其他任何合适的显示形式。

不通过戳破手指或类似的手段来采集血样,可以将导管404或类似的东西插入到使用者的一条血管之中,并将该导管与采样端口32相连。这将允许系统在任何想要一个读数时自动从使用者处采集一份血样。或者,我们认为小型便携式血细胞计数器可以被植入人体内,且其采样端口32与某一合适的血液供应源相连。

图16示出了一个具有散射光学子系统501和荧光学子系统502的血细胞计数器盒500。光学子系统501包括液流导槽两侧的窗或开口30a,光学子系统502包括窗或开口30b。在每个子系统中,存在着分布于液流导槽每一侧的一个窗或开口。这些开口可能具有光学插件或透镜。这种血细胞计数器根据其实现方式可以被佩戴,系在人体上或是被插入到人体内。

图17示出了分别集成了光学子系统501、502的系统503、504。系统503还包括用于测量核心流160中微粒如白细胞的散射特性的VCSEL列22a和光探测器列24a。这个系统可被用于淋巴细胞和中性粒细胞的计数和分类。自对准功能可以通过一个基于红色VCSEL列的光学子系统来实现。散射系统503的说明例如上所述。

系统504是一种荧光激励和检测机构,可被用来对特定子类的白细胞和血液中的蛋白质进行识别和计数。检测白细胞子类可以通过某些可用的合适抗体来实现。可以买到许多这样的呈现荧光共轭形态的抗体。图18示出了一张血液成分简图和可以被荧光系统504进行计数和识别的细胞。如上所述,送入血细胞计数器中有待观察的血样,其红细胞已被溶解除去。检查白细胞时,血小板被保留,因为其较小尺寸不会影响血细胞计数器的检查结果。作为一个说明例,呈CD4阳性的T细胞505,其结构如图18所示,它在血液中所占比例和数量对于艾滋病(HIV)感染的临床病程跟踪是十分重要的。一种加入某种与CD4细胞相关的标示物的抗体可与血样相混合,以得到抗体(AB)506的一种“Y”形结构和被附加到CD4细胞505上的标示物(M)507,如图19a所示。光源22b发射出光,且该光可以被标示物507吸收。作为响应,标示物507发出荧光,并放射出特定波长的可被检测出的光,以识别CD4细胞505。

通过检查血液来检测炭疽热是当前血细胞计数器的另一应用。与诱发炭疽热的细菌509相对应的抗体508被与血样混合。这些抗体可以与细菌509结合在一起。这些抗体也含有受到光的撞击后即发出荧光的标示物510。抗体508的“Y”形结构如图19b所示。标示物510发出一种特定带宽的光,这种光的带宽不同于CD4细胞505之抗体506的标示物507所发光的带宽。从而在同一个血样测试中,通过比较具有不同波长、颜色和特征的荧光发射,可以将炭疽热感染从艾滋病感染中独立地辨识出来。在同一份血样中同时检测出的疑问状态数可大于两个。

作为另一说明例,NeupogenR(一种蛋白质)被视作用来增加接受抑制骨髓活性化疗的癌症患者体内中性粒细胞的数量。在这种治疗过程中,需要对白细胞数量(特别是处于neupogenR治疗阶段的中性粒细胞、单核细胞和血小板的数量)进行准确的监控。本发明的血细胞计数器可以被未经训练的人使用,以便在那些接受化疗的患者家中对他们进行监控。

本发明的小型便携式血细胞计数器可用于生物战中。它可被用于对生物病原体的定量检测和识别。这种检测和识别是建立在利用荧光测量实现的抗体-抗原型免疫分析基础上的。环境、水和食物可受到监控,以检测出任何可能出现的生物病原体。这个过程会涉及为本发明的血细胞计数器的样本采集和准备。本血细胞计数器的其他应用包括对DNA和RNA进行高通过量分析(使用其荧光检测功能)和排序,研究细胞对试制药物的反应,分析白血病和淋巴瘤的免疫表现型,监控癌症患者体内的剩余病变,以及对细胞进行分选和隔离,包括对罕见种群的高速隔离。与它的其他特点相比,该装置的以下特点更引人注意:上述应用和其他用途是使用单一的便携式的和小型的具有紧凑的精确流体驱动系统,并集成了散射光系统和多色荧光系统的低功耗低成本血细胞计数器设备而实现的,在分析阶段它不需要人员的干预和调节,不需要训练有素的人员对其进行操作,并使用由卫生的一次性塑料或其他材料制成的具有集成式光学元件和内部血样处理设备的微流体控制盒14。

图17中的系统504具有一个激光源22b,该光源被配置在一个合适位置,使得它能将光511定向在液流导槽530中单一纵列流动的微粒512上。为了说明起见,微粒512可以分别包括图19a中的结构513和图19b中的结构514。光511可以来自一个红色或蓝色激光源,如发光二极管,该光可以分别具有如650到700纳米或是380到420纳米的带宽。其他具有合适波长的光源也能被用于产生光511。当光511与荧光标示物507和510发生碰撞时,这些标示物发出荧光,同时分别放射出光515和516。因为这些标示物彼此不同,光515和516具有不同的波长。因此,结构513和514不仅可以从它们所发之光的波长中被辨识出来,而且可以在同一份样品、血液或是其他物质中被区分出来。光515和516可以到达二色分光器517,并由后者通过将它们导向不同方向,从而将这两种光束分离开来。光束516可以到达一个荧光电光探测器518,并由后者对其进行检测和转换成送至处理器40的电信号520。光束515可到达一个荧光电光探测器521,并由后者对其进行检测并转换成送至处理器40的电信号522。处于光束516路径上的带通滤波器519能将来自光源22b且得以在光束516中出现的光511滤去。带通滤波器523对于光束515的作用就如带通滤波器519对于光束516的作用一样。为了给光探测器521定位,镜524被用来将光进行重新定向,这样做是为了对探测系统504进行更紧凑的封装,或是为了其他原因。在另一方面,镜524也可以成为将不同波长的光525从光束515和516中分离出去的另一个二色分光器。更多的分光器可以被级联起来或是被排列成其他结构以滤除其他频率成分的光。来自散射检测系统503的光探测器列24a的信号也向处理器40行进。

分光器517可以被其他装置取代,以将不同波长的光分离出来或选择特定波长的光。这些装置可能包括不同类型的陷波滤波器和阶跃函数型滤波器、可调式衍射光栅、薄膜介电叠层、发射式分光器,光子能隙滤波器、光子晶体、可调式带通滤波器、标准梳齿和其他滤波结构,以及具有附带结构性滤波和其他滤波装置的光波导的晶片,用于吸收/滤除光波的具有波导和含有特定尺寸和节距的孔眼的硅晶片或玻璃晶片,等等。

图20示出了荧光学子系统502的结构。光源22b发出光束511,并穿过窗30b通过微透镜526聚焦于微粒512上。光束511可被准直也可不被准直。微粒512可以具有一种能发荧光且透过窗30b发出分别经过薄膜涂层滤波器527和微透镜528的光束515、516的标示物。滤波器527可将光511从光源22b中滤除。滤波器527可以是位于透镜528下的介质叠层和一种陷波或阶跃函数型滤波器,以阻挡光源22b发出的光511。透镜528可以将标示物发出的荧光聚焦成光束515/516,该光束随后到达分光器,例如分光器517。光束515/516可以被准直也可以不被准直。在处于液流导槽530的玻璃、石英或塑料(被切成或未被切成薄片)衬底上的窗30b或透镜528四周或前后形成不透明的或是吸收性的层529。层529可以防止光源22b发出的任何光511与荧光515/516相混合。层或遮光滤光片529可以是一种对想要加以阻挡的波段的光呈黑色或不透明的薄膜。滤波器529可以是一种陷波或阶跃函数型滤波器。另一玻璃、石英或塑料(被切成或未被切成薄片)衬底532形成了微粒512的核心流的液流导槽530。衬底531、532、窗30b以及透镜526和528的构成材料中不能含荧光成分。在一说明例中,光源22b发出的光511之方向相对于微粒512发出的荧光515/516之方向约成90度角。光源511所发之光与荧光515/516之间所成的这个角可以有效的减少或消除光源所发之光与荧光515/516的混合。在本例中,来自光源22b的光511之方向相对于液流导槽530的纵向尺寸方向或微粒512的核心流方向可以成约45度角。然而,在某些应用中,光511的方向与光515/516的方向之间可以成0到120度角。

图21a示出了用于散射光学子系统501的液流导槽530的端视图,图21a示出了用于荧光学子系统502的液流导槽530的端视图。衬底531和532的厚度约为100到200微米。窗30a和30b的厚度约为25到30微米。微透镜526和528可以是衍射或折射性的,可以由玻璃或塑料制成,并可以是非球面透镜,其直径约为500微米。导槽533可用激光切割而成。

图21c、21d、21e是图21a和21b的变形。图21c示出了一条具有窗或开口30a和30b的液流导槽。开口或窗30a和30b可分别配置在液流导槽的一侧。开口中可以有光学插件或透镜。微透镜526和528或其他类型的透镜可以形成于、附着在、插入到在导槽两侧各形成一个的开口或窗30b和30a上,或与开口或窗30b和30a整体形成。图21d示出了没有附加微透镜、也没有在其表面形成微透镜的窗30a和30b,但是却在距其一定的和适当距离的位置配置了透镜541和542。图21e示出了一个既附带微透镜526和528,也配置了分离式透镜541和542的窗结构,且微透镜526与透镜541对应,微透镜528与透镜542对应。

图22示出了图17中血细胞计数器的一张示意图,但同时在其中加入了透镜541和542。如上所述,在透镜541和542之外窗和开口30b还可以包括微透镜,也可不包括微透镜。

图23是一种同时具有散射光和荧光检测和监控系统的可佩戴在手腕上的小型便携式血细胞计数器的一个说明例的透视图。这种血细胞计数器600可与图1和图16中所示的血细胞计数器相类似。一条带602将血细胞计数器600固定在使用者的手腕上。

如上所示,使用者可以得到一个可更换盒,并可将一份血样导入到可更换盒的采样端口32(见图1、16、17和22)中。可以通过如戳破手指的方法来采集血样。然后使用者可以将可更换盒插入到仪器箱体中,并手工按压该系统。随后该小型便携式血细胞计数器便可以提供一个读数来指出使用者是否应该寻求医务治疗。该读数可以是一种视觉读数,也可以是一种可听见的声音或其他任何合适的显示形式。

可以不通过戳破手指或类似的手段来采集血样,而将导管604或类似的东西插入到使用者的一条血管之中,并将该导管与采样端口32相连。这将允许系统在任何想要一个读数时自动从使用者处采集一份血样。或者,可以将小型便携式流式血细胞计数器植入到体内,且其采样端口32与某一合适的血液供应源相连。

尽管已经用至少一个说明例对本发明作了描述,对于那些业内行家来说,在读过本说明后即不难理解本发明可能存在的许多变化和修改。因此,应当对所附的权利要求进行从现有技术看来尽可能宽泛的解释,以涵盖对本发明的所有变化和修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号