首页> 中国专利> 基于信道条件和消息长度的传输机制选择的方法和设备

基于信道条件和消息长度的传输机制选择的方法和设备

摘要

本发明涉及一种在使用自动重发请求(ARQ)协议的通信系统中的传输机制选择系统。该设备包括:无线电传播处理器(251),确定该无线传播条件的特性;消息信息大小处理器(253),用于确定将要传送的消息大小。该无线传播处理器(251)和该信息大小处理器(253)连接到一个传输机制选择器(247),该选择器基于该无线条件和该消息信息大小选择传输机制以便它最佳化资源消耗和延迟。本发明例如可应用于基于分组的蜂窝通信系统,例如GPRS、EDGE和UMTS。

著录项

  • 公开/公告号CN1675871A

    专利类型发明专利

  • 公开/公告日2005-09-28

    原文格式PDF

  • 申请/专利权人 摩托罗拉公司;

    申请/专利号CN03819518.6

  • 申请日2003-05-19

  • 分类号H04L1/00;H04L1/18;

  • 代理机构11219 中原信达知识产权代理有限责任公司;

  • 代理人黄启行;谢丽娜

  • 地址 美国伊利诺斯州

  • 入库时间 2023-12-17 16:33:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-03-30

    专利权的转移 IPC(主分类):H04L1/00 登记生效日:20160309 变更前: 变更后: 申请日:20030519

    专利申请权、专利权的转移

  • 2016-03-30

    专利权人的姓名或者名称、地址的变更 IPC(主分类):H04L1/00 变更前: 变更后: 申请日:20030519

    专利权人的姓名或者名称、地址的变更

  • 2011-03-09

    专利权的转移 IPC(主分类):H04L1/00 变更前: 变更后: 登记生效日:20110120 申请日:20030519

    专利申请权、专利权的转移

  • 2009-11-11

    授权

    授权

  • 2005-11-23

    实质审查的生效

    实质审查的生效

  • 2005-09-28

    公开

    公开

查看全部

说明书

发明领域

本发明涉及一种在通信系统中的传输机制选择方法和设备,尤其用于蜂窝分组通信系统。

发明背景

图1说明根据现有技术的常规蜂窝通信系统100的原理。一个地理区域被分为许多小区101、103、105、107,每个由基站109、111、113、115服务。这些基站通过一个固定网络互联,该网络能够在基站101、103、105、107之间传送数据。移动台所处小区内的基站经无线通信链路服务移动台。在图1的例子中,基站109通过无线链路119服务移动台117,基站111通过无线链路123服务移动台121,以此类推。

当移动台移动时,它可以从一个基站的覆盖区移动到另一个的覆盖区,即从一个蜂窝移动到另一个蜂窝中。例如,移动台125开始由基站113通过无线链路127服务。当它向基站115移动时,它进入两个基站111和113的重叠区域内,在该重叠区域内它变为由基站115通过无线链路129支持。当移动台125进一步移动到小区107内时,它继续由基站115支持。这称为移动台在小区之间的切换或转交。

典型的通信系统典型把覆盖区遍布整个国家,包括支持几千甚至几百万移动台的几百甚至几千个小区。从移动台到基站的通信称为上行链路,从基站到移动台的通信成为下行链路。

将这些基站互联的固定网络可操作地在任意两个基站之间路由数据,从而使一个小区内的移动台能够与任何其他小区内的移动台通信。此外,固定网络包括用于互连到外部网络的网关功能,外部网络例如是公共交换电话网(PSTN),从而允许移动台与陆地线电话和陆地线连接的其他通信终端通信。另外,固定网络包括管理常规通信网络所要求的许多功能,包括路由数据、接纳控制、资源分配、用户计费、移动台验证等等。

当前,最为普遍的蜂窝通信系统是称为全球移动通信系统(GSM)的第二代系统。类似于模拟系统,频带被分为200kHz的较窄信道,并且为每个基站分配这些频率信道的一个或多个。但是,与这些模拟系统相对,每个频率信道被分为八个单独的时隙,允许多达八个移动台使用每个频率信道。这种共享可用资源的方法称为时分多址(TDMA)。GSM TDMA通信系统的进一步描述可以在“The GSMSystem for Mobile Communication,Michel Mouly and BernadettePautet,Bay Foreign Language Books,1992,ISBN 2950719007”中找到。

GSM通信系统使用基于连接的服务,在这些服务中呼叫双方之间建立持久连接。基于连接的服务非常适于连续传送数据的应用。但是,因为这种连接在呼叫持续期间是持久的,因此甚至在呼叫各方不传输数据时也要维持它。基于连接的协议对于突发性的数据来说效率非常低。这样的一个例子是只在新网页下载期间需要数据的互联网连接。因此,在大部分时间,所形成的连接对于接入互联网的移动台来说都是空闲的。

用于传送突发数据的较有效的协议是当时只发送一个数据块或分组的分组数据协议。每个分组被独立于其他分组路由到目的地。这样,不同的分组在它们出现时进行路由并且沿不同的路径进行路由。此外,在移动台和基站之间也不是持续维持通过空中接口的连接,而是典型地为每个新的分组建立该连接。使用通常称为通用分组无线服务(GPRS)的可选分组数据协议来增强GSM通信系统。有关GPRS的进一步信息可以在“General Packet Radio Service in GSM,Jian Cai andDavid J.Goodman,IEEE Communications Magazine,Oct 1997,pp122-131”中找到。

通用移动电信系统(UMTS)是支持基于分组通信的蜂窝通信系统的另一个例子。进一步细节可以在‘WCDMA for UMTS’,Harri Holma(editor),Antti Toskala(Editor),Wiley & Sons 2001,ISBN 047186876中找到。

一种用于在基于分组的通信系统中降低差错率的已知协议是自动重发请求(ARQ)机制。根据这种机制,目的地可以对从分组源发送并且被无差错地接收(在可以采用的任意前向纠错编码和译码之后)的分组进行肯定确认。这样,分组目的地发送肯定确认(ACK)消息给信息源以指示接收的分组没有差错。典型地,ACK消息为一组分组提供肯定确认。如果该目的地接收到有差错的一个或多个分组,或根据一个算法确定它没有接收到分组,它就发回否定确认(NACK)消息给信息源。典型地,该NACK消息包括一个信息,该信息能够使信息源确定哪个发送分组是最后无差错接收的数据,并且一旦接收NACK消息,该信息源不断从没有被肯定确认的第一个分组开始重发分组。由于有差错接收到的任何分组被重发直到无差错地接收到它们,就这样明显改善了所得到的分组差错率。但是在典型的蜂窝通信系统中,ACK/NACK消息和额外的重发使用附加通信资源,这种附加资源的消耗明显少于为了获得相同总数据速率用于纠错编码或增加的信噪比所要求的附加资源。

与期望的总差错率相比,把每个分组的差错率设置得太低将导致使用过多资源传送该数据,但是将使延迟较小并且在重发中耗费的资源最少。但是,把每个分组的差错率设置得太高将导致传送分组使用的资源太少,但是NACK消息和重发引起的资源耗费和延迟过多。因此,根据要求的服务质量(QoS),尤其根据可接受的延迟和总差错率有一个分组差错率的最佳选择,它将满足资源耗费最小化的要求。但是,获得这种效果所需要的传输机制设置依赖于无线电传播条件并且会明显不同。因此,对于较高的干扰,需要较高的信噪比和/或编码速率,从而导致造成较高的资源耗费。对于较低的干扰,使用较少的资源需求机制就能够获得同样的性能。

因此,选择一种能够满足当前无线条件要求的传输机制非常重要。因此,诸如GPRS和UMTS这样的通信系统定义了多种传输机制来满足在不同无线条件中的不同QoS要求。基于给定移动台所要求的QoS服务需要和当前传播条件的测量来选择一种适当的传输机制。但是,只考虑这些特定的参数有点限制这种传输机制选择。因此,只基于总期望数据速率和最大可接受延迟的QoS参数的选择没有考虑可以改善提供给用户的服务和/或减少提供这种服务所要求的资源的其他参数。

因此,一种改进的传输机制选择方法是有好处的。

发明概述

本发明的发明人已经认识到,传统的传输机制选择有只考虑有限数量的QoS参数的缺点,并且如果在传输机制选择中使用消息信息大小的参数能够实现这种改进。因此本发明设法提供一种用于传输机制选择的改进系统。

因此,提供一种在使用自动重发协议(ARQ)协议和来自多个具有不同误差性能的传输机制中的一个第一传输机制来传送数据的通信系统中的传输机制选择的方法,该方法包括以下步骤:确定用于通信装置的无线电传播条件的至少一个无线特性;确定从该通信装置传送或传送到该通信装置的消息的消息信息大小;以及响应于所述确定的无线电特性从该多个传输机制中选择该第一传输机制。

从而,本发明提供了最佳化用于不同消息信息大小的传输机制选择的优点。因此它考虑了,用于初始传输的资源消耗和延迟与用于重发的资源消耗和延迟之间的折衷对于特定消息信息大小来说是最佳的。

根据本发明的第一个特点,该多种传输机制包括采用不同纠错码的传输机制。这提供了一种产生具有不同吞吐量和差错性能的传输机制的简单而有效的方法,从而利于响应于该消息信息大小最佳化传输机制选择。

根据本发明的第二个特点,多个传输机制包括采用不同调制格式的传输机制,并且这些不同的调制格式等级不同。这也提供了一种产生具有不同吞吐量和差错性能的传输机制的简单并且有效的方法,从而利于响应于该消息信息大小最佳化传输机制选择的最佳化。

根据本发明的第三个特点,第一传输机制的选择是这样的,就是使得对于所确定无线电特性,通信的差错率低于差错阈值,该误差阈值取决于该消息信息大小,并且该差错阈值由于消息信息大小减小而降低。因此,对于小的消息信息大小,选择具有改进差错性能的传输机制,从而降低重发的资源消耗和延迟。对于较大的消息信息大小,允许更多的重发,因为这增加了用于不重发的数据分组的吞吐量。典型地,重发引起的延迟对于具有较长消息信息大小的消息来说不是很关键,因为这种延迟只是整个传输时间的很小比例。

根据本发明的第四个特点,第一传输机制选择为导致平均总延迟最低的传输机制。具体是,平均总延迟实际上由下式给出:

>>Delay>=>N>+>K>+>>Σ>n>>p>>>(>NACK>)>>n>>·>>(>N>+>K>)>>>s>

其中,N是消息信息大小,K是AQK反馈延迟,而p(NACK)是用于所确定的无线电特性的否定确认概率。因此,根据消息信息大小可以最佳化平均延迟。优选地,选择该第一传输机制作为导致平均总延迟最低同时保持与该消息传输相关的总预期资源低于资源阈值的传输机制。因此,延迟最佳化是以最大资源消耗为条件。

根据本发明的第五个特点,选择该第一传输机制作为导致与该消息传输相关的总预期资源最低的传输机制,并且优选地,选择该第一传输机制作为导致总预期资源最低同时保持平均总延迟低于延迟阈值的传输机制。因此,传输机制选择响应于该消息信息大小使资源消耗最佳同时保持平均延迟低于给定值。

根据本发明的第六个特点,该方法包括确定可用通信资源的步骤,并且该第一传输机制的选择另外响应于所确定的系统容量。优选地,可用通信资源是ARQ反馈资源。因此,传输机制选择最好使总资源消耗最佳,并且具体是使ARQ反馈资源的总资源消耗最佳。

根据本发明的第二方面,提供一种在使用自动重发协议(ARQ)协议和在多个具有不同误差性能的传输机制中的一个第一传输机制来传送数据的通信系统中的传输机制选择的设备,该设备包括:用于确定用于通信装置的无线电传播条件的至少一个无线特性的装置;用于确定将要从该通信装置传送或传送给该通信装置的消息的消息信息大小的装置;以及用于响应于所确定的无线电特性从该多个传输机制中选择该第一传输机制的装置。

附图说明

参照附图只作为例子来描述本发明的实施例,其中

图1是根据现有技术的蜂窝通信系统说明;

图2是根据本发明优选实施例的通信系统说明,该通信系统包括一个传输机制选择的设备;以及

图3说明一种根据本发明的实施例的传输机制选择的方法的流程图。

具体实施方式

在下文中,本发明的优选实施例是针对蜂窝无线通信系统,例如GPRS、EDGE(全球演化增强数据速率系统)或UMTS,但是显然本发明并不限于这种应用而可以用在任何合适的通信系统中。

图2是一个根据本发明优选实施例的通信系统说明,该系统包括一个传输机制选择的设备。为了简明和清楚,图2只示出了从用户设备201传送数据到目的地单元所需要的通信系统的一些元件。目的地单元203可以是另一个用户设备、固定网络的实体、外部网络的通信装置以及其他可以在/从蜂窝通信系统可达的目的地。显然,本发明同样可以应用于任何两个适当的通信装置之间的通信,并且特别是,在其他实施例中的数据通信可以在其他方向,即到一个用户设备。因此,图2是特定场景的说明,并且所述的功能可以以任何合适的方式实现并且以任何适当方式集中、分开或分布。

用户设备201包括一个数据接口205,它接收从数据源207(其可以在用户设备201内)发送的数据。数据接口连接到一个发射机单元209,该发射机单元通过一个双工器213连接到天线211。双工器213进一步连接到接收机单元215并且可操作地将接收的信号与发射的信号分开,以便同一天线211既可以用于发送也可以用于接收。该用户设备201通过发射分组数据进行通信,发射机209可操作地发射数据分组。把数据分为和安排为合适的分组可以在发射机单元209、数据接口205、数据源207中执行,或者可以分布在它们之间。

特别是,对于GPRS通信系统的优选实施例,输入的数据在该数据接口分离为离散分组数据单元PDU。PDU的大小,即包含在给定PDU中的八位字节的数量可以不同。每个PDU包括要传送的用户数据,并且进一步包括一个具有相关控制和路由信息的报头。该信息尤其用于识别和控制数据的路由。

在优选实施例中,每个PDU分别馈送到发射机单元209。发射机单元209根据GPRS规范实现较低的网络层功能并且具体地实现无线链路控制层(RLC)和物理层。特别是,RLC层负责把PDU分为许多RLC数据块。PDU的数据初始被交织,并且应用适当的前向纠错机制。所编码并交织的数据然后被分为要求数量的RLC块。每个RLC块包括固定数量的信道码元,并且可以装配再一个RLC块的PDU八位字节的数量取决于使用的纠错码和调制格式。

GPRS规定把PDU分为RLC块可以选择的不同前向纠错机制组合的数量和调制格式。不同机制可以将不同数量的PDU八位字节装配在一个RLC块中,并且通常所提供的差错保护越低,能够在每个RLC块中实现的八位字节的数量越高。例如,在GPRS中,通常称为CS-1的传输机制适合在每个RLC块中有20个PDU八位字节,而不同的传输机制,CS-4,可以装配50个PUD字节。但是,CS-1提供了优于CS-4的改进差错性能。作为一个具体的例子,如果PDU包括200个八位字节,使用CS-4将需要4个RLC块来发送该PDU而使用CS-1则需要10个RLC块发送该PDU。

发射机单元208就这样从接收的PDU产生RLC块,并且如本领域中公知的那样通过空中接口217发送它们。用户单元201进一步包括一个发射机控制器219,它控制该发射机,尤其是控制RLC块的产生以及哪些RLC块在何时发送。

发射机控制器219执行ARQ机制,通过该机制发送没有被正确接收的RLC块。为了这个原因,该接收机单元215可操作地接收指示RLC块是否被正确接收的肯定确认ACK或否定确认消息。接收机可操作地耦合到一个ARQ处理器221,它从接收的信号中提取并处理ACK/NACK。如果该ARQ处理器确定接收到NACK消息,或者没有接收到预期的ACK消息,它就通知发射控制器这个最后肯定确认的RLC块。发射控制器219然后控制该发射机209重发在最后肯定确认块之后的RLC块。

发射机单元209通过空中接口217传送给基站223。基站223包括天线225和用于分离接收信号和发射信号的双工器225。双工器225连接到基站接收机229,该基站收发信机可操作地根据所选择传输机制接收RLC块。为了确定所选择的传输机制,基站223包括一个传输机制处理器231,该处理器231连接到该基站接收机229。在该优选实施例中,所选择的传输机制嵌入在来自用户设备201的通信中,并且传输机制处理器231提取该信息并且相应地选择该合适的接收参数。优选地,该信息简单地是预定的传输机制的标识,其包含在RLC块的传输机制独立报头中。传输机制处理器231提取该标识并且使用它在基站传输机制存储器233中进行表查找,该存储器包含所有预定传输机制的参数。在另一个实施例中,确定所使用的传输机制可以不依赖于从用户设备201发送的特定信息。盲传输机制检测的具体例子是使用所有可能的传输机制接收RLC块并且选择导致最低差错率的一种传输机制。

传输机制处理器231连接到一个接收控制器235,其基于传输机制处理器231提供的传输机制参数来控制基站接收机229接收RLC块。该基站接收机229连接到一个差错检测器237,该差错控制器237确定接收到哪一个RLC块以及在每个RLC块中接收到多少差错。差错的数量例如是通过重新编码已解码的数据并且计算与接收信号相比的差异数量来确定,这在本领域是公知的。

差错检测器237连接到一个基站ARQ处理器239,其基于差错检测器237的输出来确定并产生适当的ACK或NACK消息。基站ATQ处理器239连接到该基站发射机单元241,该发射机单元通过空中接口217发射ACK/NACK消息。

此外,基站接收机229连接到一个PDU处理器243,该处理器243从接收的RLC块中再生发射的PDU。接收的PDU然后使用常规的分组路由技术通过通信网络245传送到目的地203。

由于诸如GPRS这样的通信系统规定了用于编码和发送RLC块的许多不同发射机制,因此该用户设备201包括一个传输机制选择器247,它选择要用于RLC块传送的传输机制。典型地,对于所有的RLC块使用相同的传输机制,但是在本发明的考虑中,传输机制可以根据需要频繁或偶尔地改变。该传输机制选择器247连接到一个传输机制存储器249,它为每个传输机制保存这些参数。

该用户设备201进一步包括一个无线电传播处理器251,它连接到该接收单元215。该无线电传播处理器确定用于用户设备201的无线电传播条件的一个或多个特性。优选地,该无线传播处理器对通过空中接口从用户设备201来的通信确定与预期的差错性能相关的无线电传播条件的许多特性。这样,无线电传播处理器确定包括当前衰落条件、干扰水平、要求的发射功率、接收的导频信号电平、多径延迟扩展等等的特性(一个或多个)。该无线电特性(一个或多个)可以以任何合适的方法得到,并且可以使用确定无线电传播条件的无线电特性的任何方法而不脱离本发明。特别是,从接收机对无线电环境、一个或多个接收信号的特性、或从固定通信系统传送的信息进行的测量中确定或得到该无线电特性(一个或多个),其中传送的信息例如包括功率控制命令。在优选实施例中,使用这些方法的一种组合得到与来自用户设备201的通信的期望差错性能相关的单独特性。

传输机制选择器247响应于来自该无线电传播处理器251的该无线电特性(一个或多个)选择传输机制。典型地,为所确定的无线电特性选择的传输机制具有在一个RLC块中最高数量的PDU八位字节同时期望的差错性能低于给定值。如果差错率太低,那么需要太多的RLC块发送该PDU,并且这导致延迟和资源使用增加。如果差错率设置太高,几乎肯定需要重发,这也会导致过多延迟和资源使用,但是在这种情况下是由重发引起的。典型地,资源浪费是差错率设置太低的主要缺点,延迟增加是差错率设置太高的主要缺点,因此优选的差错率取决于所要求服务的服务质量,特别是取决于可接受的延迟。因此,典型地通过所要求的服务来确定优选的差错率,因此典型地在所确定的无线电条件以及所要求服务的基础上选择传输机制。

但是,本发明已经认识到,只基于无线电条件和要求的服务选择传输机制有许多缺点。因此,根据本发明的是,用户设备201进一步包括一个消息信息大小处理器253,其可以确定将要发送的信息消息大小。在图2的实施例中,消息信息大小处理器253连接到数据接口205和传输机制选择器247。

消息信息大小处理器253确定将要发送消息的大小。对于由一个PDU组成的消息来说,这包括确定该PDU的大小,并且在对于更大消息的更一般情况中,它包括确定PDU的数量和大小。消息大小可以通过任何适当的装置来确定并且通过任何适当的参数来测量。在优选实施例中,整个数据消息在一次操作中传送到数据接口。该数据消息然后在数据接口205被存储并被分为PDU,并且这些PDU根据需要被馈送到发射机单元209。在该实施例中,数据接口205直接传送该消息信息大小给该消息信息大小处理器253。在另一个实施例中,数据源207可以直接产生PDU并且只在需要发送时把它们馈送给用户设备。在这种情况中,第一种的PDU可以包括总消息信息大小的信息,并且该消息信息大小处理器253可操作地提取该信息并且把它提供给传输机制选择器247。

图3说明根据本发明实施例的一种传输机制选择方法300的流程图。参考图2的通信系统来描述该图。

在步骤301中,确定用于通信装置的无线电传播条件的至少一个无线电特性。在优选实施例中,如前所述该无线电特性由无线电传播处理器251确定。

在步骤303中,确定将要从该通信装置传送或传送到该通信装置的消息的消息信息大小。在该优选实施例中,如前所述该消息信息大小由消息信息大小处理器253确定。该消息信息大小可能与将要传送的任何适当消息的大小相关。特别是,在该优选实施例中,消息是将要由作为一个实体的用户设备传送的数据块,但是,它可以在多个数据分组中传送。因此,该消息是用同样服务质量传输的数据块。此外,在优选实施例中,该消息对于无线电协议分层结构的层1到3来说独立于其他消息。但是,它当然可以在例如应用层次依赖于其他消启。

在步骤305,响应于所确定的无线电特性和该消息信息大小从该多个传输机制中选择一个第一传输机制。因此,该传输机制不是只仅仅依赖于无线电特性或例如服务质量来选择而且它还响应于所确定的消息大小。

这提供了许多优点。主要是,它考虑到传输机制不仅对于服务质量和无线电传播环境最佳而且对于该消息信息大小也是最佳的。

PDU和RLC块的每次传送都与报头信息和训练数据方面的开销有关。这种开销典型地是固定的,因此当消息信息减少时,由于这种开销所造成的资源损失变得更加明显。因此,对于小的消息信息来说,这种开销对应于总通信的很高比例,而对于大的消息信息来说,相当于相对较小的比例。因此,如果要求重发,对于小的消息信息来说重发需要非常大量的开销。这是资源方面的浪费,因此使用具有较高纠错编码等级的传输机制将增加信号数据相对于开销的比例并且将降低重发可能性。

此外,数据通信典型地与要发送的最小数据量有关。例如,在GPRS中不管该消息信息的大小,一个RLC块的交织遍布4个帧。如果只基于要求的差错率和传播条件选择要使用的传输机制,那么一个RLC块的容量可能比该消息信息大小更大。但是所述实施例,将考虑该消息信息大小来选择不同的传输机制。传输机制可能具有较好的纠错编码,因此在RLC块中用于数据的容量较小。但是,如果有足够的容量适合该消息,那么不需要额外的RLC块,因此不使用额外的资源来传送这些块。因为改善了纠错编码,因此差错率将比目标比率更低,重发的概率将大大降低。由于重发使用额外的资源并且引入了延迟,因此差错率降低将导致性能大大改善。

此外,诸如GPRS这样的通信系统包括用于响应于接收ACK/NACK消息动态更新传输机制选择的方法。如果接收到太多NACK消息,那么该系统将改变到具有更好差错性能的传输机制。因此,初始传输机制选择只起初始设置的作用,这种设置可以被动态最佳化以适合当前的系统。但是,对于小的消息信息大小,供这种最佳化使用的时间不足,因此使用较低的资源效率但是更可靠的传输机制以确保接收的数据没有差错是有益的。这种传输机制选择方法使这称为可能。

此外,通信系统的总容量是通过所有服务的总资源使用来确定的。但是,具有小的消息信息大小的消息对总的系统容量影响非常小,而具有大的消息信息大小的消息则具有显著影响。因此,选择具有改善的差错性能的传输机制将增加可靠性并且降低这些服务的延迟,而使用这种传输机制对总的系统容量影响很微小。

另外,由于重发的时间是恒定的,因此对长消息的相对影响明显没有对短消息的严重。因此对于大部分应用,如果重发可能引起延迟,假定1秒,这相对于相应于传输时间假定为100秒的长消息来说并不明显。但是,如果消息信息大小相当于仅为1秒的传输时间,该延迟将变得非常明显。

对于许多通信服务来说,最小化最大延迟比最小化平均或典型延迟更重要。在ARQ机制中,与重发相关的延迟非常明显,例如可能相当于,假定,几十甚至几百个数据分组(例如RLC块)。因此,对于具有小消息信息长度的消息来说,如果不需要重发,延迟可能是传输时间数量级,但是如果需要重发,则是几十甚至几百倍长。因此,通过考虑消息信息大小来选择传输机制,可以选择一种传输机制,这种传输机制具有更好差错性能,因此需要传送更多或更长数据分组(例如RLC块),同时实际上保证不需要重发。因此,与没有重发相关的典型延迟可能增加但是最大延迟实质上减少了。

在该优选实施例中,可以选择的多个传输机制包括采用不同纠错码的传输机制。不同纠错机制将提供不同的差错性能并且要求不同数量的信道比特。因此,一种传输可能包括1/3速率维特比编码而另一种包括1/2速率维特比编码。第一传输机制将要求50%以上的信道比特,但是提供明显改善的差错性能。此外,不同的纠错编码和解码可能很容易实现并且提供了满足要求的不同传输机制的简单实现。

在该优选实施例中,多个传输机制另外或作为替换包括采用不同调制格式的传输机制。优选地,这些不同的调制格式是不同等级的。不同等级的不同调制格式具有不同的差错概率和不同的数据容量。因此,一种传输机制可能采用QPSK而另一种可能应用8-PSK,它降低了差错性能但是每个信道码元可以传送3个而不是2个比特。

在该优选实施例中,第一传输机制的选择是使通信的差错率低于一个用于所确定无线电特性的差错阈值,该差错阈值依赖于消息信息大小。优选地,该差错阈值由于消息信息大小减小而降低。

因此,在一个简单的实现中,确定该无线电特性,并且如果该消息信息大小低于一个给定阈值,那么选择具有差错概率低于值α的最高容量传输机制;并且如果该消息信息大小高于该阈值,那么选择具有差错概率低于值β的最高容量传输机制,这里α低于β。在更复杂的实施例中,当然可以使用更复杂的功能将定该差错阈值确定为消息信息大小的函数。

在一种ARQ机制中,如果不需要重发,平均延迟将依赖于传送数据分组(例如RLC块)所占用的时间量,重发的概率是需要的并且延迟与这些重发相关。因此,选择差错性能增加而吞吐量速率降低的传输机制将导致数据分组的初始传输延迟增加,但是与重发相关的平均延迟将降低,因为需要较少的重发。根据用于所采用的通信系统和传输机制的特定参数,在传输机制的差错性能和吞吐量之间有一个折衷。根据一个实施例,选择传输机制为导致平均总延迟最低并且特别是与下式相关的平均延迟最小化的传输机制:

>>Delay>=>N>+>K>+>>Σ>n>>p>>>(>NACK>)>>n>>·>>(>N>+>K>)>>>s>

这里N是消息信息大小,K是ARQ反馈延迟,p(NACK)是用于所确定的无线电特性的否定确认的概率。

优选地,在该实施例中,第一传输机制具体选择为导致平均总延迟最低同时保持与消息传输相关的总预期资源低于资源阈值的传输机制。与消息传输相关的资源由第一次发送这些数据分组(例如,RLC块)需要的资源、ACK/NACK消息传输需要的资源、重发概率以及重发需要的资源来确定。因此,传输机制的选择将影响资源使用,并且用于使平均延迟最小的最佳折衷可以与用于资源消耗的最佳折衷不同。因此,在所述实施例中,还计算用于不同传输机制的预期资源消耗,并且选择具有资源消耗小于给定资源阈值的传输机制。

在另一个实施例中,第一传输机制选择为导致与该消息传输相关的总预期资源最低并且最好同时保持平均总延迟地与延迟阈值的传输机制。因此,在该实施例中,为不同的传输机制不仅确定平均期望延迟而且确定资源消耗,但是相对于前面的实施例,在这里执行传输机制以便使用于最小化资源消耗的折衷最佳。

在一个实施例中,传输机制选择方法进一步包括确定可用通信资源的步骤,并且,第一传输机制的选择还响应于所确定的系统容量。在一个具体实施例中,可用通信资源是ARQ反馈资源。在该实施例中,首先确定用于发送ACK/NACK消息的可用资源。在一个典型的通信系统中,例如GPRS中,这些消息在具有有限资源的共享控制信道上发送。因为这些控制信道是在多个用户设备之间共享的,每个使用一种ARQ机制,因此用于ACK/NACK消息的可用资源将会改变。此外,ACK/NACK消息的要求根据选择的传输机制而不同,因为重发的数据分组(例如RLC块)本身需要被肯定确认。因此,在差错率和吞吐量之间的折衷还将影响用于ACK/NACK消息的资源,因此最好在传输机制的选择中考虑它。

此外,对所选择传输机制的确定系统容量的影响与消息信息大小非常有关系,其中系统容量不管是用于数据还是ACK/NACK消息通信。对于小的消息信息大小,甚至对较低的差错性能也只有很少的重发可能发生,因为发送的数据量有限。但是,对于大的消息信息大小来说,选择具有较低差错性能的传输机制可能导致对系统资源有明显影响,更大数量的重发将发生,因为必须传输许多数据分组。因此,在该具体例子中,传输机制的选择可以是这样的,就是对于较低的消息信息大小,降低传输机制的差错性能。

本发明可以以任何适当形式来实现,包括硬件、软件、固件及其任意组合。但是,优选地,本发明可以作为在一个或多个数据处理器上运行的计算机程序来实现。本发明的实施例的元件和部件可以位于核心网、无线电接入网、用户设备或任何适合的物理或功能位置中。实际上,功能可以在一个单独的单元中、在多个用户单元或作为其他功能单元的一部分来实现。同样,本发明可以在一个单独的单元中实现或可以以任何适当的形式在物理或功能上分布。很清楚,本发明同样可以应用于与上行链路相关的下行链路。在一个实施例中,对于下行链路数据通信,在用户设备201中所述的功能可以在基站实现,并且在基站223中所述的功能可以在用户设备201中实现。在一个实施例中,用于上行链路和/或下行链路的传输机制可以在固定网络中进行并且通过空中接口传送给用户设备。

因此,本发明通过提供一种用于响应于消息信息大小最佳化传输机制选择的方法提供了许多有优点。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号