首页> 中国专利> 紧凑型蒸汽重整炉

紧凑型蒸汽重整炉

摘要

本发明涉及一种重整器(2),其使得负荷变化能在很短的几秒钟内迅速地高达100%并且通过蒸汽重整过程用烃制得氢气。该装置具有一个用以冷却重整物和用以发生蒸汽的汽化冷却器。该汽化冷却器(34)设置在重整器2中其反应器的端部。该冷却器使相应的管端保持冷却并利用重整物余热来发生蒸汽。这可以实现快速的负荷转换,因为水导入量的提高会立即引起重整物产量的提高和由此带来的热输出的提高。

著录项

  • 公开/公告号CN1514801A

    专利类型发明专利

  • 公开/公告日2004-07-21

    原文格式PDF

  • 申请/专利权人 WS改革者有限责任公司;

    申请/专利号CN02808375.X

  • 发明设计人 J.A.温宁;

    申请日2002-04-09

  • 分类号C01B3/38;C01B3/48;C01B3/50;C01B3/56;B01J19/24;B01J8/06;B01J8/04;C01B3/32;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人蔡民军;章社杲

  • 地址 德国伦宁根

  • 入库时间 2023-12-17 15:22:13

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-04-26

    专利权有效期届满 IPC(主分类):B01J 8/06 专利号:ZL02808375X 申请日:20020409 授权公告日:20090204

    专利权的终止

  • 2009-02-04

    授权

    授权

  • 2004-09-29

    实质审查的生效

    实质审查的生效

  • 2004-07-21

    公开

    公开

说明书

本发明涉及一种具有权利要求1前序部分所述特征的、用于生产氢气的重整炉,以及一种用水和烃制备氢气的方法。

为生产氢气,就要使蒸汽和一种烃(CxHy,有机化合物,碳氢混合物)在高温度下使用催化剂进行反应。

在EP0848989A2中公开了一种并流或逆流反应器,其包括一个带有许多相互平行管道的整体式组件,这些管道被划分为相互叠套的两组。一组管道供反应物(离析物)流过,而另一组则供燃烧气/气体混合物流过。

若蒸汽属于反应物,则要单独制备。

在US-PS5484577中公开了一种带有经由气体燃烧器加热的燃烧室的重整炉。燃烧室有一个实质上是圆柱形的反应器,且其外壳由产生的气体火焰和炽热的燃烧气所加热。在反应器的外环区域装有催化剂颗粒。反应气混合物流经催化剂颗粒,并经由圆柱形的回导管道流向排气口。

反应物以气体或蒸汽形式输送。

同样适用的还有US-PS5811065中的重整炉,其中将多个重整炉整合成了一个重整炉炉组。

最近,许多具有约1-200Nm3/小时氢气生产能力的小型重整炉设备都被用于制备作为工艺气体或保护气体的氢气,以及用于燃料电池的发电。对于这种紧凑型重整炉,人们努力以各种手段寻找节省热量的最佳方式。

要将重整炉用于供应燃料电池的氢气,特别是用在5kW-20kW范围内的小型发电厂中,就要求氢的制备迅速与负荷变化相适应。氢气的产量应该与大型设备的氢气产量一致。用作原料气的天然气每立方米天然气应该有约2.5-2.7m3氢气。这样,相应的能量转换效率就为75-80%,各以低热值计。

本发明的任务在于提供一种紧凑型重整炉。

本发明的重整炉满足该要求。重整炉采用水和甲烷或其它烃以蒸汽形式(气体形式)在较高温度下借助催化剂生产氢气。设置一个汽化冷却器来实现水的汽化。给水在汽化冷却器中利用流出的反应物(重整物)的热量在很大程度上被汽化。

产物和离析物的流动是强制相同的。在改变负荷的情况下汽化效率的每次改变都是随重整物流的相应变化而来—输入汽化冷却器中的功率的相应变化。所有流入反应器的和流出反应器的物流总是时间同步的,由此可以使得负荷引导的汽化成为可能。反应器的热惯性和用以改变加热功率的燃烧器的响应时间不会制约负荷变化速度。相反,当负荷跃变时,反应器的热惯性起到热缓冲器的作用,并且恰恰可使得负荷变化特别快。在很短的几秒钟内,负荷变化就可以达到100%。

水的汽化和必要时燃烧气的汽化在重整炉的进口处基本上通过待冷却的重整物来实现。需要时,只需要从燃烧器的废气中抽取出所需的一部分热量,就可以由此调节汽化温度。

汽化冷却器优选设计成缝隙式汽化器,并且其中进口管和出口管设计成螺旋形缝隙管。进口管优选设置在反应器的内壁面和插入体之间。出口管优选沿着插入体的内壁面伸展。最好使水和燃料经毛细管作用输送到共用的进口管中。由此实现水燃料混合物的汽化。燃料可以是气体或液体形式的。所出现的雾化效应促进了汽化。

优选将反应器设计成即便在很高温度(比如高至1000℃)下也可以承受很高的压力(比如10或20bar)。为此,优选设计为圆柱形的压力容器。使得排放的氢气可以在加压条件下净化气体,比如利用膜处理方法——可以省掉后压缩。由于离析物的体积小,因此可在重整器输入侧,以比如在重整器之后的后压缩少得多的压缩能(系数5)完成压缩。

汽化器主要靠重整物进行加热。另外,废气加热可以通过反应器的壁实现。据此可准确地调节汽化器的温度。汽化器功率的90%以上优选靠重整物的热能提供。汽化热中只有一部分通过反应器的热传导以及通过分流的废气补充。由此,可使汽化冷却器在启动设备时或在空载运行时也能保持在所希望的温度下。为此,可在比如沿着反应器外表面走向的相应废气分流管道中,设置一个调节装置(温度调节器)。能量转换的效率高达80%或更多。

热交换器优选设置在压力容器中,以便使进口通道和出口通道中的压力几乎相同。因此,热交换器是不受力的。

用以加热反应器的燃烧器优选是一种充分利用废气热量的燃烧器,例如同流换热燃烧器或交流换热燃烧器。燃烧器可以根据燃烧室温度来调节。因此,对重整器的各个耗热处的调配是自动完成的。耗热与供应热量之间的暂时热差通过存储在重整器中的热量来平衡。

可以将燃烧室设计得适于无焰氧化。为此就要避免出现可能会产生并维持火焰的小股漩涡和环流。因此,就要实现几乎无NOx和几乎无损耗的运作。此外,燃烧气热值的波动并非重要。

在一个优选的实施形式中,相互同心地设置一个或多个反应器以及一个或多个燃烧器。比如,中央设置的燃烧器周围是多个反应器。反之,一个反应器的周围也可以是多个燃烧器或者这多个燃烧器容纳于一个空腔中。在这两种情况下,要将一个或多个反应器以及一个或多个燃烧器从一侧引入到壳体的一个优选呈圆柱形的腔内。这样就形成了整个装置较为紧凑的格局,并简化了控制过程。例如,可以舍弃调节一部分废气流的步骤以适应不同的负荷情况。另外也减少了热量损失。

反应器可以由陶瓷制成,这样就大大提高了抗高温腐蚀的耐磨强度。在一个优选的实施形式中,反应器的一个细长部分伸入燃烧室内,而真正的重整过程就是这一部分中于700到1200℃的温度下进行。根据需要,反应器上面可以有一段直径变大的部分,该部分为一个用于催化器将长链的CxHy裂解成CH4的预重整过程(300到500℃)提供地方并容纳汽化冷却器。优选将汽化冷却器设计成环形的。其处于200到400℃范围内的内腔中可以设置一个催化器来完成转移反应,或者设置一个位于出口侧的隔板过滤器用以留住一氧化碳。

该汽化冷却器允许水以及可能的燃料进行快速而符合需要的汽化。只要水是流动的,就要保持汽化器的温度低于取决压力的100到180℃的沸腾温度。这也就在另一方面实现了重整物的迅速冷却(猝冷)。由此,也就持续地避免了于400到600℃的温度下在表面上形成的烟灰。

本发明的其它优选的实施形式的细节将在附图以及附图说明中阐述。

附图中示出了本发明的实施例。附图所示为:

图1是带有重整器的重整系统的纵向剖视图,

图2是一个图1重整器的派生实施形式,

图3是一个通过交流换热式燃烧器加热的重整器的派生实施形式,

图4是带有陶瓷重整器管和转移反应器的重整器,

图5是带有陶瓷重整器管和隔板体的重整器的示意图和局部剖视图。

图6是重整器的派生实施形式的纵向剖视示意图,

图7是图6的重整器的横向剖视图,

图8是重整器的另一实施形式的纵向剖视示意图,

图9根据图8的重整器的横向剖视示意图。

图1表示的是一个带有用燃料和水生产氢气的重整炉2的重整装置1。在重整炉2后紧接着一个用以分离CO的PSA3(变压吸附装置,即压力变换吸附装置)。PSA3具有多个吸附柱4,重整物周期性地经穿过和回冲洗这些吸附柱。残余气体经由导管5导入重整炉2中。

重整炉2具有一个比如带有一个绝热套7的圆柱形套壳6。该绝热套包住了一个比如圆柱形的且其端侧9上设置有一个燃烧器11的加热一或燃烧室8。燃烧器11连接在导管5及燃料管12上。通过管14将空气传送到燃烧器11中。燃烧器11通过废气管15排放废气。燃烧器11上具有一个同流换热器16,其外面邻接环形的废气通道17而内部则邻接导气通道18。同流换热器16起利用废气热量的作用。废气热量传递到流入的空气上和必要时传递到燃料上。

在燃烧室8的与燃烧器11相对的(下)端面19上,绝热套7具有一个圆柱形的通道21,在该通道中装有一个与燃烧器11同轴且伸进燃烧室8中的化学反应器22。该反应器22作为反应容器具有一个端侧封闭的且由诸如耐热钢或其他合适的金属制成的管23,而且管的封闭端朝向燃烧器11。燃烧器11可以偏离轴地设置在燃烧室8的任意一个合适的位置上。

管23的开口端嵌在顶端24上,离析物经该顶端流入而产品则经该顶端流出。通过水泵26以理想压力(比如10bar)和理想用量供应水的管道25用来输送物料,同样地,管道27用于输送燃料,其和燃料管12相连接,其中,燃料泵28以理想用量和理想压力(10bar)将燃烧输送到反应器22中。在顶端24上设置有一个重整物导管29,其经过重整物冷却器31通往PSA3。此外,在顶端24上设置有一个带控制阀33(比如恒温器阀)的废气管32,通过该管道需要时可以将废气从燃烧室8中经由管23上的环形间隙通道34向外导引出。

在管23中设置有一个直接接在顶端24上的用作汽化器的汽化冷却器35。其上附属有一个管形的、其外侧上有一头或多头平螺纹的管体36,而该管体的外侧和管23的内壁之间形成了一个进口通道37。该通道将离析物导入一个间隙形的、螺旋形的通道中,然后再经由一个环形隔热元件38的外套面,导到反应器22的反应室内而在反应室里装有催化剂39。催化剂39几乎完全填满反应室。反应室具有一个中心通道,汇集管41通过该通道一直通回到汽化冷却器35。在其伸过催化器39的那一端上设有进气口,其余则封闭。管道汇入汽化冷却器35的内腔,在内腔中设置有一个插头42。而它的略呈圆柱形的套面和汽化冷却器35的内壁形成一个狭长缝隙形状的、优选是螺旋形状弯曲的、通向重整物导管29的出口通道43。

上述的重整装置1特别适于能力为1-200m3/小时范围内的氢气生产。它是按以下方式进行工作的:

工作时通过燃烧器11使燃烧室8保持在800-1200℃的温度范围内。经由废气通道17流出的废气将经由空气输入通道18以逆流形式流入的燃烧气加热至最高800℃,由此利用了废气热量。在燃烧室内可以产生火焰。如果相应地避免小局部涡流,也可以实现无火焰的氧化过程。

因此,管23的伸入燃烧室8内的一端和催化剂39被加热到介于700℃到1200℃之间的温度。由水(H2O)和燃料(CH4或CxHy)组成的穿流混合物在这里主要反应成氢气,一氧化碳,二氧化碳和水蒸气。此外,燃料的残余物可以混在重整物中,然后重整物通过汇集管道41,经过绝热元件38的中心开口流向汽化冷却器35。在这里,重整物其实还未被冷却,即温度相同,而此温度就是其离开催化剂39时的温度(明显高于600℃)。重整物以这样的温度进入出口通道43。由于以逆流形式通过进口通道37流入的流动水(其在10bar时在180℃下才沸腾)使得汽化冷却器35完全保持在几乎不超过200℃的温度上,所以进入出口通道43的重整物会经历一个骤然冷却的过程(猝冷)。其很快就穿越500-600℃的温度范围,据此,依靠CO的分解,几乎没有形成烟灰。它的热函被用于逆流水的汽化。冷却后的重整物经由重整物导管离开反应器22,在重整物冷却器31中再次略微冷却用以将水分离并以约10bar的反应器压力进入各自活性接通的吸附柱4内。如果一个这样的柱充满滞留的一氧化碳,则要对其进行回冲洗。CO以这种方式经由导管5导入到燃烧器11中。该过程就是已知的压力交变吸附过程。经提纯的氢气经由出口管44离开重整装置1。

氢气需求量的跃变要求水泵26和燃料泵28的供应随之跃变。由此,根据负荷变化进口通道37和出口通道43中的物料流随而改变。通过改变出口通道43中物料通过量使进口通道37中的汽化效率立即与之相适应。因此,蒸汽的产生不会慢于变化了的蒸汽需求量。相反,停止调节燃烧器11可以明显地滞后而不会影响重整装置1的生产能力。只要调节燃烧器11,使得燃烧室8保持足够高(恒定)的温度就足够了。

在进口通道37内,以与外流的重整物呈逆流的方式使水(以及可能的液体燃料)汽化。进口通道内的冷水也直接冷却了管23,并因此避免了传热损失。重整物的热函抵消了为使水汽化所需的绝大部分热流。

例如,存在着如下的平衡:

1Nm3/h CH4;20→200℃:               -0.088kW

1.6kg/h H2O;20→200℃(包括汽化):  -1.237kW

5Nm3/h重整物,900→-300℃               -1.325kW

                                         +1.237kW

差值0.088kW(~7%)通过重整物导管内的热传导以及通过来自加热室的少量废气分流平衡掉一部分。

通过,比如,恒温阀调节废气管32中的一股废气。该废气分流特别是对于重整装置1有意义。启动时,这股废气分流会为水提供必要的汽化能,直到产生足够的重整物流。然后,该废气主要通过废气通道17离开燃烧室8。

图2示出了本发明的一个派生的实施形式。只要和前述的重整装置1存在着一致性,就原则上用相同的附图标记,可引用前面的有关描述。图2中所示的重整器2a有一个放大了的燃烧室8,其中伸入了多个在一个与燃烧器11同心的圆上排布的反应器22。每个反应器22拥有各自的汽化器——就此而言其是一个完整的单元。其工作原理如上所述。重整装置1被构造成模块形式。如果将多个反应器22总合成一个反应器组,在使用一体的反应器22的情况下,通过其一定数目的相应调整(标准块原理)就能覆盖一个宽的功率范围。燃烧室的结构,如图2中箭头46所示,使构建大体积的再循环系统成为可能,从而能实现通过无焰的氧化反应来产热。

如图3进一步显示的,燃烧器11的另一备选方案是可设计成交流换热式燃烧器。在其它结构都相同的情况下,该重整器2b具有两个交流换热器47,48,并且这两个装置交替地且推挽式地流过废气和空气。废气一空气转换阀49起控制作用。燃料在开始工作时经交流换热器47,48的燃料导管12导入。其余气体经由导管5直接送入燃烧室8,并且进行无焰氧化。重整器2b特别充分地利用了燃料的能量。

另外可以采用一个比如圆柱形的陶瓷重整器管替代管23。它也可以呈重整器管51的形状(参见图4中带有金属或陶瓷管的重整器2c)。陶瓷的优点是在很高的温度下有很高的耐磨强度。如图4所示,上方装催化剂39的那一段的直径可以比重整器管51其余部分的小。只对更细长的那一段进行直接加热。在重整器管51的锥形的过渡区域中设置辐射屏蔽件52,以避免不可控地加热其余部分。辐射屏蔽件52是一个绝热的环,它与重整器管51一起形成了一个缝隙通道。该缝隙通道渐渐过渡成通向温度控制器33的环形缝隙状的通道34。

在重整器管51的扩经段内,可以直接在汽化冷却器35的上方设置一个预重整催化器54,用于将长链烃在300℃-500℃的温度范围内裂解成甲烷。因此,重整器2c特别适于经由一毛细通道(导管27)输送的液体烃。同样,如在所有的实施形式中那样,水(导管25)是经由一毛细通道喷入共同的进口通道37中的,用以和燃料一起被汽化。

重整器2c还另外包括一个转移催化器55,用于利用水将一氧化碳再氧化成二氧化碳和氢气。转移催化器55设置在一个被插入体42包围形成的内腔56中,该内腔直接与出口通道43相连接。转移催化器具有一个套管和一个带孔的底57,使得重整物能强行流过该转移催化器。

重整器管51用一个环形法兰固定在顶端24上。该环形法兰通过流动的水来冷却从而显得较凉。可以使用弹性密封垫圈。

如图5所示,在相应的重整器2d中,可以设置一个固定在一个支撑管58上或多个支撑管上的隔板59(钯-银)来代替转移催化器55,该隔板用于分开CO并在这里发现合适的温度。剩余气体通过独立的剩余气体通道60从内腔55中排出,并且比如重新流入燃烧器11中。剩余气体通道设置在隔板59的底部。为了隔离流向剩余气体通道60的重整物,设置一个管套61,其如隔板59一样从顶端24的底部伸出,并与隔板59一起确定出一个环形的缝隙。

本发明的另一实施形式如图6和7所示。对图1的说明在相同的附图标记的基础上在这里同样有效。但是根据图6的重整器2和图1的重整器有着以下区别:

绝热套7只在燃烧室8的端侧19上具有通道21,构成一个燃烧器组111的反应器22和燃烧器11a至11h(图7)通过该通道伸入到绝热套7的内腔中。反应器22被设计成具有相互同心放置的外壁22a和内壁22b的双壁杯形容器。两个杯形壁22a,22b之间构成的中部空腔形成了反应器的内腔。该内腔通过一个同心座落在外壁22a和内壁22b之间的、且几乎沿反应器22的整个圆柱形长度伸展的管形壁141分成一个环形的流入通道(内)和一个环形的流出通道(外)。在内壁22b和壁141之间装有催化剂39。壁141构成了一个产品和离析物在其上以逆流形式进行热交换的热交换壁。

外壁22a和内壁22b以及壁141被固定在支撑环101,102,103上,并且这些环沿轴向相互堆积搭接。在各个支撑环101,102,103上设置有环形槽104,105,106,它们用作液体槽并经由一个缝隙与各个相接的内腔连通起来。为此,各个支撑环101,102,103沿着轴向的外边缘侧量的要高于内边缘。重整物导管29通入环形槽104。导管25通入环形槽105,而废气管32通入环形槽106。后者与被杯形内壁22b围住的内腔连通,该内腔同时形成燃烧室8,并且燃烧器11a至11h在该燃烧室内以同心于纵中心轴线A地设置。在燃烧室8中设置一个导管107,其直径小于燃烧器11a至11h围设置在其上的圆,从而迫使大量的回流流体流入燃烧室8从而实现无焰氧化。

燃烧器11a到11h的结构彼此相同。它们各自具有一个向着管嘴逐渐变细的,并且端侧固定在支撑环108上的回流换热管109。它的内通道经由一环形槽110接在管道14上用于空气传输,并且该管109使废气和新鲜空气间的热交换能以逆流方式完成。每个回流换热管109内部包括一个燃料传送管112。该输送管固定在支撑环114内,而该支撑环又与其它支撑环101,102,103,108形成一个堆积架。而该堆积架向外用一比较厚的隔热板115遮盖住。一温度传感器116和一点火燃烧器117穿过隔热板115和由支撑环形成的堆积架伸入到燃烧室8中。

该实施形式的特征在于,燃烧室8安装在反应器22中。由绝热套7包围的内腔8a又包围着反应器22,但是它的壁并没有与热燃烧气体直接接触。因此,该绝热套可以很廉价地设计出来。如果重整能力很小,比如小于1Nm3/h,则该实施形式是有益的。试验表明,如果按照这种设计,就可以免去调节用于补充汽化能力的废气分流(参见图1,调节阀33)。

本发明的重整器2的另一个实施形式如图8和9所示。图6中的重整器是内加热的,而图8的重整器是外加热的。特别是如图9所示,类似于图1结构的反应器22被燃烧器11a至11h包围。它们原则上是按照图6设计的。它们的回流换热管16伸至用以产生大量的回流流体的喷嘴。为了将该流体相应的输入燃烧室8中,在燃烧室中设置一个与反应器22同心的导管118。其余的部件各参阅前述的具有相同附图标记的部件。点火燃烧器117侧向设置在绝热套7的径向开口上并沿径向伸入燃烧室8中。

重整器2的这一实施形式也是紧凑型的,特别适于小生产能力的使用场合。对用于补充汽化能力的废气分流的调节可以舍弃。

能在很短的几秒钟内使负荷变化达100%、且通过蒸汽重整用烃生产氢气的重整器2具有一个汽化冷却器,用以冷却重整物和产生蒸汽。汽化冷却器34装在重整器2中的反应器端部。该冷却器保持相应的管端冷却,并利用重整物的余热来生产蒸汽。负荷的快速变化也可以得以实现,因为提高水输入量会立即引起重整物产量的提高和由此带来的热能力的提高。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号