首页> 中国专利> 燃烧特别是固体废物的固体燃料的方法和装置

燃烧特别是固体废物的固体燃料的方法和装置

摘要

本发明涉及转换能量的方法和装置,其通过燃烧固体燃料特别是生物有机燃料和城市固体废物以便产生热能并产生低水平NO

著录项

  • 公开/公告号CN1430714A

    专利类型发明专利

  • 公开/公告日2003-07-16

    原文格式PDF

  • 申请/专利权人 有机电力公司;

    申请/专利号CN01810106.2

  • 发明设计人 S·卡辛;

    申请日2001-03-23

  • 分类号F23G7/06;F23B5/04;F23G5/00;F23N3/00;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人蔡民军

  • 地址 挪威奥斯陆

  • 入库时间 2023-12-17 14:52:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-05-13

    未缴年费专利权终止 IPC(主分类):F23B10/00 授权公告日:20090408 终止日期:20140323 申请日:20010323

    专利权的终止

  • 2009-04-08

    授权

    授权

  • 2005-08-03

    专利申请权、专利权的转移专利申请权的转移 变更前: 变更后: 变更前: 变更后: 登记生效日:20050701 申请日:20010323

    专利申请权、专利权的转移专利申请权的转移

  • 2003-10-01

    实质审查的生效

    实质审查的生效

  • 2003-07-16

    公开

    公开

说明书

本发明涉及一种通过燃烧固体燃料转换能量的方法和装置,特别是焚化生物有机燃料和城市固体废物以便产生热能并形成非常低水平的NOx,CO和飞灰。

背景技术

生活的工业化方式产生大量的固定城市废物和其他形式的例如橡胶轮胎、建筑材料等的固定废物。大量的这些固体废物在许多人口高度稠密的地区内已经形成主要的污染问题,简单在于其体积占据了该地区内可得到的堆放场地的绝大部分。另外,由于这些废物只是缓慢生物降解并经常包含有毒物质,对于堆放地点经常有很严格的限制。

一种降低固体城市废物的体积和重量并同样消除许多有害物质的有效方法是在焚化装置中焚化。这将不密实废物体积降低到高达90%并只留下惰性残留灰分,玻璃,金属和其它可以填埋处理的叫做底灰的固体材料。如果仔细控制燃烧过程,废物的可燃烧部分将大多数转变成CO2,H2O和热。

城市废物是具有多种燃烧特性的许多不同材料的混合物。因此,实际上对于固体废物焚化装置将经常存在某种程度的不完全燃烧,其产生例如CO的气体副产品和称作飞灰的细小颗粒材料。飞灰包括渣,灰分和烟灰。另外难以仔细控制焚化装置内的温度使得温度足够高以便实现废物燃烧可接受的程度,并且足够低以便避免形成NOx

为了避免这些化合物进入大气,现代焚化装置必须装备大量的排放控制装置,其包括织物袋式过滤器,酸性气体洗涤器,静电沉积器等。这些排放控制装置对于此工艺增加显著的附加成本,并因此带有现有技术的排放控制装置的废物焚化装置通常具有高达30~300MW的以热水或蒸气为形式的热能的输送能力。这种庞大的焚化设备需要非常大量的城市废物(或其他燃料)并同样经常包括大量的管线以便将热能输送给分布在大范围地区内的用户。因此这种解决方法只适合大城市和其他人口稠密的地区。

由于排放控制装置的投资和操作成本,对于较小的焚化设备,现在不能获得相同程度的排放控制。目前对于产生小于30MW热能并因此在较小城市和人口密度低的地区采用的较小的废物焚化设备导致放宽其排放标准。

这对于环境显然不是满意的解决方法。不断增加的人口和现代社会的能源消耗对环境不断施加增加的污染压力。人口稠密地区的最为迫切的污染问题之一是空气质量。由于大量使用机动车辆、使用木材和矿物燃料加热、工业等,人口稠密地区内空气经常由以下物质污染,例如烟灰、PAH的部分或完全未燃烧的燃料致癌剩余物;例如NOX、SO2的酸性气体;例如CO、二恶英、臭氧等的有毒化合物。人们最近开始意识到此类污染对于人体健康比以前预想的影响更大并导致许多包括癌症、自身免疫疾病和呼吸道疾病的普通疾病。对于人口大约50万的Oslo城市的最新估计是每年400人死于源于恶劣空气质量的疾病,并且人口稠密地区的例如哮喘发生频率显著高于人口稀少地区。由此可知,日益需要降低所述化合物的许可排放量。

因此对于废物焚化装置所需要的是可在由较小社区或人口密度小的地区产生的较小废物量的情况下运行,其排放控制水平与具有完全清洁能力的大焚化装置(>30MW)相同,并且不增加热能的价格。小焚化设备的典型大小在250KW~5MW之间。

现有技术

大多数焚化设备采用两个燃烧室,在第一燃烧室中去除湿气并且点燃和挥发废物,在第二燃烧室中氧化剩余未燃烧气体和颗粒、去除气味并降低排放物内的飞灰量。为了给第一和第二燃烧室提供足够氧气,经常供应空气并通过炉排下面的开口和/或从上方引入该区域来与燃烧废物混合。已知的方法是通过烟囱内的自然通风孔和机械强制通风扇保持空气流。

众所周知燃烧区域内的温度状态是控制燃烧过程的主要因素。在整个燃烧区域内在足够高水平下获得稳定和均匀的温度是关键的。如果温度变得太低,废物的燃烧将慢下来并未完全燃烧的程度将上升,再次增加排放气体中的未燃烧剩余物(CO、PAH、VOC、烟灰、二恶英等),同时太高的温度将增加NOx量。因此燃烧区域内的温度应保持在仅低于1200℃的均匀和稳定的温度下。

尽管多次大量试验以获得燃烧区域内空气流的良好控制,现有技术的焚化装置始终产生高水平飞灰和其他所述污染物,使得排放物必须通过多种类型的排放控制装置进行大量清洗以便达到环境可接受的水平。另外,大多数传统焚化装置必须同样采用高成本的废物燃料预处理以便使燃料升级并因此降低例如飞灰的形成。

发明目的

本发明的主要目的在于提供一种用于固体废物的能量转换设备,该设备刚好在对于大于30MW并在排放出口只使用适度的排放控制装置的焚化装置有效的排放规定之下运行。

同样本发明的目的在于提供一种用于固体城市废物的能量转换设备,该设备在连续过程中在250KW~5MW范围内的小规模上运行,并产生热水和/或蒸气形式的热能并且其价格水平与高于30MW的大型焚化装置相同。

本发明的另一目的在于通过一种用于固体废物的能量转换设备,该设备在250KW~5MW范围内的小规模上运行并采用所有类型的城市废物、橡胶、纸张废物等,其水含量高达大约60%,并且该设备可采用非常简单和廉价的燃料预处理运行。

附图说明

图1表示本发明焚化设备的优选实施例的从上方观察的透视图;

图2表示图1所示焚化设备的示意流程图;

图3表示图1所示焚化设备的第一燃烧室的放大图;

图3表示该第一燃烧室的放大图;

图4表示图3中从方向A看到的第一燃烧室下部分的放大侧视图;

图5表示图3中从方向B看到的第一燃烧室下部分的放大侧视图;

图6表示图4方框C标示的倾斜侧壁的放大截面图,该截面图从方向A观察并表示空气和废气入口的放大视图;

图7是旨在用于低热值燃料的本发明优选实施例的第二燃烧室的侧视图;

图8是表示图7所示第二燃烧室的内部的分解视图;

图9表示旨在用于高热值燃料的第二燃烧室的第二优选实施例的侧视图。

发明简述

本发明的目的通过按照以下说明和所附权利要求的能量转换设备实现。

本发明的目的可通过例如用于固体燃料的焚化设备的能量转换器实现,其操作按照以下原理:

1)通过在至少一分开的区域内调节输入燃烧室的新鲜空气流并密封整个燃烧室以便消除漏气渗入该室来确保燃烧室内氧气流的良好控制,

2)通过在每个至少一分开的区域内将调节量的循环废气与输入该室的新鲜空气混合来确保燃烧室内温度的良好控制,以及

3)通过在气体进入第二燃烧室之前将未燃烧固体废物和气体输入逆流来过滤第一燃烧室内未燃烧固体废物中的循环废气和新鲜燃烧气体。

燃烧室内的燃烧率和温度状态大部分通过该室内的氧气流来控制。因此至关重要的是实现注射率或对于所有注射点输入燃烧室的新鲜空气的空气流速的出色控制。同样有利的是相互分开地调节注射点以便适应燃烧过程中的波动。同样至关重要的是避免漏气渗入该室,这是由于漏气使得燃烧过程不可控制并通常导致不完全燃烧从而增加废气中的污染物。漏气的渗入在现有技术中是常见和严重的问题。在本发明中,通过将整个燃烧室与周围环境密封并将固体废物输入燃烧室的上部分以及将底灰输出燃烧室的底部解决对漏气的控制。

在传统的焚化装置中,经常发现当废气中CO含量低时,NOx的含量高,并可颠倒过来当NOx的含量低时,CO含量高。这反映出在传统焚化装置中调节燃烧区域内温度时所遇到的困难。如所述,燃烧温度太低导致完全燃烧程度降低和废气含有更多的CO,而燃烧温度太高导致NOx的产生。因此当通过调节进入燃烧区域的氧气(空气)量来控制温度时,已证明难以实现靠近氧气入口的区域和大体积燃烧区域两者足够和同时的温度控制。即难以实现靠近入口区域温度足够低以避免NOx的形成以及大体积区域内温度足够高(即燃烧率)以避免CO形成。在现有技术中,如果大体积区域的温度足够,入口区域的温度实际将过高,并且如果入口区域的温度足够,大体积区域的温度将变得过低。本发明通过混入部分用作冷却流体并部分用作降低燃烧室内氧气浓度的稀释剂的循环惰性废气,此问题得以解决。因此可以保持足够高的氧气供应率以便保持大体积区域内足够高的温度而不使入口区域过热。由于循环废气和新鲜空气在燃烧室的混合,另一优点是可以保持快速整体燃烧率,即大的焚化能力而燃烧区域没有过热的危险。

焚化装置常见的问题是燃烧室内部的空气流经常足够快速来夹带或携带大量的例如飞灰和灰分的颗粒物质。如所述,这导致整个焚化设备的气体流中飞灰和灰分的含量不可接受的过高并需要在排放出口安装大量清洗装置。通过将废气和第一燃烧区域内的未燃烧气体输入通过第一燃烧室内部至少一部分未燃烧固体废物的逆流中来将其过滤,飞灰的问题可显著降低/消除。这可除去大部分夹带在离开第一燃烧室并继而离开焚化设备的所有随后燃烧室的气体中的飞灰和其他固定颗粒,并因此将降低/消除清洗排放气体的需要。这构成解决来自焚化设备排放物中的飞灰和其他固体颗粒的问题的非常有效和廉价的方法。

另一优点在于由于大多数飞灰夹带在第一室中,该设备可在对于固体废物预处理不太严格要求的情况下运行。现有技术焚化装置经常遇到的飞灰问题是通过例如分拣、化学处理、添加烃类燃料、制粒等预处理和/或升级废物的方法产生更少的飞灰来解决。对于本发明的焚化装置,这些方法不再需要。因此固体废物的处理非常简单并成本低。优选的方法是将废物包裹或捆扎成包裹在例如聚乙烯(PE)薄膜的塑料薄膜内的大包。这便于处理并且无味的大包便于输入燃烧室。

发明详述

现在将参考表示本发明优选实施例的附图详细描述本发明。

从图1和2中可看到,本发明焚化设备的优选实施例包括第一燃烧室1,带有旋风除尘器(未示出)、锅炉40、过滤器40的第二燃烧室30,用于循环和传送废气的管道系统,用于供应新鲜空气的管道系统和用于传送和输入密实固体废物80的大包的装置。

第一燃烧室

第一燃烧室1(见图1~3)的主体形状如同具有矩形截面的垂直竖井。该竖井在向下方向的尺寸略微增加以便避免燃料堵塞。竖井的上部分构成输入以固体城市废物大包80为形式的燃料的气密和防火输入口2,并通过插入可拆卸的闸板7将竖井上部分的部段5分开来形成。部段5将因此形成由侧壁、上闸板6和下闸板7限定的上输入室。输入室5装备有入口3和用于循环废气的出口4。另外,侧闸板8在燃烧室内出现不需要的猛烈无控制气体或爆炸的情况下用作安全出口。从排放管道50进入入口3的循环废气由管道51传送(见图2)。管道51装备有阀52。出口4连接到将气体引入结合部66的旁路管道54,在该结合部与循环废气和新鲜空气混合以便注射入第一燃烧室。燃料输入口5的作用如下描述:首先闭合下闸板7和阀52和53。接着打开上闸板6并且包裹在PE薄膜内的固体废物的大包80下降通过上闸板开口。大包具有略微小于竖井(输入室5和燃烧室1)的截面。在大包80放置在输入室5之后,闭合上闸板6并打开阀52和53(下闸板7始终闭合)。接着循环废气将流入输入室的空的空间中并清除输入大包80时进入该室的新鲜空气。最后,打开下闸板7以便让燃料大包向下滑动进入燃烧室1并且闭合出口阀53使得通过入口52进入的循环废气向下引导进入燃烧室。下闸板7将连续试图闭合该开口,但装备有马上检测到开口中有废物大包的存在并收回下闸板7到其打开位置的压力传感器(未示出)。因此一旦燃料大包滑到下闸板7之下的水平,下闸板将闭合并且输入过程将重复。以此方式,燃料干净并逐渐输入燃烧室,由于燃烧室1任何时刻充满连续的燃料堆,对于燃烧过程干扰很小并实际上100%控制了漏气。这将未控制气体爆发的可能性降低到最小。然而,为了不使固体废物在第一燃烧室内的逐渐堵塞,燃料输入过程可延迟直到第一燃烧室内的特定量的固体燃料燃烧之后,使得形成一满意的间隔。接着下一个固体废物大包将落在桥接/堵塞处并使其打开。这是非常实用的解决方法,其可在该设备完全运行期间实施,对燃烧过程的影响在可允许的范围内。

燃烧室1的下部分通过相互倾斜纵向侧壁9变窄,因此燃烧室的下部分呈截顶V形(见图3和4)。纵向、水平和可转动的圆筒灰分输出装置10位于燃烧室1的底部并在由倾斜侧壁9形成的交线之上一段距离处。纵向三角形构件12在圆筒灰分输出装置10的每侧连接在倾斜侧壁9上。三角形构件12和圆筒灰分输出装置10将因此构成燃烧室1的底部并防止灰分或其他固体物质落出或滑出燃烧室。固体未燃烧剩余物(底灰)将因此在三角形构件12和灰分输出装置10之上的区域内堆积。圆筒灰分输出装置10装备有多个沿其周边向外伸展的凹槽11(见图5)。当灰分输出圆筒10设置转动时,当凹槽面向燃烧室时,凹槽11将充满底灰,并且当凹槽面向下时排空。因此底灰将输出并落下进入位于灰分输出装置10之下一平行距离的振动纵向托盘13。为了确保漏气的绝对控制,灰分输出口10和振动托盘13由气密连接到第一燃烧室1的侧壁下部分上的封罩14封装。

该灰分输出装置装备有自动调节其转动的指令逻辑(未示出)。热电偶15连接在灰分输出装置10(见图4)之上一定距离的横向侧壁上。该热电偶连续测量堆积在燃烧室1底部的底灰的温度并将该温度传送到灰分输出装置10的的指令逻辑。灰分输出圆筒10由装备有监测圆筒10转动的传感器的电马达(未示出)驱动。当灰分中的温度冷却到200℃时,指令逻辑将启动马达并将灰分输出装置设置成在一选择方向上转动。由于原来冷却的底灰去除并由新鲜的底灰代替,只要灰分输出装置转动底灰的温度将增加。当灰分温度到达300℃时指令逻辑将停止该转动。在灰分输出圆筒10例如由卡在输出圆筒10和三角形构件12之间的底灰中的大块固体剩余物阻挡的情况下,指令逻辑将颠倒灰分输出装置10的转动方向。接着大块物体将随着圆筒10的转动直到其接触圆筒10相反侧上的三角形构件12。如果大块物体在此侧同样卡住时,指令逻辑将再次颠倒转动方向。灰分输出装置10的这种往复转动只要需要将持续。大多数情况下底灰中的太大而不能排出的大块物体是废物中较大金属物体的剩余物,该剩余物由于燃烧区域内的高温变得易碎和脆弱。因此灰分输出装置10的往复转动经常将大块物体磨成能排出燃烧室的较小物体。这是例如当焚化汽车轮胎时处理钢丝帘线剩余物的有效方法。在有些金属剩余物非常庞大的情况下,该剩余物抵抗灰分输出圆筒10的研磨运动。必须在有规律的时间间隔内将这些物体从该室取出以便避免燃烧室充满不可燃烧的材料。灰分输出圆筒10因此安装成具有弹性使其可手动或由指令逻辑自动降低以便以有效和快捷的方式将这些固体物体取出而不打断燃烧室的正常运行。用于降低灰分输出圆筒10的装置(未示出)是本领域技术人员已知的传统类型并不需要进一步说明。应该注意当灰分输出圆筒10降低时,由于降低和转动圆筒的所有辅助装置位于密封封罩14内,始终保持对漏气的控制。因此只要封罩14闭合将没有任何漏气渗入。以此方式,由于燃料入口和灰分出口与周围环境密封开,对于本发明的能量转换设备,漏气的问题实际上已经消除。

新鲜空气和进入燃烧区域的循环废气通过一个或多个位于倾斜纵向侧壁9上的入口(见图4~6)输入。在优选实施例中,在每一侧壁9上采用八排、每排十二个入口16,见图5。废气来自排放管道50并由分成供应第二燃烧室30的分支56和供应第一燃烧室1的分支57的管道55传送(见图2)。新鲜空气通过从离开锅炉40的废气中交换热量的热交换器71预热,并由分成供应第二燃烧室30的分支61和供应第一燃烧室1的分支62的管道60传送。分支56和61在结合部65连接,分支57和62在结合部66连接。另外,分支56装备有阀58,分支57装备有阀59,分支61装备有阀63,分支62装备有阀64。此布置可以通过分别调节/控制阀58、59、63和64分开调节输入燃烧室1和30的新鲜空气和废气的量和比例。在预热的新鲜空气和废气在结合部65和66混合之后,分别将其通过管道69输送到第二燃烧室30的入口31和通过管道70输送到第一燃烧室1的入口16。管道69和70装备有风扇67和68以便在输入燃烧室之前加压气体混合物。风扇67、68两者装备有调节装置(未示出)以便调节/控制气体混合物的输入压力,并且它们可相互分开调节。以此方式,新鲜空气/废气的比例可便于将新鲜空气的比例调节到0到100%范围内任何比例,并且输入燃烧室1和30两者的气体混合物量可便于调节到0到几千Nm3/hour的范围内任何量。

现在返回第一燃烧室1。如上所述,从图5可看到在本发明优选实施例中的纵向倾斜侧壁9装备有八排入口,每排包括十二个入口16。参考图4~6,每个入口16包括直径为32mm的环形通道17,和内部直径为3mm的同轴喷嘴18。使得环形通道17的截面面积大约比喷嘴18的大100倍。因此压力同样下降100倍。环形通道17的相对大的截面面积使得入口气流压力低、流速低,同时窄小的喷嘴18使得气流压力高、流速高。另外,每排中的所有环形通道17连接到并延伸进入(通过倾斜侧壁9)一在倾斜纵向侧壁9的外侧水平延伸的纵向中空部分20。每个环形通道由耐火底衬21内的圆孔形成,并且喷嘴18在该孔中心突伸。因此,任何输入中空部分20的气体将通过一排中的环形通道17。另外,我们将每侧壁9上的每两排(中空部分20)连接在一起,使得每两排构成一调节区域。另外,每一调节区域装备有用于调节/控制每一区域的中空部分20内的气流和压力的调节装置(未示出)。每排的喷嘴18以与环形通道17(喷嘴通过中空部分20)相同的方式连接并延伸进入位于中空部分20外侧的中空部分19中。喷嘴18同样布置成四个由每一侧壁9上的相邻两排组成的调节区域,每一喷嘴调节区域同样装备有调节和控制每一区域的两个中空部分19内部的气流和压力的装置(未示出)。通过环形通道17和喷嘴18进入燃烧室1的气体比例可通过用于每一调节区域的喷嘴18分开调节成0到100%的范围内任何比例。此布置给出机会以便在四个分开区域(气流调节在图3所示方向A的垂直中心平面之上是对称的)内将进入第一燃烧室的气流自由调节到任何流速和从100%新鲜空气到100%废气的气体混合物的任何比例。例如,当启动焚化装置时,可以尽可能快地建立已被控制和稳定的燃烧区域。为了在固体废物中实现相对紊流的气流以达到最大程度的冲击效果,这通过使用由几乎纯空气组成的并通过喷嘴18输入的气体混合物来实现。在最初的燃烧过程中,由位于横向侧壁23上的热电偶15之上一定距离的传统油或气体燃烧器22传送所需热量(见图4)。燃烧器22只在初始阶段使用并在设备正常运行时关闭。在燃烧区域几乎建立并且温度已经达到相对高的水平的以后阶段,为了防止局部过热应降低冲击效果。这可通过环形通道输入气体并与废气混合以便降低气流速度并稀释气体中的氧气含量。这些特征与将燃料输入并将灰分输出燃烧室的特征相结合出色控制整个燃烧区域内氧气流并实际上消除了漏气的问题。另外,将废气与新鲜空气混合的特征给出机会以便在高焚化能力和相对高的大体积区域温度下运行焚化设备并同时避免燃烧区域的任何部分过热。因此与现有技术焚化装置相比较,可以在高能力和CO和NOx的低排放水平下运行焚化设备。本发明的另一优点在于焚化设备的能力可通过调节供应废气和新鲜空气的总量以及通过调节通过每一调节区域输入燃烧室1的气体相对量来快速并方便地按照所需能量的不同进行调整。以此方式,通过调节燃烧区域的“大小”来调整能量产生可以在燃烧区域内保持优化的温度状态。

第一燃烧室装备至少一气体出口,但经常是至少两个气体出口。第一出口24位于横向侧壁23的垂直中心线上气体燃烧器22之上一定距离处,并且第二出口25位于相同侧壁23上第一出口24之上一相对长的距离处(见图3和4)。第一出口4具有相对大的直径以便从第一燃烧室以小流速引出燃烧气体。小流速有助于降低夹带在燃烧气体中的飞灰。另外飞灰在其通过位于燃烧区域和出口24之间的固体废物时将过滤出燃烧气体。当该设备输入低热值的固体废物时,即使出口24位于燃烧室相对低的位置上,这意味着通过相对少量的固体废物过滤燃烧气体,这些作用充分地将离开第一燃烧室的燃烧气体内飞灰含量降低到可接受的程度。当焚化低热值废物期间采用低出口24时上气体出口25闭合。出口24连接到将燃烧气体引导到第二燃烧室30的入口31的管道26上。在此情况下离开第一燃烧区域的燃烧气体的温度应保持在700~800℃的范围内。此温度在出口24测量并输入实施第一燃烧室1内气流调节的指令逻辑(未示出)。

在焚化高热值的废物的情况下,在第一燃烧室将有大量气体产生,其导致燃烧气体流速更大。这增加了过滤燃烧气体内夹带飞灰能力的需要。在此情况下,出口24通过插入挡板(未示出)闭合并且上出口25打开以便迫使燃烧气体向上运动通过第一燃烧室1的大部分,并且因此过滤该室内的绝大部分固体废物中的燃烧气体。出口25连接到将燃烧气体引导到管道26的管道27上。然而,由于过滤更大部分的固体废物所需时间的延长,燃烧气体由固体废物冷却的程度将加大。因此在燃烧气体进入第二燃烧室30之前需要点燃流入管道27的燃烧气体。这可方便地通过装备有密封出口24并带有小孔的挡板实现。火舌将从第一燃烧室1延伸进入管道26并在燃烧气体去往第二燃烧室30入口31的途中将其点燃。

如上所述,来自第一燃烧室1燃烧区域的热燃烧气体在离开第一燃烧室的途中将通过未燃烧的固体废物。接着燃烧气体将热释放给固体废物并使之预热。预热的程度将如此变化,即靠近燃烧区域的废物预热程度非常高而对于燃烧室内进一步向上的废物预热程度要低得多。因此第一燃烧室的焚化过程是燃烧、热解和气化的结合。

除了灰分输出圆筒10之外,第一燃烧室1的内壁覆盖大约10cm的耐火和抗冲击材料。最好是采用以BorgCast的名称出售的材料,该材料具有82~84%Al2O3,10~12SiO2,和1~2%Fe2O3的组分。

即使本发明描述为包括布置在与上出口16相同高度上的下出口24的优选实施例的实例,本发明当然可由具有不同直径、不同高度的出口以及多个出口同时使用的焚化装置实现。可以看出在具有非常高热值的燃料情况下,例如汽车轮胎,该设备内的气流变得非常高使得第二燃烧室30不具有所需的能力使得离开第一燃烧室的气体完全燃烧。在此情况下该设备可采用水平并排连接的两个第二燃烧室运行,第一燃烧室同样具有两个并排的出口24,这些出口24由各自包括小孔的挡板闭合,燃烧气体通过分支到用于每一第二燃烧室30的供应管道26的出口25输出。

第二燃烧室

在焚化低热值燃料的情况下,最好采用如图7和8所示的第二燃烧室30。在此实施例中,第二燃烧室30与将燃烧气体从第一燃烧室1的出口24输出的管道26形成一整体件。管道26的内部衬有耐火材料28。该底衬具有大约10cm的厚度以及35~39%Al2O3,35~39SiO2,和6~8%Fe2O3的组分。燃烧气体进入第二燃烧室的入口由图7的凸缘33表示,同时管道26的另一侧装备有与第一燃烧室上的出口24的凸缘29A相同尺寸的凸缘29(见图3)。因此管道26和第二燃烧室通过将凸缘29螺栓固定到凸缘29A来连接在第一燃烧室1上。

第二燃烧室同样装备有用于新鲜空气和循环废气加压气体混合物的入口31。用于低热值燃料的优选实施例包括四个入口31(见图7)。每一入口装备有以与第一燃烧室1的气体入口16的每一调节区域相同的方式调节气流、压力和新鲜空气/废气比例的装置(未示出)。第二燃烧室30由朝向燃烧气体入口33缩小或变窄的圆筒燃烧壳体32构成。因此该燃烧室膨胀以便减缓燃烧气体并因此在该室内实现更长的混合和燃烧时间。燃烧壳体32的内部定位第二穿孔圆筒主体34(见图8),该主体适于安装在燃烧壳体32内并具有略微小于燃烧壳体32内直径的直径。圆筒主体装备有向外伸出的凸缘35,该凸缘同样适于安装在燃烧壳体32内并具有与壳体32的内直径相同的外直径。因此凸缘35将形成将燃烧壳体32和穿孔圆筒主体34限定的环形空间分开成环形通道的分隔壁。在此情况下有三个分隔凸缘35,该凸缘将环形空间分成四个室,每一室分别对应一气体出口31。因此,输入入口31的加压新鲜空气和废气混合物将进入由分隔凸缘35、燃烧壳体32和穿孔圆筒主体34限定的环形室中,并从中通过孔36进入将气体引导通过覆盖圆筒主体34内部的底衬28(该底衬不包括在附图中)的管道37中。在圆筒主体34的内部它们与热燃烧气体混合。以此方式可在四个分开的调节区域内实现燃烧气体和包含氧气的气体混合物均匀和细致混合。这出色地控制了第二燃烧室内燃烧和温度状态。该室内的温度保持在大约1050℃上。这对于避免高温以便防止形成NOx是重要的。

气体旋风器在第二燃烧室的出口连接到凸缘38上以便提供燃烧气体和包含氧气的气体紊流混合,从而有助于并完成燃烧过程。该旋风器将同样帮助降低气流中的飞灰和其它夹带固体颗粒含量。该旋风器是传统类型,其对于本领域技术人员所熟知并不需要进一步描述。

在焚化高热值燃料的情况下,最好采用图9所示的第二燃烧室的第二实施例。在此例中燃烧气体通过出口25从第一燃烧室输出并通过管道27向下输送到闭合出口24外侧上的管道26。出口24由在其下部装备有小孔的挡板39闭合,通过该小孔的火舌39A伸出进入管道26。第二燃烧室30连接到管道26并在此例中由朝向管道26缩小的圆筒燃烧壳体32构成。在此例中,没有内部圆筒主体,相反入口31由延伸通过燃烧壳体32内部的穿孔圆筒31构成。从图8中可看到在优选实施例中有五个入口31,第一个布置在管道26内并在气体混合物由火舌39A点燃之前为从管道27进入的燃烧气体供应由管道69供应的含有氧气的气体混合物。接着气体通过四个顶部相互对齐的入口圆筒31并接收另外含有氧气的气体混合物的供应。如同第一优选实施例,此实施例对于同样设置用于分开调节每个入口31的气体混合物组分和压力的装置(未示出)。在此例中同样在燃烧室的出口连接气体旋风器,但在此例中气体流速足够高使得在第二燃烧室中燃烧气体和供应气体混合物紊流混合。燃烧区域的温度在此实施例中同样应保持在大约1050℃。

第二燃烧区域的调节通过调节所有入口区域31的指令逻辑(未示出)实现。该指令逻辑连续输入温度、氧气含量和离开气体旋风器的气体总量,并采用该信息将废气温度调节到1050℃并且将氧气含量调节到6%。

辅助设备

当停留在气体旋风器内时,燃烧气体将变成热废气。来自气体旋风器的废气将输送到锅炉40以便将其热量传送到另一热载体(见图2)上。因此,废气输送到气体过滤器43以便在排放气体排放之前进一步降低废气中的飞灰和其他污染物。锅炉40和气体过滤器两者装备有废气旁路管道以便在燃烧室运行期间为关闭锅炉和/或过滤器提供机会。通过该设备的气流由从入口对燃烧室两者加压的风扇和位于排放管道50内的风扇47控制。后一风扇47通过提供略微抽吸而降低气压来确保通过该设备的良好的通风。此辅助设备的所有部件是传统的并为本领域技术人员所熟知,并不需要进一步说明。

实例1

本发明优选实施例将通过提供焚化挪威定级为C级的普通城市废物的实例来进一步说明。该废物认为是低热值的燃料。因此,是采用第二燃烧室的第一优选实施例并将其连接到第一燃烧室气体出口24上。上气体出口25闭合。

城市废物压实成大约1m3体积的大包并包裹在PE薄膜内,并将大包通过输入口5以下述频率输入第一燃烧室的顶部,使得第一燃烧室在任何时刻充满固体废物。与传统焚化装置所需的预处理相比,这是废物低成本和非常简单的预处理方法。当焚化过程已建立有稳定燃烧区域时,输入第一燃烧室的气体混合物将通过入口16的环形通道17输入,气体混合物中的氧气含量将保持在大约10%。此浓度将使得燃烧区域内的氧气不足。离开第一燃烧室的燃烧气体的温度保持在700~800℃的范围内,第一燃烧室的气压将保持在低于周围大气压力的大约80Pa。通过入口31输入第二燃烧室30的气体混合物的氧气含量调节成整个气体流速大约为2600Nm3/MWh、温度大约为1050℃以及氧气含量大约为6%。第二燃烧室内的压力保持在低于第一燃烧室压力的大约为30Pa。为了确保二恶英和呋喃排放物保持在极度低的水平,可以在废气离开锅炉40并进入过滤器43之后马上添加吸附剂。这些特征没有表示在附图中或没有在前述中描述,由于其实施的方法和装置同样是传统的并为本领域技术人员所熟知。优选的吸附剂是80%石灰和20%活性碳的混合物,并以每公吨燃料大约3.5kg的量供应。

采用上述参数,焚化设备由挪威标准和认证机构Det NorskeVeritas测试。能量产生大约为2.2MW。测量离开设备的废气中的飞灰和气体污染物的含量并与每种组分的法定排放标准一起表示在表1中。法定排放标准对于现有焚化设备是当前有效标准,并且也是1999年7月1日欧洲草案“Draft Proposal for a Council Directive onthe Incineration of Waste”提出的将来标准。

从表1可看到本发明的优选实施例的排放值远远低于大多数对现有焚化装置有效的法定标准,其值至少低于该标准的10倍。即使对于认为非常苛刻的大多数将来EU标准将没有问题,NOx可能例外,其值仅在该标准之下。所有其他参数也远远低于将来标准。

表1当焚化挪威C级城市废物时测量的排放量。该排放量与现有和EU将来法定排放标准相比较。除了二恶英和呋喃是ng/Nm3v/11%O2之外所有单位是mg/Nm3v/11%O2

           化合物      结果     法定排放标准  现在   将来EU 灰分    3    30    10 Hg    0.001    0.1    0.05 Cd,T1    0.004    0.005 Sb,As,Pb,Cr,Co,Cu,Mn,Ni,V    0.03    0.5 Cd    0.001    0.1 Pb,Cr,Cu,Mn    0.03    5 Ni,As    0.002    1 HCl    5    50    10 HF    <0.1    2    1 SO2    1    300    50 NH3    2    -    - NO2形式的NOx    170    -    200 CO    1    -    50 TOC    1    20    10 二恶英和呋喃    0.0001    2    0.1

该设备最近经过改进使得离开气体旋风器的废气中NOx浓度与氧气浓度、温度和流速一起测量并输入调节第二燃烧室30入口31的指令逻辑。该指令逻辑在4到8%的范围内自由调节氧气浓度。未改变其他参数。采用这种改进,所作测试表示出NOx排放量通常在100mg/Nm3v/11%O2已经下降到50mg/Nm3v/11%O2,表1表示的其他污染物不受此改进的影响。

值得注意,如果废气不经过吸附剂处理排放,二恶英和呋喃的排放水平在0.15~0.16ng/Nm3v/11%O2级,其低于现在排放标准。因此现在可采用本发明而没有此特征。

实例2

为了使得所述本发明优选实施例适于处理有毒或其他形式的特殊废物,其灰分应当与城市废物的灰分分开处理,可以看到包括位于启动第二燃烧室30的废气流中的热解室。此处废气将具有1000~2000℃的温度,其足够高以便分解大多数有机和许多无机化合物。该热解室和包括该热解室的废气管道41的设计是传统的并为本领域技术人员所熟知,因此不需要进一步说明。

分开的热解室可以从大体积废物流中分拣特殊废物并将其在热解室内分解,使得来自特殊废物的灰分与大体积废物的灰分分开,并因此避免大体积灰分当作特殊废物处理。这有利于特殊废物是有毒的情况、焚化宠物或其他灰分必须可追踪的应用。

来自热解室的蒸气和气体随后输入第一燃烧室并因此进入燃烧气体的主流中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号