首页> 中国专利> 减小移动台发射功率的蜂值与平均值功率比的装置和方法

减小移动台发射功率的蜂值与平均值功率比的装置和方法

摘要

提供了一种用于通过以复数扩频序列对传输数据进行扩频和再调制来减小移动通信系统中的移动台发射功率的峰值与平均值功率比的装置和方法。产生的复数扩频序列有多个码片,并且响应于PN(伪噪声)序列的每个码片而在每两个连续复数码片之间存在90°的相位差。该装置和方法通过将移动发射功率的峰值与平均值功率比限定到特定范围并因此将移动发射功率限定到功率放大器的特性曲线的线性特性部分,可以灵活地控制移动发射功率。防止复数扩频率列的相位移相180°(即π),以将移动发射功率保持在功率放大器特性曲线的线性部分。

著录项

  • 公开/公告号CN1269080A

    专利类型发明专利

  • 公开/公告日2000-10-04

    原文格式PDF

  • 申请/专利权人 三星电子株式会社;

    申请/专利号CN99800694.7

  • 发明设计人 金济佑;黄永俊;尹淳暎;廉再兴;

    申请日1999-05-12

  • 分类号H04B7/216;H04B1/69;

  • 代理机构柳沈知识产权律师事务所;

  • 代理人马莹

  • 地址 韩国京畿道

  • 入库时间 2023-12-17 13:46:10

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-07-28

    未缴年费专利权终止 IPC(主分类):H04B7/216 授权公告日:20030709 申请日:19990512

    专利权的终止

  • 2003-07-09

    授权

    授权

  • 2000-10-11

    实质审查请求的生效

    实质审查请求的生效

  • 2000-10-04

    公开

    公开

说明书

                           发明领域

本发明一般涉及移动通信系统,尤其涉及用于减小移动通信系统中的移动台发射功率的峰值与平均值功率比的装置和方法。

                        相关技术的描述

通常的CDMA移动通信系统主要用于声音服务,而3G移动通信系统提供高质量声音、高速数据、移动画面、和因特网浏览等附加功能。在这样的移动通信系统中,无线链路包括从基站(base station,BS)到移动台(mobilestation,MS)的前向链路和从MS到BS的反向链路。

当在反向链路传输(相位变化为π)中在扩频和调制过程中发生过零交叉时,移动台的发射功率(移动发射功率)的峰值与平均值功率比增加,从而产生再生长(regrowth)。再生长反过来影响由其它用户所发的呼叫的通信质量。因此,峰值与平均值功率比是MS中的功率放大器的设计和运行的重要因素。

再生长的产生是由于在移动台功率放大器的特性曲线中存在线性部分和非线性部分。随着移动发射功率的增大,由于具有非线性特性,MS的发射信号在造成再生长现象的不同用户的频率区域产生干扰。

可以通过收缩小区(cell)以及将信号从小区中的MS以低功率级发送到相应的BS来防止再生长。因此,如果移动台的峰值与平均值功率比可以限制在特定范围内,则移动发射功率可被灵活地控制。然而,由于给定区域需要更多的小区并且每个小区都需要有自己的通信设备,物理上收缩小区是不经济的。

                         本发明的综述

因此,本发明的一个目的是提供一种用于减小移动通信系统中的移动台发射功率的峰值与平均值功率比的装置和方法。

本发明的另一个目的是提供一种通过将移动发射功率的峰值与平均值功率比限定在特定范围而灵活控制移动发射功率的方法。

本发明的再一个目的是提供一种灵活改变移动通信系统中的小区尺寸以便抵消再生长的方法。

本发明还有一个目的是提供一种增强多径信号的自相关(auto-correlation)特性以及相对于其它用户的互相关(cross-correlation)特性的方法。

为达到这些和其它目的,提供了一种用于减小移动通信系统中的移动发射功率的峰值与平均值功率比的装置和方法。该装置和方法通过复数(complex)扩频序列来扩展移动传输数据。该复数扩频序列包括多个码片(chip),并且响应于PN(Pseudo Noise,伪噪声)序列的每个码片而产生在每两个连续的复数码片间相位差为90°的复数扩频序列。

                       附图的简要说明

图1是按照本发明的一个实施例的用于执行扩频和调制方法的移动台的方框图;

图2是图1所示的π/2 DPSK(Differential Phase Shift Keying,差分相移键控)的第一实施例的方框图;

图3A和3B描述了相应于图2所示的π/2 DPSK产生器的结构的复数扩频序列的信号构象(constellation)和相位转换;

图4是图1所示的π/2 DPSK产生器的第二实施例的方框图;

图5A和5B描述了相应于图4所示的π/2 DPSK产生器的结构的复数扩频序列的信号构象和相位转换;

图6是应用按照本发明的扩频和调制方法的3G IS-95系统中的移动台的方框图;

图7是应用按照本发明的扩频和调制方法的W-CDMA(宽带码分多址)系统中的移动台的方框图。

                    优选实施例的详细描述

下面将参照附图描述本发明的优选实施例。在下面的描述中,众所周知的结构和功能没有被详细描述,以免影响本发明。

本发明包括以下特征:

(1)通过将移动发射功率的峰值与平均值功率比限定到特定的范围并且因此将移动发射功率限定到功率放大器的特性曲线中的线性特性部分,可以灵活控制移动发射功率;

(2)防止复数扩频序列的相位移相180°(即π),以将移动发射功率保持在功率放大器特性曲线的线性部分;

(3)复数扩频序列(PNI和PNQ)的每两个连续的复数码片间的相位差是90°(即π/2),以便限定基带滤波器的输出功率范围并因此减小移动发射功率的峰值与平均值功率比;及

(4)通过用PN代码产生器产生的扩频序列PN2再扩频通过复数扩频器的信号,可以改善多径信号的自相关特性和相对于其它用户的互相关特性。

可以看到,本发明的实施例中的“π/2 DPSK(差分相移键控)”并不指典型的DPSK,而之所以这样命名是因为在π/2 DPSK产生器中产生的复数扩频序列PNI+jPNQ有用于一个码片持续时间(duration)的相位差π/2。

参照图1,示出了按照本发明的实施例的移动台(MS)的概略方框图,参照该移动台来描述用于减小移动发射功率的峰值与平均值功率比的对移动传输数据进行扩频和调制的方法。复数信号包括同相数据I-数据和正交相位数据Q-数据,被作为第一输入信号施加到复数扩频器2。PN1产生器4产生序列PN1,而π/2 DPSK产生器6利用从PN1产生器4接收到的序列PN1生成复数扩频序列PNI和PNQ。复数扩频序列PNI和PNQ作为第二输入信号馈送到复数扩频器2。本发明的实施例的特征在于没有过零交叉,这是因为复数扩频序列(PNI和PNQ)的每两个连续的复数码片间的相差是π/2。π/2 DPSK产生器6的结构和运行将参照图2和5B在以下详细描述。

在图1中,复数扩频器2包括用于用复数扩频序列PNI和PNQ对复数信号进行复数扩频的乘法器8、10、12和14以及加法器16和18。对复数扩频器2的运行的详细描述可在有共同转让人的韩国专利申请NO.98-7667中找到。

乘法器20-1和20-2将从复数扩频器2接收得到的同相扩频信号XI和正交相位扩频信号XQ乘以从PN2产生器21产生的用于附加扩频的序列PN2。在本发明的实施例中,序列PN1和PN2是独立的。考虑到序列PN1和PN2中也需要由用户识别代码生成的PN序列。并且在本发明中,用PN2乘以复数扩频器2的输出是可选择的特征。

乘法器20-1和20-2的输出分别由基带滤波器22-1和22-2进行基带过滤,并且被增益控制器24-1和24-2进行增益(Gp)控制。然后,混频器26-1和26-2用它们各自对应的载波cos(2πfCt)、sin(2πfCt)乘以增益控制器24-1和24-2的输出以便进行升频变换,加法器28对混频器26-1和26-2的输出求和。

按照本发明,多径信号的自相关特性和相对于其它用户的互相关特性是通过两次扩频输入的复数信号来改善的:一次是用序列PN1,另一次是用序列PN2。在这里,序列PN1、PN2、PNI和PNQ具有相同的码片速率。

如果从扩频序列产生器输出的复数扩频序列PNI+jPNQ的相位急剧改变,(比如,从0°到180°),则它将造成移动发射功率的峰值与平均值功率比的增大,从而导致再生长并且使不同用户的通信质量降级。

因此,扩频序列产生器的配置应使在本发明的实施例中在生成复数扩频序列PNI+jPNQ时不会出现过零交叉(没有π的相位差)。

图2是按照本发明作为扩频序列产生器而提供的π/2 DPSK产生器6的方框图。π/2 DPSK产生器6的特征是复数扩频序列PNI+jPNQ的每两个连续的复数码片间的最大相位差是π/2。

π/2 DPSK产生器6包括复数函数计算器32、复数乘法器34和时延寄存器36和38。乘法器30将序列PN1的PN码片乘以±π/2或±3π/2。考虑到,乘法器30将序列PN1的每个PN码片乘以±π/2或±3π/2范围中的任何相位。

复数函数计算器32通过以复数函数exp(j[.])操作乘法器30输出的每一个相移PN码片而生成复数数据Re+jlm。复数乘法器34以从时延寄存器36和38接收的值(复数数据)对复数数据Re+jlm进行复数相乘,并且输出复数扩频序列PNI+jPNQ码片单元。时延寄存器36存储用于一个码片持续时间的值PNI而时延寄存器38存储用于一个码片持续时间的值PNQ。时延寄存器36和38的初始值(复数数据)是由下式来决定的:

  (公式1)

    时延寄存器36=Re[exp(jθ)]

    时延寄存器38=Im[exp(jθ)],

其中,θ可以是任何值,最好是π/4。

假定序列PN1和PN2的连续码片分别是{1,-1,1,-1,…}以及{-1,1,-1,1,…},并且时延寄存器36和38的初始值是1,则π/2 DPSK产生器6生成的复数扩频序列PN1+jPNQ的连续码片是{(-1+j),(1+j),(-1+j),(1+j),…},且输入到基带滤波器22-1和22-2的复数扩频序列的连续码片是{(1-j),(1+j),(1-j),(1+j),…}。序列PN1和PN2可用于3G CDMA系统中用户身份识别的长代码。

图3A和3B分别描述了从π/2 DPSK产生器6输出的复数扩频序列PNI+jPNQ和输入到基带滤波器22-1和22-2的复数扩频序列的信号构象和相位转换。参照图1到3B,对于序列PN1的第一PN码片1来说,π/2DPSK产生器6中的乘法器30的输出是π/2,因为乘法器30的其它输入是π/2,并且从复数函数计算器输出的复数数据为它以复数形式(Re+jlm)表示为(0+1j)。因此,复数乘法器34生成复数数据(-1+j)=(0+j)×(1+j)。在这里,(0+j)是从复数函数计算器32输出的复数数据,而(1+j)是时延寄存器36和38的初始值。

在图3A中,复数数据(-1+j)位于由复数信号的实部(Re)和虚部(Im)所定义的正交坐标图中的第二象限。复数数据(-1+j)的实部-1存储在时延寄存器36中,用于一个码片的持续时间,虚部1存储在时延寄存器38中,用于一个码片的持续时间。

对于序列PN1的第二PN码片-1来说,π/2 DPSK产生器6中的乘法器30的输出为-π/2,而从复数函数计算器32输出的复数数据为它以复数形式(Re+jlm)表示为(0-j)。因此,复数乘法器34生成复数数据(1+j)=(0-j)×(-1+j)。在这里,(0-j)是从复数函数计算器32输出的复数数据,而(-1+j)是指时延寄存器36和38的先前值。

在图3A中,复数数据(1+j)位于正交坐标图中的第一象限。复数数据(1+j)的实部存储在时延寄存器36中,用于一个码片的持续时间,虚部1存储在时延寄存器38中,用于一个码片的持续时间。在这种方式中,从复数乘法器34输出的复数数据是(-1+j),用于序列PNI的第三PN码片1,而(1+j)用于序列PN1的第四PN码片-1。

参照图3A,复数扩频序列PNI+jPNQ位于由复数信号的实部(Re)和虚部(Im)所定义的正交坐标图的第二和第一象限,在每两个连续的复数码片间有相位差π/2。

在每两个连续的复数码片之间的π/2相位差保持在通过再扩频序列PN2而得到的复数扩频序列中。参照图1,复数扩频序列{(1-j),(1+j),(1-j),(1+j),…}是通过以序列PN2的码片{-1,1,-1,1,…}乘以复数扩频序列PNI+jPNQ的码片{(-1+j),(1+j),(-1+j),(1+j),…}而得到的。如图3B所示,输入到基带滤波器22-1和22-2的复数扩频序列就象复数扩频序列PNI+jPNQ一样在每两个连续的复数码片之间存在π/2的相位差。

因为复数扩频序列的每两个连续复数码片间的相位差比较小,即图3A和3B所提到的π/2,所以在基带滤波器22-1和22-2中处理后的移动发射功率的峰值与平均值功率比被减小,并且减小了再生长的影响。其结果是通信质量和性能得到提高。

如果输入到π/2 DPSK产生器6的乘法器30的预定弧度值是-3π/2,复数扩频序列PNI+jPNQ也将显示图3A的信号构象。如果弧度值是-π/2或-3π/2,则复数扩频序列PNI+jPNQ的码片将从图3A中的第一象限开始,在交互的第一和第二象限中的相同位置连续显示。

图4是图1所示的π/2 DPSK产生器6的第二实施例的方框图。如同第一实施例,复数扩频序列PNI+jPNQ的每两个连续的复数码片间的最大相差是±π/2。第二实施例的π/2 DPSK产生器6包括加法器40、时延寄存器42和复数函数计算器44。加法器40将序列PNI的PN码片与存储在时延寄存器42中的、加法器40的前一个输出值相加。最好将时延寄存器42的初始值设定为1/2。复数函数计算器通过以复数函数exp[j(π/2(.))]操作加法器40的输出而产生复数扩频序列PNI+jPNQ

复数扩频序列PNI+jPNQ的相位差由下式给出:

    (公式2) >>∠>>(>>PN>I>>(>k>)>sup>>+>j>>PN>Q>>(>k>)>sup>>)>>≡>θ>>(>k>)>>>s> >>θ>>(>k>)>>=>θ>>(>k>->1>)>>+>>π>2> >PN>1>>>s>

从公式2得知,复数序列PNI+jPNQ的当前码片中的相位是它的前一个码片中的相位和序列PNI的当前码片的π/2倍之和。

假定序列PN1和PN2的连续码片分别是{1,-1,1,-1,…}和{-1,1,-1,1,…},且时延寄存器42的初始值是1/2,则从π/2 DPSK产生器6生成的复数扩频序列PNI+jPNQ的连续码片是{(-1+j),(1+j),(-1+j),(1+j),…},并且输入到基带滤波器22-1和22-2的复数扩频序列的连续码片是{(1-j),(1+j),(1-j),(1+j),…}。序列PN1和PN2可以是用于3G CDMA系统中的用户识别的长代码。

图5A和5B分别描述从π/2 DPSK产生器6输出的复数扩频序列PNI+jPNQ和输入到基带滤波器22-1和22-2的复数扩频序列的信号构象和相位转换。

参照图1到5B,对于序列PN1的第一PN码片1,加法器40的输出是3/2(=1+1/2),它存储在时延寄存器42中,用于一个码片的持续时间,而从复数函数计算器44输出的复数数据是它以复数形式(Re+jlm)表示为(-1+j),表示复数扩频序列PNI+jPNQ的码片。在这里,(-1+j)存在于图5A所示的正交坐标图的第二象限中。

对于序列PN1的第二PN码片-1,加法器40的输出是1/2(=-1+3/2),它存储于时延寄存器42中,用于一个码片的持续时间,而从复数函数计算器44输出的复数数据为它以复数形式(Re+jlm)表示为(1+1j)。在这里,(1+1j)位于图5A所示的正交坐标图的第一象限。在这种方式下,从复数函数计算器44输出的复数数据是(-1+j),用于序列PN1的第三PN码片1,而(1+j)用于序列PN1的序列的第四PN码片-1。

参照图5A,复数扩频序列PNI+jPNQ位于由复数信号的实部(Re)和虚部(Im)所确定的正交坐标平面的第二和第一象限中,在每两个连续的复数码片间存在相位差π/2。

每两个连续的复数码片间的相位差π/2保持在通过以序列PN2再扩频复数扩频序列PNI+jPNQ而得到的复数扩频序列中(请注意,复数扩频序列也可由正交序列PN或不同的PN序列再扩频)。参照图1,复数扩频序列{(1-j),(1+j),(1-j),(1+j),…}可通过以序列PN2的码片{-1,1,-1,1,…}乘以复数扩频序列PNI+jPNQ的码片{(-1+j),(1+j),(-1+j),(1+j),…}而生成。如图5B所示,输入到基带滤波器22-1和22-2的复数扩频序列就象复数扩频序列PNI+jPNQ一样在每两个连续的复数码片之间存在相位差π/2。

因为在复数扩频序列的每两个连续的复数码片间的相位差比较小,即如图5A和5B所示的π/2,因而在基带滤波器22-1和22-2中处理后的移动发射功率的峰值与平均值功率比得以减小,从而抵消了再生长现象。其结果是使通信质量和性能得到提高。

图6是应用按照本发明的实施例的扩频和调制方法的3G IS-95系统中的MS的方框图。反向通信信道由经常被激活的导频(pilot)信道、控制信道、在特殊帧中无效的基本信道和补充信道。导频信道是未调制的,用于执行瑞克(rake)接收器的初使获得、时间跟踪和同步。这将允许反向链路闭环功率控制。专用控制信道发送未编码的快速功率控制位和编码控制信息。这两种信息类型是在一个控制信道多路复用和传送的。基本信道用于发送RLP(Radio Link Protocol,无线链路协议)帧和分组数据。

这些信道是由用于正交多路化(channelization)的Walsh代码进行扩频的。控制、补充和基本信道信号分别被乘法器50、52和54中相应的Walsh代码相乘。相对增益控制器56、58和60分别控制乘法器50、52和54的输出的相对增益Gc。加法器62将来自相对增益控制器56的控制信道信号与导频信道信号相加。加法器62的附加信息是作为I-信道信号被施加的。加法器64将相对增益控制器60输出的基本信道信号与相对增益控制器58输出的补充信道信号相加。加法器64的附加信息被分配为Q-信道信号。

如图1所示,发送到导频信道、专用信道、基本信道的信号和补充信道信号都是复数信号。导频信道和控制信道的和被分配为I-信道,基本信道和补充信道的和被分配为Q-信道。I和Q信道的复数信号是被图6的复数扩频器2中的复数扩频序列PNI+PNQ复数扩频的。复数扩频信号被序列PN2,即用于用户识别的长代码来相乘。所得的复数扩频序列在基带滤波器22-1和22-2中基带过滤,并且以较低峰值与平均值功率比通过增益控制器24-1和24-2、混频器26-1和26-2以及加法器28来传送。

图7是应用本发明的扩频和调制方法的W-CDMA系统中的MS的方框图。在图7中,交通信号是在专用物理数据信道(dedicated physical datachannel,DPDCH)上传送的,而控制信号是在专用物理控制信道(dedicatedphysical control channel,DPCCH)上传送的。DPDCH在乘法器70中被乘以码片速率的多路化代码CD,并且被分配为I信道。DPDCH在乘法器72中被乘以码片速率的多路化代码CC,它被虚操作数(.j)74转换成虚数形式,并且被分配为Q信道。在这里,CD和CC都是相互正交的代码。I和Q信道形成复数信号。该复数信号被以图7的复数扩频器2中的复数扩频序列PNI+jPNQ复数扩频,并且被乘以序列PN2,即用于PN2产生器21中产生的用户识别的长代码。所得的复数扩频序列在基带滤波器22-1和22-2中基带过滤,并且以较低的峰值与平均值功率比通过增益控制器24-1和24-2、混频器26-1和26-2以及加法器28传送。

按照本发明的以上描述,通过在复数扩频序列的每两个连续的复数码片间确保有90°的相位差,移动发射功率的峰值与平均值功率比被限定到特定的范围。因此,移动发射功率仅在功率放大器的特性曲线的线性部分出现,从而使发射功率和小区尺寸得到灵活控制。另外,多径信号的自相关特性和相对于其它用户的互相关特性可通过以PN代码产生器产生的另一个PN序列对通过复数扩频器的信号进行再扩频来改善。

尽管对本发明已经参照其特定优选实施例作了显示和描述,但本领域普通技术人员应该明白,在不偏离由附属权利要求所定义的本发明的精神和范围的情况下,可对本发明作出形式和细节方面的各种修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号