首页> 中国专利> 空气流量计与应用该空气流量计的发动机控制系统

空气流量计与应用该空气流量计的发动机控制系统

摘要

提供了一种高精度的发热电阻型空气流量计。该发热电阻型空气流量计包括一个比率测量电路,其中比率测量电路包括一个比例电路用来输出与输入信号Vin成比例的信号Vp,一个乘法电路用来输出与“内部参考电压VINT与外部参考电压VREF的差动电压VD”和“电压信号Vin”的乘积成比例的乘法信号Vm,和一个加法电路,用来将比例电路的输出信号Vp与乘法电路的输出信号Vm相叠加,叠加后的信号作为比率输出信号Vout。

著录项

  • 公开/公告号CN1184249A

    专利类型发明专利

  • 公开/公告日1998-06-10

    原文格式PDF

  • 申请/专利权人 株式会社日立制作所;

    申请/专利号CN97122714.4

  • 发明设计人 赤松培雄;

    申请日1997-11-18

  • 分类号G01F1/68;F02D41/18;

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人马浩

  • 地址 日本东京

  • 入库时间 2023-12-17 13:04:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-01-05

    未缴年费专利权终止 IPC(主分类):G01F1/68 授权公告日:20031022 终止日期:20161118 申请日:19971118

    专利权的终止

  • 2003-10-22

    授权

    授权

  • 1998-06-10

    公开

    公开

  • 1998-05-13

    实质审查请求的生效

    实质审查请求的生效

说明书

本发明涉及发热电阻型空气流量计和应用该发热电阻型空气流量计的发动机控制系统,更确切地说,涉及比率输出型的发热电阻型空气流量计与应用该发热电阻型空气流量计的发动机控制系统。

来自发热电阻型空气流量计的输出信号,传送到发动机控制单元(下文简称“ECU”),由ECU中的AD转换器(下文简称“ADC”),转换成数字信号,然后计算空气流速。如果ADC的电源电压此时不稳定,会造成转换后的数字信号出现犯错误。该系统有一个减少误差的方法:将ECU内部的参考电压,输入到发热电阻型空气流量计,做为外部参考电压;空气流量信号,利用空气流量计内的比率测量电路,根据外部参考电压,进行相应调节。该技术已经公开,例如,公开的日本专利申请No.2-85724(1990)。

但是,在上述常规技术中,比率测量功能只是被简单附加在发热电阻型空气流量计上,而没有考虑提高比率测量功能的精确度。

本发明的目的之一在于提高比率测量功能的精确度,提供高精度的比率输出型的发热电阻型空气流量计和高精度的发热电阻型空气流量计。

本发明的另一目的在于提供高精度的发动机控制装置。

以上目的可以通过提供比率输出型的空气流量计实现。其中比率测量电路,利用外部装置输入的次级参考电压信号,对从发热电阻的加热电流测到电压信号Vin进行处理,输出一个代表空气流速的输出信号Vout。比率测量电路包括内部参考电源电路用来产生初级参考信号;比例电路用来接收电压信号Vin并输出一个与电压信号Vin成比例的比例信号Vp;乘法电路用来输出一个与“初级参考电压信号与次级参考电压信号的差动信号”和“电压信号Vin”的乘积成比例的乘法信号Vm;加法电路用来将比例信号Vp与乘法信号Vm叠加,产生输出信号Vout

以上目的也可以通过提供包括检测电路、空气温度检测装置、加减装置和比率测量电路的发热电阻型空气流量计实现。设于空气流通通道内的发热电阻的加热电流被检测电路检测,输出信号Vin;空气温度检测装置用来检测空气流通通道内流动的空气的温度信号;加减装置,通过对一个由外部装置输入的次级参考电压加上或减去一个与温度信号成比例的电压信号,输出一个修正信号;比率测量电路具有一个内部参考电源电路用来产生初级参考信号,一个比例电路用来接收信号Vin,输出与信号Vin成比例的比例信号Vp,一个乘法电路用来输出与“初级参考电压信号与次级参考电压信号的差动信号”和“电压信号Vin”的乘积成比例的乘法信号Vin,和一个加法电路将比例信号Vp与乘法信号Vm叠加,输出一个代表空气流速的输出信号Vout

以上目的还可以通过提供一种发动机控制装置实现。该发动机控制装置包括一个发热电阻型空气流量计用来检测加热发热电阻的电流,输出信号Vin;一个内部参考电源电路用来产生初级参考电压信号;一个发动机控制单元具有一个参考电源电路用来产生次级参考信号,一个比例电路用来输出与信号Vin成比例的信号Vp,一个乘法电路输出与“初级参考电压信号与次级参考电压信号的差动信号”和“电压信号Vin”的乘积成比例的乘法信号Vm;加法电路将信号Vp与信号Vin进行叠加,叠加后的信号经处理,获得代表空气流速的输出信号Vout

根据本发明,因为比率测量输出信号是由比例电路的输出信号与乘法电路的输出信号相叠加而形成的,如果外部参考电压在平均值附近±5%变化时,比率测量电路的误差可以降低到小于十分之一。这样可以提高比率测量功能的精确度。

而且,由于提高了发热电阻型空气流量计的测量精确度,因此有可能提供高精度的发动机控制装置。

图1是表明根据本发明的发热电阻型空气流量计的第一种实施例的示意图。

图2是表明根据本发明的比率测量电路的另一种实施例的示意图。

图3是表明根据本发明的发热电阻型空气流量计的第二种实施例的示意图。

图4表明根据本发明的发热电阻型空气流量计的第三种实施例的示意图。

下文将参考附图对本发明的实施例进行描述。

图1是表明根据本发明的发热电阻型空气流量计的第一种实施例的示意图。在图1中,发热电阻型空气流量计80(下文简称“空气流量计80”)包括一个检测电路10用来检测代表空气流速的电压信号Vin,将之输入到比率测量电路;和一个比率测量电路4,它根据从外部装置接收的次级参考电压信号对电压信号Vin进行处理,输出一个代表空气流速的输出信号Vout

也就是说,恒温控制电路1对置于空气流中的发热电阻2的温度进行控制,使之保持恒温。电流检测电阻,通过检测用来加热发热电阻2的加热电流,获得电压信号V2。检测到的信号V2由输出特性调节电路3调节,电压信号Vin经过调节的输出在比率测量电路4中被转换成比率输出信号,该信号随电压信号Vin的变化而变化,比率测量电路4根据外部装置输入的外部参考电压VREF,获得比率测量电路4的输出信号Vout(或下文所述的空气流量计80的输出信号)。

在图1所示的实施例中,比率测量电路4包括内部参考电压电路5、乘法电路6、比例电路8和加法电路9。内部参考电压电路5产生内部参考电压VINT,做为初级参考电压信号。乘法电路6由左动放大器6a和乘法器6b组成。差动放大器6a检测外部装置输入的次级参考电压信号,即外部参考电压VREF与内部参考电压VINT的差动电压V;乘法器6b输出“差动放大器6a的检测电压VD”与“输入特性调节电路3的输出电压Vin”的乘积电压Vm。比例电路8输出电压Vp该电压与输出特性调节电路3的输出电压Vin成一定信数关系(K2)。加法电路9将乘法器6b的输出电压Vm与比例电路8的输出电压Vp叠加,获得一个代表流量计中空气流速的输出电压Vout

上述关系可以用下列式表示。

VD=K1×(VREF-VINT)                         (式1)

Vm=VD×Vin                               (式2)

  =K1×(VREF-VINT)×Vin                   (式3)

Vp=K2×Vin                                   (式4)

Vout=Vm+Vp                                  (式5)

    =K1×(VREF-VINT)×Vin+K2×Vin            (式6)

    ={K1×(VREF-VINT)+K2}*×Vin              (式7)

这里常数K1和K2中K2的值定义如下。

K2=K1×VINT                                    (式8)因此可以得到与外部参考电压VREF成比例的输出电压Vout

Vout=K1×VREF×Vin                           (式9)

假设乘法电路7的误差率为εm,则

Vout=εm×K1×(VREF-VINT)×Vin              (式10)

假设输出电压Vout的误差率为εv,则

εv=d Vout/Vout=εm×K1×(VREF-VINT)/VREF (式11)因此,比率测量电路4的误差率εv与乘法电路6的误差率εm的比可以整理如下:

εvm=(VREF-VINT)/VREF                    (式12)

在上述等式中,假设外部参考电压VREF的平均值为5(V),变化范围(变化率范围)为±5%,VREF=4.75-5.25(V)。因此,如果假定VINT=5.75,在VREF>VINT的范围内工作的必要条件是:

εvm=0-0.095                             (式13)可以这样理解,即比率测量电路4的误差率εv小于乘法电路6的误差率εm的1/10。也就是说,根据本发明,比率测量电路4的误差率εv可以降低到小于常规电路的误差率的十分之一。

根据(式6)与(式9),比例电路8的输出电压Vp与乘法电路6的输出电压Vm的比值可以表示为:

Vp/Vm=VINT/(VREF-VINT)                      (式14)则,当VREF=5,VINT=4.75时,该比值为:

Vp/Vm=4.75时,该比值为:

Vp/Vm=4.75/(5-4.75)=19/1                   (式15)

当变化范围(变化率范围)为±20%,考虑到工作安全系数,V=4V,因此,

Vp/Vm=4/(5-4)=4/1                         (式16)误差率的降低率为:

εvm=0-0.238                            (式17)

综上,可知道,当比例电路8的输出电压Vp与乘法电路6的输出电压Vm的比Vp/Vm的值大于4(上述情况为4和19)时,可能获得一种实用的比率测量电路,该电路保证了工作安全系数,并且降低了乘法电路7的误差率εm。也就是说,次级参考电压信号(一般指外部参考电压VREF)的变化率范围,必须降低到次级参考电压信号(即外部参考电压VREF)变化率的平均值的20%内。

在进行数字计算,以获得比率输出的情况下,只通过乘法计算就能获得足够的精确度,因为乘法与加法的计算精确度是没有差别的。但是,为了进行数字计算,就需要用到温度环境电阻特性(环境电阻)较低的功能元件,例如,AD转换器、微处理以及类似元件,这会由于比率测量电路的尺寸变大而引起问题。

因此考虑用一个尺寸小的模拟乘法电路来构造比率测量电路,不需任何环境电阻较低的功能元件,适合车用空气流量计的环境条件。但是,要提供与模拟差动放大电路同样精确度的模拟乘法电路是很困难的。然而,运用本发明的思想,即使使用模拟乘法电路,也可以保证合适的精确度。因此,用一个环境电阻高、电路结构简单的模拟乘法电路,就可能提供具有高精度比率测量功能的发热电阻型空气流量计。

下面介绍一个应用模拟乘法电路的比率测量电路的实施例,做为比率测量电路的第二种实施例。图1所示的发热电阻型空气流量计内的典型的比率测量电路是比率测量电路的第一种实施例。

图2是表示根据本项发明的比率测量电路的另一种实施例的示意图。该图表示了比率测量电路的详细电路图。

比率测量电路4的第二种实施例包括内部参考电源电路5、乘法电路6、比例电路8和加法电路9。乘法电路6包括对数放大器6c与差动放大器6d。对数放大器6c输出一个与“外部参考电压VREF和内部参考电压VINT的差”和“内部参考电压VINT”的比的对数,成比例的输出电压ΔVBE;差动放大电路6d差动放大ΔVBE给出一个与输入电压Vin成比例的偏置电流。即,来自三极管11、12的电流,流向由运算放大器30、31控制的三极管15、16、17、18,将三极管11和12基一射板电压VBE的差ΔVBE,复制到发射极耦合差动型三极管13、14,使由运算放大器控制的电阻43的电流与三极管13的电流的比值,和输入到运算放大器30、31的电压Vex与电压Vei的比值相等,令此时三极管11、12的电流分别为Ic1/Ic2,可得到下面的关系:

Ic1=(Vex-Vei)/R1                                    (式18)

Ic1+Ic2=Vei/R2                                      (式19)

Ic1/(Ic1+Ic2)=(Vex-Vei)×R2/R1                    (式20)三极管基-射板间电压VBE可表示成下式。

VBE=(K×T/q)×log(Ic/Is)                            (式21)其中,K:玻尔兹是常数,T:温度(K),q:电荷数,Ic:三极管集电极电流,Is:集电极饱和电流。因此,三极管11和12基-射极电压VBE的差ΔVBE可表示成下式。

ΔVBE=VBE1-VBE2                                         (式22)

     =(K×T/q)×log(Ic1/Ic2)                        (式23)同理,三极管13、14的电流可表示如下。

ΔVBE=VBE3-VBE4                                         (式24)

     =(K×T/q)×log(Ic3/Ic4)                        (式25)

根据(式23)和(式25),可得到如下关系。

Ic1/Ic2=Ic3/Ic4                                    (式26)

Ic3=(Ic3+Ic4)×Ic1×(Ic1+Ic2)                   (式27)

流入电阻43的电流IEE可表示为。

IEE={Vin×R48/(R47+R48)}/R43                           (式28)

   =Ic3+Ic4                                           (式29)

根据式18、式19、式27、式28和式29,可得到如下关系。

Ic3=Vin×R48/{(R47+R48)×R43}×(Vex/Vei-1)×R42/R41  (式30)

由于由三极管21、22组成的电流镜象电路,颠倒了三极管13的电流Ic3的极性,使电流流向电阻44,因此电阻44的电压Vm-Vp可表示为。Vm-Vp=R44×Ic3                                          (式31)

=R44×Vin×R48/{(R47+R48)×R43}×(Vex/Vei-1)×R42/R41 (式32)

由于电压Vp是电压Vin在电阻45、46上的分压,因此,电压Vp可以表示为下式。

Vp=Vin×R46/(R45+R46)                                 (式33)

则,

Vm=Vin×(R44/R43)×{R48/(R47+R48)}×(Vex/Vei-1)

    ×R42/R41+Vin×R46/(R45+R46)                        (式34)

   =Vin×[(R44/R43)×{R48/(R47+R48)}×(Vex/Vei

    (R42/R41)+R46/(R45+R46)-(R44/R43)

    ×{R48/(R47+R48)}×(R42/R41)]                        (式35)因此,如果令电阻值满足下式,电压Vm就是与Vex和Vin成比例的比率输出信号。R46/(R45+R46)=(R44/R43)×{R48/(R47+R48)}×(R42/R41)         (式36)

该电压Vm输入到包括运算放大器34和电阻53、54的放大电路,获得流量计的输出信号Vout

Vout=(1+R54/R53)×Vm                                  (式37)

    =Vin×(Vex/Vei)×(1+R45/R53)×(R44/R43)×

      {R48/(R47+R48)}×(R42/R41)                         (式38)

此处,(式20)可以改写为:

Ic2/Ic1=(R2/R1)×Vei/(Vex-Vei)-1                  (式39)

因此,

(R2/R1)=2×(Vex/Vei-1)                                (式40)

在这种条件下,三极管11、12的电流相等,根据(式23),对数放大器6c的输出电压ΔVBE为0V。由于当电流相等时,“差动三极管的电流比”接近理论值,因此令“差动三极管的电流比”满足上式,即对数庆大器6c的输出电压ΔVBE为0V,此时,作为次级参考电坟信号的外部参考电压VREF等于变化范围内的平均值。这样,实用条件下的比率测量转换中的误差可以进一步降低。

根据图2,Vex和Vei可以表示成(式41)和(式42),将这两个式代入(式38),可以得到(式43)。

Vex=R52/(R51+R52)×VINT                       (式41)

Vei=R50/(R49+R50)×VREF                       (式42)

Vout=Vin×(VREF/VINT)×{R52/(R51+R52)}×{1+R50/R49}×(1+R54/R53)×(R44/R43)×{R48/(R47+R48)}×(R42/R41)  (式43)

三极管电压VBE是温度T的函数,如式21所示。因此,如果构成对数放大器6c构成差动放大器6d的三极管的温度不同,(式21)的值随各自三极管温度的变化而变化。为了解决这个问题使乘法运算输出信号Vm稳定,即排除阻碍热量散发的障碍,最好是乘法电路6在单个硅基体上形成从而很好地热耦合。也就是说,最好对数放大器6c和差动放大器6d在单个硅基体上形成,或乘法电路6和加法电路8在单个硅基体上形成。

下面描述根据本发明的比率输出型的发热电阻型空气流量计的另一种实施例。

图3表明了根据本发明的发热电阻型空气流量计的第二种实施例的示意图。图3中的第二种实施例是在图1所示的空气流量计的第一种实施例基基础上,加上空气温度检测装置62和加减装置63形成的。即,发热电阻型空气流量计包括了空气温度检测装置62和加减装置63。空气温度检测装置62包括一个空气温度传感器60和空气温度检测电路61。加减装置63对空气温度检测装置62输出的温度信号VTMP进行处理(修正),处理(修正)后的信号被输入到比率测量电路4,作为次级参考电压信号。

就是说,根据本发明的发热电阻型空气流量计包括一个装在空气流通通道内的发热电阻2;一个恒温控制电路1用来提供电流,以保持发热电阻2的温度为恒温;一个检测电路10包括一个检测“供给发热电阻的受控电流”的电流检测电阻12,和一个用来输出电压信号Vin的输出特性调节电路3;一个空气温度检测装置62用来检测在所述空气流通通道内流动的所测空气的温度信号VTMP;一个加减装置63,对从外部装置(例如,ECU)输入的做为次级参考电压信号的外部参考电压VREF,加上或减去一个与所检测的温度电压信号VTMP成比例的电压信号,输出修正信号;和一个比率测量电路包括内部参考电源电路5、比例电路8、乘法电路6和加法电路9,内部参考电源电路5产生内部参考电压VINT,作为初级参考信号,比例电路8接收信号Vin,输出与信号Vin成比例的比例信号Vp,乘法电路6输出与“初级参考电压信号与修正信号的差动信号”和“上述信号Vin”的乘积成比例的乘法信号Vm,加法电路9将比例信号Vp与乘法信号Vm叠加,输出代表空气流速的输出信号Vout

第二种实施例有一个优点:当流量计的流速特性随温度变化时,流量计的输出特性可以进行温度补偿。在图3的实施例中,勿用置疑,如果空气温度检测装置62安装在流量计外部,并将温度信号VTMP输入流量计,可获得同样的效果。

第一种实施例中,“比率测量电路的次级参考电压信号与外部参考电压VREF相等”,但在第二种实施例中,“比率测量电路的次级参考电压信号与外部参考电压VREF的修正信号相等。”也就是说,次级参考电压信号是输入到比率测量电路中,并对输入信号Vin进行处理的电压信号,而外部参考电压是下文所述的ECU70中的AD转换器71所要用到的电压信号。

下面描述根据本发明的比率输出型的发热电阻型空气流量计的一个进一步的实施例。

图4是表明根据本发明的发热电阻型空气流量计的第三种实施例的示意图。图4中的发热电阻型空气流量计的第三种实施例是发动机控制装置实施例的一部分。即此发热电阻型空气流量计的实施例是做为发动机控制装置90的一部分。发动机控制装置90这样构成:第一种实施例中的比率测量电路4中的内部参考电源电路5做为比率测量电路4的一个部分,它位于空气流量计80侧边的左侧内,除内部参考电源电路5以外的比率测量电路4的其它部分,装在ECU70内。内部参考电压VREF和空气流速信号Vin从空气流量计80传送到ECU70。也就是说,作为根据本发明的带比率输出装置的发热电阻型空气流量计的特征的比率测量电路组件分别安装在不同的单元(ECU70、发动机控制装置90等)内。

在这个实施例中,发动机控制装置90包括空气流量计80与ECU70。空气流量计80检测加热发热电阻的电流,输出信号Vin,它包括内部参考电源电路与用来产生初级参考电压信号;ECU70包括比率测量电路4a,对代表空气流速的输出信号Vout进行处理。ECU70中装有除内部参考电源电路5以外的比率测量电路4a、AD转换器、参考电源电路72和MPU(微处理器)73(。参考电源电路72,将作为次级参考电压信号的参考电压VREF输送给AD转换器71;MPU对AD转换器71输出的数字信号进行处理。用ECU70中的比率测量电路4a进行(式9)所示运算,即使ECU70的参考电压VREF出现波动,也会使AD转换器71输出的数字信号对波动的影响不敏感。

图4所示的实施例有一个优点,即构成ECU80的电路的尺寸可以做得很小。而且,由于车辆上安装ECU70处的环境干扰,例如温度、震动、电磁波等,要比安装空气流量计80处的环境干扰小,因此对比率测量电路4a的环境条件的要求降低,相应地,使用比率测量功能的修正系统,就可以做得更加经济。

本实施例所示的采用发热电阻型空气流量计的发动机控制装置90,因为提高了空气流速的测量精度,因此可以进行高精度的发动机控制。内部参考电源电路5可以安装在ECU70内。

根据本发明,由于比率测量电路的输出信号是将比例电路的输出信号与乘法电路的输出信号相叠加而形成的,因此,乘法电路的误差与比率测量电路的总误差的比值可以降低,相应地,发热电阻型空气流量计的比率输出得寸进尺生可以更精确。特别需要指出,当外部参考电压接近经常使用的平均值时,本发明可以有效地减小输出误差。

应用本发明,可以提高发动机控制装置的精确度。

而且,用模拟乘法电路构造比率测量电路,可以降低比率输出型的发热电阻型空气流量计的造价。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号