首页> 中国专利> 流体出口处装有屏栅的固体粒子一流体接触的设备

流体出口处装有屏栅的固体粒子一流体接触的设备

摘要

一种用于使固体粒子与流体接触的设备,该设备包含一个用于保持固体粒子床的立式管柱,其底部有一个流体入口,顶部有一个流体出口。在管柱内的流体出口附近有一屏栅。该屏栅包含许多垂直的格条,每对相邻格条之间限定一条狭缝,狭缝的宽度适于阻挡被向外流动的流体所夹带的固体粒子,而狭缝的长度远远大于其宽度。此屏栅的位置应使得所有流经管柱的流体必须先通过屏栅然后才能通过流体出口。

著录项

  • 公开/公告号CN1048171A

    专利类型发明专利

  • 公开/公告日1991-01-02

    原文格式PDF

  • 申请/专利权人 卡夫通用食品有限公司;

    申请/专利号CN90103013.9

  • 发明设计人 查尔斯·T·穆尔曼;

    申请日1990-06-19

  • 分类号B01J8/02;A23F5/22;

  • 代理机构中国专利代理有限公司;

  • 代理人魏金玺;曹恒兴

  • 地址 美国纽约州

  • 入库时间 2023-12-17 12:06:25

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2002-08-21

    专利权的终止未缴年费专利权终止

    专利权的终止未缴年费专利权终止

  • 2002-04-24

    其他有关事项 其他有关事项:1992年12月31日以前的发明专利申请,授予专利权且现仍有效的,其保护期限从15年延长到20年。根据国家知识产权局第80号公告的规定,下述发明专利权的期限由从申请日起十五年延长为二十年。在专利权的有效期内,所有的专利事务手续按照现行专利法和实施细则的有关规定办理。 申请日:19900619

    其他有关事项

  • 1995-02-22

    授权

    授权

  • 1992-08-26

    实质审查请求已生效的专利申请

    实质审查请求已生效的专利申请

  • 1991-01-02

    公开

    公开

说明书

本发明涉及一种用于使固体粒子与一种流体在一个细长形并且基本上是立式操作的容器中进行相互接触的设备,本发明还涉及一种在所说的容器中,在高压条件下以工艺流体来连续处理固体颗粒物质的方法。更具体地说,本发明涉及这样一种设备和使用该设备的方法,该设备包括这样一个装置,当工艺流体在高压条件下连续地通过所说容器的情况下,该装置能定期地将固体粒子向下输送,使之通过所说的容器而受到工艺处理。

当然,用于进行固体粒子-流体接触的设备是众所周知的。使用这种设备时所带来的一个问题是固体粒子被工艺流体夹带,并且工艺流体还能将这些固体粒子带走。这些被带走的固体粒子经常会引起一些问题,常常要费很大力气来处理它们,例如采用过滤法来从工艺流体中除去这些固体粒子。过滤操作在某些系统中是完全可行的。然而,在另外一些系统中,过滤操作将是困难的和昂贵的。

在使生咖啡豆脱除咖啡因的工艺中,出现一个在过滤方面的特殊问题。在一种众所周知的工艺处理方法中,将一批生咖啡豆装入一个容器内,将一种超临界的二氧化碳通过该容器以脱除生咖啡豆中的咖啡因。然后对这些含有咖啡因并从容器中出来的超临界流体进行处理,例如用木炭来处理,以除去其中的咖啡因。然后将已除去咖啡因的超临界流体返回容器中。在一个完整的操作工艺过程中,二氧化碳在特别高的压力下进行循环,以便使这些二氧化碳保持在超临界状态。生咖啡豆中夹杂有相当多的果壳。当对这些咖啡豆进行处理时,一部分果壳就被超临界的流体夹带,并随同超临界流体一起进入了超临界的二氧化碳回路中。将这种二氧化碳从上向下通过一个填料床,这样就可使果壳的夹带量减少。当二氧化碳通过一个木炭填料床时,被夹带的果壳就被分离出来。作为一个预处理步骤,就可除去生咖啡豆中的果壳。尽管采用了这样一种清除果壳的预处理步骤,然而仍有较多量的果壳随着咖啡豆一起进入系统中,并有较多量的果壳被循环的二氧化碳夹带。在每一批原料处理完毕后,就用木炭来除去其中的果壳,而这些果壳就在木炭中积累起来。

已经有人研究了一种利用超临界二氧化碳来使生咖啡豆脱除咖啡因的连续操作方法,该方法已公开在授予Saul  N.Katz的美国专利US  4,820,537中,此处将所公开的方法引述,以供参考。在该方法中,将潮湿的生咖啡豆定期地,脉动式向下输送,使其向下通过一个立式管柱,而在此同时将超临界的二氧化碳连续地向上通过该管柱。连续法与间歇法的不同之处是,在连续法中超临界的二氧化碳气流并不定期地中断,而且,与间歇法的另一点不同之处是其中的超临界流体在高压回路中以基本上恒定的温度和压力进行循环。况且,连续法所用的系统不希望频繁地中断,因为不管是将系统中断或起动,皆需花费相当多的时间。可以理解、随同潮湿的咖啡豆一起进入系统并被超临界二氧化碳所夹带的果壳将不断地积累在系统中。这种积累会引起诸如需要停车等一类严重的问题。很明显,必须采取各种措施来处理随同超临界流体一起从管柱中流出的所有果壳。

当然,可以采用过滤器。然而,已经发现,在实际使用中这种过滤步骤是效果很差的并且是昂贵的。例如,已经发现,这种过滤器在很短时间内就被果壳严重地堵塞。

本发明的目的是在使固体粒子在一个处理容器中与流体接触的方法和设备中,提供一种可以有效地除去当工艺流体通过处理容器时夹带在流体中的果壳与其他的固体粒子的装置。

上述目的以及其他一些对于本领域的普通技术人员来说显而易见的目的皆为本发明所达到,本发明为达到这些目的所采取的措施是改进用于使固体粒子与工艺流体接触的设备。该设备包含一根细长的管柱以用来保持那些需与工艺流体接触的固体粒子床。该管柱被设计成基本上立式操作。在靠近管柱的底部有一个流体入口,以供流体进入管柱,而在靠管柱的顶部有一个流体出口,以供那些已向上通过了管柱内固体粒子床的流体从管柱中流出来。按照本发明,在所说设备中装设有一个屏栅,该屏栅包含很多垂直的屏栅格条,可以从即将通过流体出口流出所说管柱的工艺流体中屏阻所夹带的固体粒子。该屏栅安装在管柱内靠近流体出口处,该屏栅的位置应使得所有通过管柱的流体必须先通过屏栅,然后才能通过流体出口。每一对相邻的垂直屏栅格条共同限定了一条在它们之间的基本上是垂直的屏栅狭缝,每一条屏栅狭缝的宽度,可使该狭缝能从出口流体中屏阻所夹带的固体粒子,每条狭缝的长度可为其宽度的许多倍,优选的是至少为宽度的10倍,更优选的是至少为宽度的25倍或50倍。每一根屏栅格条最好都具有基本上为楔形的截面,该楔形截面是沿着离开该屏栅格条上游表面的方向,往后逐渐缩小,此处所用术语“上游”是按流体通过屏栅的流动方向这一意义来说的。因此,这些狭缝在该屏栅的下游表面处的宽度大于其上游表面处的宽度。这些屏栅格条最好都有这样的楔形截面。本发明的方法包括下述的几个步骤:在一个基本上为立式的管柱中,以一种处于高压条件下的工艺流体连续地处理固体粒子,所说的工艺流体通过该管柱中的固体粒子床沿着管柱向上连续地流动,然后通过该管柱顶部的流体出口从该管柱排出。固体粒子按脉动式定期地从上向下通过该管柱,以这样的方式使新鲜的固体粒子原料从管柱的顶上加入,而经过处理的固体粒子就从管柱的底部排出。工艺流体在高压下连续地通过该管柱。根据本发明,将一个如上所述的屏栅安装在管柱内以屏阻那些被流出管柱的流体所夹带的固体粒子。由于固体粒子在高压下脉动式地从上向下通过该管柱,因而使屏栅得以保持清洁。这样就不需要中断高压的工艺过程来进行屏栅的清洁处理。

下面结合附图对本发明的较佳实施方案进行详细的解释,其中:

图1是用于使固体粒子与流体接触的设备的侧视图,其中包括一个根据本发明的屏栅,该屏栅位于管柱内靠近管柱顶部的流体出口处;

图2是用来组成图1所示屏栅的屏栅单元构件的放大侧视图;

图3是沿着图2的3-3线剖开的屏栅单元构件的截面图;以及

图4是图1所示管柱顶部的放大截面图,其中示出了在管柱内的屏栅的安装方式的细部。

现在参看图1,用于使固体粒子与流体接触的设备包含一个细长的管柱(或称压力容器)10。该容器用来保持需用通过管柱的流体进行处理的固体粒子床料(图1中未示出)。该容器被设计成基本为立式操作,在该容器的下端有一个供流体进入的流体入口11。为了让流体进入,可以采用一个如分布喷嘴12一类的装置。所说容器还包含一个靠近管柱顶部的流体出口13,以便让那些已向上通过了固体粒子床的流体流出该管柱。

根据本发明,屏栅14安装在管柱内部的顶部部位靠近流体出口处。该屏栅的位置应使得所有向上通过该管柱的流体必须先通过该屏栅,然后才能通过气流出口13。所说屏栅含有很多屏栅格条15,这些格条是垂直地安装,也就是说,当管柱按图1所示进行立式操作时,这些格条也是立式的。这样,这些屏栅格条就基本上平行于细长圆筒形容器的纵轴。

图1中所示的容器是圆筒形,屏栅14也是圆筒型,该屏栅按同轴方式安装在圆筒型容器的内部,二者的器壁之间有一定的距离,这样就使得在屏栅14与容器10的内壁17之间形成一个环形间隙16,该间隙对于流经出口13的流体起一个集流室的作用。屏栅14是以这样的方式设置在管柱内,即使得所有从入口12进来并向上通过了管柱的流体必须先通过屏栅然后才能通过流体出口13。虽然图中只示出了一个流体出口,但是可以理解,不管设置多少个开口都是可以的。

屏栅14可以使用一个或多个象图4中所示的屏栅单元构件18和19那样分散的屏栅构件组装起来。这种安置方式可以使一个大屏栅安装在一个其入口小于屏栅的容器内。这对于那些需在高压下操作而又只具有相对较小入口的大容器来说是特别有利的。图1-4示出一个由四块半圆周形屏栅构件组成的屏栅14,其中的两块屏栅构件18和19示于图1和图3中。而这两块屏栅构件中的一块构件18更详细地示于图2和图3中。在将屏栅装入圆筒形的管柱10之前,必须先将每一块屏栅构件做成图4中所示的半圆周形。

相邻的两根垂直的屏栅格条,共同确定了一条基本上垂直的屏栅狭缝。屏栅上游表面处每一条垂直的屏栅狭缝的开口,它的宽度皆设计成可以屏阻被排出流体夹带的固体粒子,而该狭缝的长度远大于屏栅上游表面处狭缝的宽度。一般说,每一条狭缝的长度应至少等于其宽度的10倍,而最好是至少等于其宽度的25倍或50倍。每一条狭缝的最大长度,主要是根据屏栅制造工艺上的实际考虑以及根据所需总的屏栅开孔面积来确定。一般说,狭缝的长度约等于狭缝宽度的50-200倍是适宜的。每一根屏栅格条必须足够粗实均匀,以使每一条狭缝的宽度在沿着狭缝的方向上保持基本上一致。当这些狭缝相对地较长而每一根格条的横截面又相对地较小的情况下,需用一种加强元件来固定(例如通过焊接)这些格条,以使那些相邻的屏栅格条彼此之间保持基本上平行。如上所述,此处所用的术语“上游”和“下游”是根据流体通过屏栅的流动方向而说的。这样,示于图1中的屏栅的“上游”表面就是在管柱中的屏栅上最靠容器内部的表面。

图2十分清楚地示出,每一块屏栅构件都可方便地用一个矩形的边框21组装起来,该边框具有垂直的框边22和23,以及水平的框边24和25。必须设置支撑棒26和27,以便使每两根屏栅格条15之间保持合适的距离。

图4十分清楚地示出屏栅14安装在管柱内的方式,安装时是将屏栅固定于圆筒形的冲孔支撑板28上,而支撑板28本身又通过下支撑板29和上支撑板30同心地固定于管柱内。象屏栅14的情况,屏栅的支撑结构物可以采用诸如焊接等方法将其固定于管柱的预定位置上。支撑构件28、29和30共同把屏栅支撑在管柱的上部,这种布局可使向上通过管柱的全部流体都必须先通过屏栅,然后才能通过出口13。下支撑板29是一块园环形的无冲孔板,它处于圆筒形冲孔支撑板28的下端。上支撑板30也是一块园环形的无冲孔板,并且最好做成如图所示的截头圆锥状,这样有利于固体粒子物料通过管柱从上往下运动。

在方案中的屏栅构件18和19皆是做成半圆周形,它们可通过螺栓、焊接或其他任何合适的方法固定于冲孔支撑板28上。另外两块半圆周形的屏栅构件(未示出)也固定在冲孔支撑板28上,这样就完成了在管柱上部的圆筒形屏栅14的安装工作。当然,也可在管柱上设置一个合适的开口,以便通过该开口将屏栅及其支撑构件安装在管柱内。用来组装屏栅和支撑构件28、29和30的各种元件都可以通过诸如焊接等方法就地组装起来。不必把屏栅或其支持构件延伸到环绕管柱的全部周边上。

组成屏栅的格条15最好做成如图3所示的楔形截面。这样就保证了在屏栅下游表面处的屏栅狭缝开口大于屏栅上游表面处的屏栅狭缝开口。另外的较佳措施是使屏栅格条和屏栅本身二者的上游表面皆呈如图所示的平面状。这种措施有利于固体粒子物料在它们自上而下地通过屏栅表面时所起的清洁作用。

如图4所示,该屏栅安装在靠近反应容器垂直器壁的内表面处,但安装时要使屏栅的下游表面与反应器壁的内表面之间保持一定空间距离。

本发明包括一个具有可在高压下连续操作的圆筒形容器的特殊装置。在该容器中,所说的屏栅最好同轴地安装在圆筒形容器内部,这样可使屏栅与所说容器的圆筒状内表面之间形成一个环形间隙。

如上所述,所说的屏栅可由多个分散的屏栅构件组装而成,当屏栅是很大的情况下采用这种方案是十分方便的,特别是当这种大容器需进行高压操作的情况下更是如此。为了方便起见,这些分散的屏栅构件可以是圆筒形,也可以是圆筒的一部分,或者二者兼而有之。例如,在附图所示的装置中使用两个圆筒形的屏栅组件,而每一个圆形组件又由两块半圆状的弧形构件组成。

屏栅格条15应足够地坚固,以保证在操作条件下这些格条之间保持一定距离。屏栅格条之间的狭缝应设计成能防止超过预定颗粒直径的固体粒子通过该屏栅并随流体一起通过出口13排出。

正如上述,如反应设备需在高压工艺条件下连续操作,并同时需定期地将固体粒子加入管柱的顶部,并接着使其向下通过该管柱,最后通过管柱的底部排出,则在这样的设备中,本发明就特别有用。在前面所述的授予Katz的专利中,介绍了属于这种类型的方法和设备。本发明用于这种类型的方法和设备示于图1中。在稳态操作条件下的一个典型工艺过程中,容器10基本上被潮湿的生咖啡豆床料充满。将一种实际上不含咖啡因的超临界流体,例如超临界的二氧化碳,通过入口11和12送入容器中并令其向上通过管柱内的咖啡豆床层。将含咖啡因的超临界流体通过出口13从该提取容器的顶部抽出。使潮湿的生咖啡豆定期地通过阀31进入一个吹扬箱32。将阀33和34同时打开,以便让潮湿的生咖啡豆从吹扬箱32进入提取容器10的顶部,以及让那些已基本上脱除了咖啡因的生咖啡豆从提取容器10的底部排放入吹扬箱35。然后将阀33和34关闭。接着将阀36打开,以便让那些已基本上脱除咖啡因的生咖啡豆从吹扬箱35中排放出来。然后再将另一批生咖啡豆通过阀31放入吹扬箱32,并将上述步骤再次重复。

当咖啡豆按刚才所述的方式,脉动式地自上而下通过所说的管柱时,超临界的流体在高压下连续地流过该管柱。在一个典型的操作中,超临界的二氧化碳在250大气压下通过该管柱。在每一次脉动过程中,咖啡豆自上而下地运动,当它们通过屏栅的表面时,它们所作的这种运动清洁了层栅,这样也就清除了在操作期间,介于每两次强烈往下脉动之间的时间内积累在屏栅上的果壳。这样,该管柱就可以维持连续的操作而不需要用机械装置来清扫管柱,也不需要采用反吹法来冲刷屏栅,所说的这种反吹法是通入一股流体,使其从屏栅的下游表面通过屏栅到达屏栅的上游表面。本发明的明显的优点在于可以免除这类复杂的并且易于产生故障的装置。

截头锥体状的上支撑板30起一个漏斗的作用,它把向下运动的固体粒子引向屏栅14的表面,这样就可在固体粒子脉动式地向下通过管柱时,起到促进这些粒子向下运动的作用。因此,较理想的是支撑板30的上表面是光滑的,并且支撑板与管柱器壁所构成的夹角不应大于45°,优选的为约15-40°。屏栅14的上游表面最好也是光滑而平直的,以有利于在固体粒子向下运动时对屏栅所起的清洁作用。

在一个较佳实施方案中,屏栅14被安装在一个高约100英尺,直径约6英尺的管柱内,屏栅14为圆筒形,其高度约为2英尺,直径约为5英尺。这样就使得屏栅与管柱器壁间的距离约等于管柱直径的8%。一般说,较优选的条件是使屏栅与管柱器壁的距离约等于管柱直径的3%至15%,更优选的是5%至10%。该屏栅由两个圆筒形的构件组成,其中的每一个构件都高约1英尺,而每一个圆筒形构件又由3块等长的弧形构件组成。每一个屏栅构件上的屏栅格条延伸到该构件的全部高度。各格条之间的狭缝宽度适合于阻挡来自生咖啡豆中的果壳,为此目的,狭缝的宽度约等于0.015-0.060英寸是适宜的。每一块屏栅构件的总开孔面积约为0.5-5平方英尺。屏栅的总开孔面积远远大于出口13的截面积,最好是前者的面积为后者的10-100倍。屏栅的高度可在很大范围内变化,但是其高度约等于管柱内径的1/4至2倍即完全足够。屏栅适宜的总开孔面积应约等于管柱横截面积的1/4至5倍,优选的是1/2至3倍。

最好是相邻两根格条之间的宽度向着下游方向的扩大。这样,屏栅格条之间的各个狭缝都是向前渐缩,而每一根屏栅格条的横截面就沿着通过屏栅的流体流动方向,向后渐缩,它可象图3所示的基本上是楔形的截面。这种楔形格条的粗细约为0.030至0.150英寸,该楔形截面按3-30°的角度渐缩。本发明的屏栅的布置方式的优点是明显的,特别是在连续的和采用高压设备的工艺中,这一优点更为明显。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号