首页> 中国专利> 具有混合层的气体分离膜

具有混合层的气体分离膜

摘要

一种复合膜,包括:a)多孔支撑件;b)槽层;以及c)识别层;其中,至少10%的识别层与槽层混合。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-03-15

    授权

    授权

  • 2015-06-03

    实质审查的生效 IPC(主分类):B01D67/00 申请日:20130626

    实质审查的生效

  • 2015-03-18

    公开

    公开

说明书

技术领域

本发明涉及复合膜及其制备和在气体分离方面的应用。

背景技术

美国专利文件US 5,286,280(‘280)中公开了复合气体分离膜。‘280 膜依次包括支撑件、气体可渗透的聚合物层(通常称为“槽层”),识别 层和可选择的外侧保护层。‘280中涉及用于形成识别层的溶剂不能腐蚀槽 层,因此‘280的识别层将不渗透到槽层内。

发明内容

需要具有鲁棒性膜并且膜的层具有低的分离趋势,该膜可以在高压下 操作,具有良好的气体通量且在诸如CO2和CH4的气体之间具有良好的识 别。

根据本发明的第一个方面,提供了一种复合膜包括:

a)多孔支撑件;

b)槽层;以及

c)识别层;

其中:至少10%的识别层与槽层混合。

在图1和图2中示例性示出的复合膜包括多孔支撑件1、槽层2和薄 识别层3。

在图1中,识别层3的未与槽层混合的部分示出为3a,并且识别层的 与槽层混合的部分示出为3b。在图1中,DLe和DLi分别表示识别层未混 合部分的厚度以及识别层混合部分的厚度。在图1中,DLe和DLi约相等, 约50%的识别层与槽层混合。

在图2中,100%的识别层3完全与槽层2混合。

在图1和图2中,多孔支撑件1、槽层2和识别层3的相对厚度未按 照相对其各自的尺寸绘出,并且进行了放大以更清楚的示出本发明。特别 地,与槽2相比,识别层3通常非常薄,但在这些附图中,为了清楚地示 出本发明,相对于槽层,对识别层的厚度进行了放大。

同时,图1和图2中示出的复合膜可选地进一步包括位于识别层上的 保护层(未示出)。

在本发明的复合膜中,由于前文提到的混合,槽层和识别层强有力地 粘合在一起。因此,复合膜具有鲁棒性,并且在使用中识别层具有非常低 的从槽层的剥离倾向,即使当膜在高气压下使用时。

多孔支撑件的主要目的是在实质上不降低通量的情况下对识别层提供 机械强度。因此,相对于识别层而言,多孔支撑件是典型的开气孔。

多孔支撑件可以是例如微孔有机或无机膜,或织造或非织造织物。

多孔支撑件可以由任何合适的材料构成。这些材料的实例包括聚砜、 聚醚砜、聚酰亚胺、聚醚酰亚胺、聚酰胺、聚酰胺酰亚胺、聚丙烯腈、聚 碳酸酯、聚酯、聚丙烯酸酯、醋酸纤维素、聚乙烯、聚丙烯、聚偏氟乙烯、 聚四氟乙烯、聚(4-甲基-1-戊烯),并且尤其是聚丙烯腈。

可以使用(例如可商业购买)多孔片状材料作为支撑件。可选地,可 以使用本领域公知的用于制备微孔材料的技术来制备多孔支撑件。在一个 实施例中,可以通过以下步骤制备多孔、非识别支撑件:固化可固化组分, 然后将进一步将可固化的组分应用至形成的多孔支撑件,并且固化这些组 分,从而在已经固化的多孔支撑件上形成槽层和识别层。

多孔支撑件并且不仅限于片状形式;也可以使用管状形式的多孔支撑 件。

为了改善其例如可湿润性和/或粘合性,也可以使用经历电晕放电处理、 辉光放电处理、火焰处理、紫外线辐射处理等的多孔支撑件。

多孔支撑件优选地具有尽可能大的孔,并适合提供用于槽层和随后的 识别层的平滑表面。多孔支撑件具有平均孔径,其优选地大于识别层的平 均孔径至少约50%,更优选地大于识别层的平均孔径至少约100%,特别优 选地大于识别层的平均孔径至少约200%,更特别地大于识别层的平均孔径 至少约1000%。

穿过多孔支撑件的孔典型地具有0.001至10μm的平均直径,优选地为 0.01至1μm。在多孔支撑件的表面处的孔将典型地具有0.001至0.1μm的 直径,优选地为0.005至0.05μm。

孔的直径可以通过例如通过扫描电子显微镜(“SEM”)观察多孔支 撑件的表面或通过切断穿过支撑件并也通过SEM测量多孔支撑件内的孔 的直径进行测定。

多孔支撑件的表面处的孔隙率也可以表达为a%孔隙率,即,

上述计算式所需的面积可以通过使用SEM检测多孔支撑件的表面来 确定。

因此,在优选实施例中,多孔支撑件具有的a%孔隙率>1%,更优选 地>3%,特别地>10%,更特别地>20%。

多孔支撑件的孔隙率也可以表达为CO2气体透过率(单位为 m3(STP)/m2.s.kPa)。当复合膜旨在用于气体分离时,多孔支撑件的CO2气 体透过率优选地为5至150×10-5m3(STP)/m2.s.kPa,更优选地为5至 100×10-5m3(STP)/m2.s.kPa,最优选地为7至70×10-5m3(STP)/m2.s.kPa。

可选地,通过测量穿过多孔支撑件的N2气体流速来表征孔隙率。可以通 过任何合适的方法测量气体流速,例如使用PoroluxTM 1000器件,可从 porpmeter.com获得。

典型地,将PoroluxTM 1000设定为最大压力(约34bar),并且测量试 验中的穿过多孔支撑件的N2气体的流速(L/min)。在约34bar的压力下, 对于2.69m2的有效样品区域(有效直径为18.5mm),通过多孔支撑件的 N2气体的流速优选的>1L/min,更优选地>5L/min,特别地>10L/min,更 特别地>25L/min。

更高的流速是优选地,因为其减小了由多孔支撑件降低最终复合膜的 气体通量的可能。

前文所述的%孔隙率和透过率涉及用于制造复合膜(即,在已经应用 槽层和任何其他层之前)的多孔支撑件。

多孔支撑件优选地具有20至500μm的平均厚度,更优选地为50至 400μm,特别地为100至300μm。

可以将超滤膜用作多孔支撑件,例如聚砜超滤膜、纤维素超滤膜、聚 四氟乙烯超滤膜、聚偏氟乙烯超滤膜,并且,特别是聚丙烯腈超滤膜。

也可以使用不对称超滤膜,其包括多孔聚合物膜(优选地厚度为10至 150μm,更优选地为20至100μm)以及可选的织造或非织造织物支撑件。 这些多孔支撑件优选地尽可能薄,只要其能保持期望的结构强度。

在一个实施例中,槽层位多孔支撑件上并且不以任何程度渗透到槽层 内。然而,在优选实施例中,槽层的一部分位于支撑件内,且槽层的一部 分位于支撑件外侧,并且满足以下条件:

(i)位于支撑件外侧的槽层的部分的平均厚度(GLe)为10nm至900nm。

(ii)位于支撑件内的槽层的部分的平均厚度(GLi)为GLe的10%至 350%。

位于支撑件外侧的槽层的部分的平均厚度(GLe)优选地为200至 900nm,更优选地为400至900nm。

位于支撑件内的槽层的部分的平均厚度优选地为GLe的10%至200%, 更优选地为GLe的20%至90%。

通过切穿复合膜并通过SEM检查其界面来确定GLe和GLi的厚度。通 过使用SEM在多个位置处测量层的厚度可以计算平均厚度。

在这种情况下,难以通过SEM确定各个层开始和结束的位置,但可以 使用飞行时间二次离子质谱(ToF-SIMS)深度剖析进行确定。例如,当槽 层以累进的方式扩散到多孔支撑件内时,槽层结束的位置可能不能清楚地 限定并且可能因此难以测量DLi。在这种情况下,槽层被认识为结束的位 置为槽层中的识别层的浓度下降至20%的位置。可以通过ToF-SIMS深度 剖析测量槽层中的识别层的浓度下降至20%的位置。在ToF-SIMS深度剖 析中,在溅射阶段期间,在DC模式下操作离子枪,从而从复合膜表面去 除材料,并且在用于采集阶段的脉冲模式下,操作相同的离子枪或第二离 子枪。通过ToF-SIMS的深度剖析允许同时监测多种关注的种类,并且具 有高质量分辨率,且由于在该位置处化学组合物的改变,因而清楚地示出 识别层与槽层混合的程度。相似地,由于其具有非常不同的化学组合物, 因此ToF-SIMS深度剖析清楚地示出了识别层和槽层之间的结合点。由于 槽层富含含硅化合物,硅含量的改变是槽层开始与结束的非常良好的标记, 甚至由于前体组分具有不同的渗透速率而当槽层具有异性化学组合物时。 同时,可以相似地确定识别层的开始和结束位置。在含有氟或乙酰基团的 识别层中,氟含量或乙酰基团含量(如通过ToF-SIMS深度剖析测量的) 的明显下降表示识别层的结束。

可以通过任意数量的技术控制识别层与槽层混合的程度。例如,可以 以包括部分溶解或溶胀槽层的溶剂的溶液的形式将识别层应用至槽层。在 这种方式中,最终形成识别层的组分可以渗透到槽层内以提供识别层与槽 层混合的区域。通过改变用于槽层的惰性溶剂和良溶剂的量,也可以改变 识别层与槽层混合的程度。

相似地,当用于形成识别层的组合物是可固化的时,可以通过在组合 物固化之前(例如通过照射)控制组合物与槽层的接触时间量来控制识别 层与槽层混合的程度。当组合物应用至槽层之后短时间内固化组合物时, 混合的程度小于当组合物与槽层接触长时间之后固化组合物时的混合程度。

特别地,用于控制识别层与槽层混合的程度的良溶剂非溶剂对为甲基 乙基酮(MEK)和四氢呋喃(THF)。对于许多槽层,增加THF的比例将 增加混合的百分比(%),而增加MEK的比例将降低混合的百分比(%)。 通过控制在用于形成识别层的组合物中MEK:THF的比例,从而也可以将 识别层与槽层混合的程度控制在从10%至100%。

识别层与槽层混合的百分比(%)优选地为体积百分比(vol%)。如 图1所示,未与槽层混合的识别层的部分的平均厚度称为DLe。与槽层混 合的识别层的部分的平均厚度称为DLi。从而,可以通过测量DLi和DLe并实施计算[DLi/(DLe+DLi)]×100%来测定与槽层混合的识别层的百分比 (vol%)。因此,当厚度DLi是识别层总厚度(DLe+DLi)的10%时,则 识别层的10%与槽层混合。当DLe是0且DLi>0时,识别层的100%与槽 层混合。

可以通过任意数量的技术控制槽层渗透到支撑件内的程度(即,GLi: GLe的比例)。例如,当通过固化可固化组合物获得槽层时,可以合适地 选择可固化组合物的粘度和将这种组合物应用到多孔支撑件与固化之间的 时间延迟。通过改变粘度和/或将该组合物应用至多孔支撑件和固化之间的 时间延迟,也可以改变位于多孔支撑件内的槽层的百分比(%)(例如, 保证其在10%至350%)。

可以通过控制固体含量和应用至每单位面积的多孔支撑件上的可固化 组合物的量来控制槽层的总厚度(GLi+GLe)。

为了减小GLi的值,在将可辐射固化组合物应用至多孔支撑件之前, 可以使用惰性液体部分填充多孔支撑件的孔。这些惰性液体不是可辐射固 化的并且防止形成槽层的可辐射固化液体过深地渗透到多孔支撑件内,并 且从而确保期望的比例的槽层位于多孔支撑件内。优选地,惰性液体与用 于形成槽层的可辐射固化组合物不可混合。这种技术比前文涉及的第一技 术具有优势,其可以形成较薄的膜并且可以使用用于低粘度、可辐射固化 的组合物的更多的应用技术。

用于确保可固化组合物不会过多地渗透到多孔支撑件内(即,保持GLi值较低)的另一个选择是增加用于形成槽层的可辐射固化的聚合物的流体 动力学半径(Rhyd)。可以通过增加可辐射固化的聚合物的交联程度来增 加Rhyd。可以通过动态光散射来适当地测量Rhyd。

在一个实施例中,用于形成槽层的可辐射固化组合物包括部分交联的、 可辐射固化的聚合物(“PCP聚合物”),优选地其Rhyd大于位于多孔支 撑件的表面的至少50%的孔的平均直径的一半。

可以通过部分固化包括一种或多种可固化组分(例如,单体、低聚物 和/或高聚物)的组合物获得PCP聚合物,至少一种组分包括二烷基硅氧烷 基团。优选地,通过热引发聚合反应工艺实施部分固化。

在优选实施例中,至少一种可固化组分包括可热固化且可辐射固化的 基团。这是由于然后其可以使用热引发工艺以制备PCP聚合物,并且接下 来使用辐射引发工艺以在多孔支撑件上形成槽层。可选地,可热固化基团 和可辐射固化基团是不同的基团,并且它们均是用于形成PCP聚合物的相 同组分的一部分。

因为热固化是相对较慢的工艺,可以部分热固化可固化的组分以形成 PCP聚合物,然后停止或减缓热固化工艺,然后将含PCP聚合物的组合物 以包括惰性溶剂的组合物的形式应用至支撑件,并且然后照射支撑件上的 组合物以形成槽层。可以简单地通过在合适的时间下冷却(例如冷却至低 于30℃)和/或稀释用于制造PCP聚合物的组合物来停止或减缓热固化工 艺。

可热固化且可辐射固化的基团包括环氧基团和烯属不饱和基团,诸如, (甲基)丙烯酸基团,例如(甲基)丙烯酸酯基团和(甲基)丙烯酰胺基 团。

选择典型的用于形成PCP聚合物的组分,从而使得它们彼此发生反应。 例如,具有环氧基团的组分与包括胺基、醇盐、硫醇或羧酸基团的组分发 生反应。用于形成PCP聚合物的一种或多种组分也具有多于一种的可固化 基团。具有烯属不饱和基团的组分可以通过自由基机理与其他组分反应, 或者,可选地与具有例如一个或多个硫醇或胺基基团的亲核组分发生反应。

优选地通过热固化组合物获得的PCP聚合物,所述组合物包括:

(i)可热固化且可辐射固化的组分,并且该组分包括一个或多个二烷 氧基硅烷基团;

(ii)当加热时,可与组分(i)共聚的交联剂;以及

(iii)惰性溶剂;以及可选择的

(iv)催化剂。

在本说明书中使用的术语“包括”应被解释为说明存在规定的部分、 步骤或组分,但不排除存在一种或多种额外的部分、步骤或组分。

在本发明中,在本说明书中通过不定冠词“一”或“一个”参考的元 件不应不排除多于一个元件的可能,除非说明书中明确说明了有且仅有一 个元件。因此,不定冠词“一”或“一个”通常应解释为“至少一个”。

优选地,存在于组合物中的惰性溶剂的量为5至95wt%,更优选地为 10至80wt%,特别地为30至70wt%。

组分(i)优选地每个分子包括至少3个可辐射固化的基团。

二烷基硅氧烷基团中的每个烷基优选地独立地为C1-4烷基基团,特别 的为甲基基团。

优选地,组分(i)不包括苯基硅氧烷基基团,例如,化学式-(Si(Ph)2-O)- 基团,其中Ph是苯基或亚苯基基团。

组分(i)的数均分子量(“NAMW”)优选地为1至500kDa,更优 选的为1至100kDa,特别地为2至50kDa。可以通过本领域已知的任何技 术测量NAMW,诸如动态光散射或体积排阻色谱。

相对于用于制造PCP聚合物的组分的重量,组分(i)的量优选地为1 至95wt%,更优选的为5至75wt%,特别地为10至50wt%。

组分(i)的实例可以是前文涉及的聚二甲基硅氧烷基环氧(甲基)丙 烯酸酯、聚二甲基硅氧烷基(甲基)丙烯酸酯、和烯丙基改性的、乙烯基 改性的、(甲基)丙烯酸改性的、环氧改性的聚二甲基硅氧烷以及包括它 们的两种或多种的混合物。

组分(i)也可以包括多种不同的可辐射固化的组分,可辐射固化的组 分包括一种或多种二烷氧基硅氧烷基团组分。

组分(i)也包括一种或多种可热固化基团。这是必要的,从而使得组 分(i)可被热固化以提供PCP聚合物。

可以用作组分(ii)的交联剂的实例包括:包括两个以上活性基团的聚 二甲基硅氧烷,例如,两个以上的基团选自羧酸、羟基、巯醇基和/或酸酐 基基团,优选地为具有至少两个这些基团(例如在两端)的聚二甲基硅氧 烷;(环)脂族或芳族二元羧酸、三元羧酸或多元羧酸,例如琥珀酸、戊 二酸、己二酸、辛二酸、壬二酸、癸二酸、1,2-苯二甲酸、1,3-苯二甲酸、 1,4-苯二甲酸、均苯三甲酸;(环)脂族或芳族二硫醇、三硫醇或聚硫醇、 例如1,2-乙二硫醇、1,4-丁二硫醇、1,6-己二硫醇、苯-1,2-二硫醇、苯-1,3- 二硫醇、苯-1,4-二硫醇、1,2-苯二甲硫醇、1,3-苯二甲硫醇、1,4-苯二甲硫 醇或甲苯-3,4-二硫醇;(环)脂族或芳族二胺、三胺或聚胺,例如乙二胺、 1,2-二氨基丙烷、1,3-二氨基丙烷、1,4-二氨基丁烷、1,5-戊二胺、己二胺、 1,8-二氨基辛烷、1,2-双(3-氨基丙氨基)乙烷、1,2-环己二胺、4-氨基苄胺、 邻二甲苯二胺、邻苯二胺、间苯二胺、对苯二胺;或(环)脂族或芳族酸 酐,例如琥珀酸酐、3,3-二甲基戊二酸酐、乙二胺四乙酸二酐、戊二酸酐、 苯基琥珀酸酐、均苯四酸二酐、或邻苯二甲酸酐;金属醇盐,例如锆、钛 或铌的醇盐,特别地为异丙醇钛(IV)、乙醇钛(IV)、丙醇锆和/或乙醇 铌。优选的交联剂包括两个(即,两个且不超过两个)活性基团。

当组分(ii)是或包括金属复合物时,其也可以作为在本发明的第一部 分中涉及的金属复合物。

惰性溶剂(iii)的功能是提供用于制造PCP聚合物的组合物,该PCP 聚合物具有适合于热交联反应的浓度以有效地进行和/或控制组合物的粘 度。用作组分(iii)的典型的惰性溶剂包括一种或多种溶剂,特别是不可 与水混溶的有机溶剂。由于其不可固化,因此惰性溶剂称为“惰性的”。

可以提及的惰性溶剂的实例包括:C5-C10的(环)烷烃、苯、烷基苯 (例如甲苯)、C3-C10的(可选择的支链的)酮类、C4-C10的环酮类、C4-C10的(可选择地支链的)酯类、C4-C10的环酯类、C4-C10的(可选择地支链的) 醚类、C4-C10的环醚类、以及特别地是正庚烷和正辛烷。优选地惰性溶剂 包括一种或多种,特别地为1至8种上面提及的优选的惰性溶剂。

例如,合适的催化剂(iv)包括胺、膦和金属化合物,例如胺,诸如 2-乙基己胺、双(2-乙基己基)胺、十二烷基二甲基胺、n,n-二甲基苄胺、 2-乙基咪唑、1,8-二氮杂二环[5.4.0]十一碳-7-烯、四甲基胍、四丁基氯化铵、 苄基三甲基溴化铵、苄基三甲基氢氧化铵、四丁基氢氧化铵、交联的聚乙 烯基吡啶和聚合物键合的胺,诸如聚合物键合的1,4-二氮杂二环[2.2.2]辛烷 盐酸盐、聚合物键合的1,8-二氮杂二环[5.4.0]十一碳-7-烯和聚合物键合的 四烷基碳酸铵;膦化合物,诸如四丁基溴化膦、戊基三苯基溴化膦、聚合 物键合的三苯基氯化膦;金属化合物,诸如异丙醇钛(iv)、二异丙氧基 钛-双-(乙酰丙酮)、2-乙基己醇钛(iv)、丁醇钛(iv)、丁基磷酸钛、 丙醇锆(iv)、乙醇锆(iv)、乙酰丙酮锆(iv)、双(二乙基柠檬酸)二 丙醇锆(iv)、乙醇铌、乙酰丙酮铝、乳酸铝、辛酸铋、辛酸钙、环烷酸 铈、2-乙基己酸铬(iii)、辛酸钴、乙酰丙酮铜(ii)、乙酰丙酮铁(iii)、 2,4-戊二酮镁、环烷酸镁、乙酰丙酮镍、辛酸亚锡、乙酰乙酸乙酯钛螯合物、 乙酰丙酮钛螯合物、三乙醇胺钛螯合物、乙酸锌、乙酰丙酮锌、二-2-乙基 己基二硫醇-磷酸锌、硝酸锌、辛酸锌、6-甲基己二酮锆、辛酸锆、三氟乙 酰丙酮锆(iv)等。催化剂通常以相对于可固化组分的总重量的从约0.004 至约1wt%、优选为从约0.01至约0.5wt%的浓度范围内使用。

可以用于形成槽层的可辐射固化的组合物优选地包括:

(1)0.5至50wt%的PCP聚合物;

(2)0至5wt%的光引发剂;和

(3)50至99.5wt%的惰性溶剂。

为了使PCP聚合物可被辐射固化,其具有至少一个可辐射固化基团。 可辐射固化基团包括烯属不饱和基团(例如(甲基)丙烯酸基团(例如 CH2=CRC(O)-基团),特别是(甲基)丙烯酸酯基团(例如CH2=CRC (O)O-基团),(甲基)丙烯酰胺基团(例如CH2=CRC(O)NR-基团), 其中每个R独立地为H或CH3),并且特别是环氧基团(例如环氧丙基和 环氧环己基基团)。优选地,PCP聚合物包括环氧基团,因为这样的基团 由于存在氧因此不会受到固化抑制。PCP聚合物对氧具有高亲和性,并且 该氧有时可抑制其他其他可固化基团的固化。

优选的烯属不饱和基团是丙烯酸酯基团,因为其具有快速的聚合速率, 尤其是当照射使用UV光时。许多具有丙烯酸酯基团的化合物也容易从商 业来源获得。

光引发剂可以包括在可固化组合物中,且一般当使用UV照射固化时 是必需的。合适的光引发剂是本领域已知的那些光引发剂,诸如自由基型、 阳离子型或阴离子型光引发剂。

当PCP聚合物包括诸如环氧基团、氧杂环丁烷基团、其他其他开环杂 环基团或乙烯醚基团的可固化基团时,阳离子光引发剂是优选的。

优选的阳离子光引发剂包括非亲核阴离子的有机盐,例如六氟次砷酸 根阴离子、六氟化锑(V)阴离子、六氟化磷阴离子和四氟硼酸根。可商购 获得的阳离子光引发剂包括UV-9380c、UV-9390c(由Momentive  performance materials制造)、UVI-6974、UVI-6970、UVI-6990(由Union  Carbide Corp.制造)、CD-1010、CD-1011、CD-1012(由Sartomer Corp.制 造)、AdekaoptomerTM SP-150、SP-151、SP-170、SP-171(由Asahi Denka  Kogyo Co.,Ltd.制造)、IrgacureTM 250、IrgacureTM 261(Ciba Specialty  Chemicals Corp.)、CI-2481、CI-2624、CI-2639、CI-2064(Nippon Soda Co., Ltd.)、DTS-102、DTS-103、NAT-103、NDS-103、TPS-103、MDS-103、 MPI-103和BBI-103(Midori Chemical Co.,Ltd.)。上述涉及的阳离子光引 发剂可单独地使用或者以两种以上的组合使用。

也可以使用自由基I型和/或II型光引发剂。

自由基I型光引发剂的实例如在WO 2007/018425第14页第23行至第 15页第26行中所述,其全部内容结合于此作为参考。

自由基II型光引发剂的实例如在WO 2007/018425第15页第27行至 第16页第27行中所述,其全部内容结合于此作为参考。

优选地,可辐射固化组合物中存在的光引发剂与可辐射固化组分的重 量比在0.001:1和0.2:1之间,更优选为0.01:1和0.1:1之间。优选使 可以使用单一类型的光引发剂,也可以使用几种不同类型的组合。

当在可辐射固化组合物中不包括光引发剂时,该组合物可有利地通过 电子束曝光进行固化。优选地,电子束输出为50至300keV。固化也可通 过等离子体或电晕曝光来实现。

惰性溶剂(3)的功能是提供具有适合用于将可固化组合物应用于多孔 支撑件的特定方法的粘度的可辐射固化组合物。对于高速应用工艺,一般 选择具有低粘度的惰性溶剂。组分(3)的份数优选为70至99.5wt%,更 优选为80至99wt%,特别是90至98wt%。

在一个具体实施例中不存在溶剂。

在一些实例中,用于制造槽层的可固化组合物内的独立的组分可以以 不同的速度渗透到多孔支撑件内。因此,槽层的化学组分可能是非均相的, 例如,由于具有不同的渗透速度,因此存在于支撑件内的槽层的部分具有 与支撑件外侧的槽层的部分不同的化学组分。因此,应该理解,前文限定 的槽层是均相或非均相的复合膜均包括在本发明的范围内。

本发明的组合物膜可以方便的用以下工艺制备,包括步骤:将可辐射 固化组合物应用至多孔支撑件,优选地使用多层涂覆方法(例如,连续多 层涂覆方法),允许组合物渗透到支撑件内,照射组合物以形成槽层(在 本发明的第一方面中描述),该槽层具有位于支撑件内的部分和位于支撑 件外侧的部分,并且在槽层上形成识别层。

在优选的连续多层工艺中,可辐射固化组合物的层和识别层(或用于 制备识别层的化学物质)连续地应用至多孔支撑件,在应用识别层之前应 用可辐射固化的组合物。

为了生产用于高速涂覆机的可充分流动的组合物,当在25℃下测量时 可辐射固化组合物优选地具有低于4000mPa.s的粘度,更优选当在25℃下 测量时其具有从0.4m至1000mPa.s的粘度。最优选地,当在25℃下测量时 可辐射固化组合物的粘度为从0.4至500mPa.s。对于诸如滑珠涂覆的涂覆 方法,当在25℃下测量时,优选的粘度为从1mPa.s至100mPa.s。优选地 通过控制可辐射固化组合物中溶剂的量和/或通过制备可辐射固化聚合物 的条件来实现所需的粘度。

在上面提到的多层涂覆方法中,一种方法可以可选地用于将下层惰性 溶剂层应用于多孔支撑件,随后应用可辐射固化组合物。

采用合适的涂覆技术,可达到至少5m/min,例如至少10m/min或更高, 诸如15m/min、20m/min或甚至高达100m/min的涂覆速度。在一个优选的 实施例中,可在以前面提及的涂覆速度下将可辐射固化组合物应用于支撑 件。

可以通过控制应用于支撑件的每单位面积的可固化组合物的量来影响 槽层在支撑件上的厚度。例如,当每单位面积的可固化组合物的量增加时, 得到的槽层的厚度也增加。相同的原理适用于识别层和可选择的保护层的 形成。

虽然可以采用固定的多孔支撑件分批实施本发明,但是为了获得本发 明的全部优点,更优选地使用移动的多孔支撑件以连续的方式实施本该工 艺,例如,多孔支撑件可以为被连续展开的卷的形式,或者多孔支撑件可 以设置在连续传动皮带上。使用这样的技术,可连续地将可辐射固化组合 物应用于多孔支撑件,或者可大批量地应用可辐射固化组合物。在已将可 辐射固化组合物应用于支撑件之后的任何阶段,可通过例如蒸发完成从可 辐射固化组合物膜去除惰性溶剂。

因此,在优选的工艺中,通过包括可辐射固化组合物应用站(application  station)的制造单元的方式连续地将可辐射固化组合物应用于多孔支撑件, 使用位于可辐射固化组合物应用站下游的照射源固化该组合物,通过识别 层应用站在槽层上形成识别层,以及在收集站收集得到的复合膜,其中制 造单元包括用于将多孔支撑件从可辐射固化组合物应用站移动到照射源、 并且移动到识别层应用站以及移动到复合膜收集站的工具。

在一个实施例中,通过辐射固化工艺在槽层上形成识别层。在这样的 情况下,制造单元优选地进一步包括位于识别层应用站下游的照射源或加 热器,从而辐射固化或热固化用于形成识别层的组分。

可辐射固化组合物应用站相对于照射源可位于上游位置,该照射源相 对于识别层应用站位于上游位置。

通常,槽层具有为识别层提供光滑且连续的表面的功能。虽然槽层优 选是无孔的,但一些孔的存在一般不会降低最终膜的选择渗透性,因为识 别层常能够填充槽层中的小缺陷。

优选地,槽层包括二烷基硅氧烷基团,特别地,具有二甲基硅氧烷基 团。

槽层优选地是基本上无孔的,即,存在于其中的任何孔具有<1nm的平 均直径。这不排除存在可能明显较大的缺陷。缺陷可以通过如上文所述的 识别层校正。

可以使用提供引起可辐射固化组合物聚合所必需的辐射波长和强度的 任何源实施照射步骤。

例如,可以使用电子束、UV、可见光和/或红外辐射来固化组合物,选 择适当的辐射来匹配组合物。对于UV固化而言,汞弧灯是特别有效的, 但也可使用发光二极管。

优选地,可辐射固化组合物的辐射固化在将可辐射固化组合物应用于 多孔支撑件的7秒内、更优选地为5秒内、最优选地为3秒内开始。

优选地,通过照射可辐射固化组合物少于30秒、更优选地少于10秒、 例如少于5秒来实现固化。

优选用紫外光或电子束照射可辐射固化组合物。

优选地,使用紫外光照射。合适的波长为例如UV-A(400至>320nm)、 UV-B(320至>280nm)、UV-C(280至200nm),只要波长匹配组合物中 所包括的任何光引发剂的吸收波长。

合适的紫外光源包括汞弧灯、碳弧灯、低压汞灯、中压汞灯、高压汞 灯、旋流等离子体弧灯、金属卤化物灯、氙灯、钨灯、卤素灯、激光和紫 外发光二极管。特别优选的是中压或高压汞蒸气类型的紫外发光灯。此外, 可以存在诸如金属卤化物的添加剂以改变灯的发射光谱。在大多数情况中, 发射最大值介于200和450nm之间的灯是特别合适的。

辐射源的能量输出优选地为从20至1000W/cm,更优选为从40至 500W/cm,但也可更高或更低,只要能实现期望的曝光剂量即可。

识别层优选具有平均直径低于2nm、更优选地低于1nm的孔,并且优 选是基本上无孔的。优选地,识别层具有极低的液体渗透性。

识别层优选地具有10至400nm、更优选地为10至300nm、特别地是 20至100nm的平均厚度。

可以通过切穿复合膜并使用扫描电子显微镜在多个位置测量槽层上方 和槽层内的识别层的厚度并计算其平均值来测定平均厚度。然而,优选地, 通过实施上文描述的ToF-SIMS深度剖析来测量厚度。

优选地,槽层含有摩尔至少为0.0005:1,特别地摩尔比为约0.08:1的 金属和Si(硅)。

用于制备识别层的组合物优选包括聚合物、惰性溶剂和可选择的引发 剂。惰性溶剂可以是任何能够溶解用于形成识别层的聚合物的溶剂。溶剂 的合适性由聚合物的性质和期望的浓度确定。合适的溶剂包括水;C5-10的 烷烃,例如环己烷、庚烷和/或辛烷;烷基苯,例如甲苯、二甲苯和/或C10-C16的烷基苯;C1-6的烷醇,例如甲醇、乙醇、正丙醇、异丙醇、正丁醇、仲丁 醇、叔丁醇、正戊醇、环戊醇和/或环己醇;线性酰胺,例如二甲基甲酰胺 或二甲基乙酰胺;酮和酮醇,例如丙酮、甲基醚酮、甲基异丁基酮、环己 酮和/或二丙酮醇;醚,例如四氢呋喃和/或二氧六环;二醇,优选具有2至 12个碳原子的二醇,例如1,5-戊二醇、乙二醇、丙二醇、丁二醇、戊二醇、 己二醇和/或硫二甘醇;低聚和高聚亚烷基二醇,例如二乙二醇、三乙二醇、 聚乙二醇和/或聚丙二醇;三醇,例如丙三醇和/或1,2,6-己三醇;单-C1-4- 烷基醚的二醇,优选具有2至12个碳原子的单-C1-4-烷基醚的二醇,例如 2-甲氧基乙醇、2-(2-甲氧基乙氧基)乙醇、2-(2-乙氧基乙氧基)-乙醇、 2-[2-(2-甲氧基乙氧基)乙氧基]乙醇、2-[2-(2-乙氧基乙氧基)-乙氧基]- 乙醇和/或单烯丙基醚乙二醇;环酰胺,例如2-吡咯烷酮、N-甲基-2-吡咯烷 酮、N-乙基-2-吡咯烷酮、己内酰胺和/或1,3-二甲基咪唑烷酮;环酯,例如 己内酯;亚砜,例如二甲基亚砜和/或环丁砜;以及包括前述的两种以上的 混合物,特别地,包括甲基乙基酮和四氢呋喃的混合物。

识别层优选包括聚酰亚胺、乙酸纤维素、聚环氧乙烷或聚醚酰亚胺, 特别是包括三氟甲基基团的聚酰亚胺。特别优选的识别层包括具有化学式 (1)的基团的聚酰亚胺:

包括三氟甲基基团的聚酰亚胺可通过例如美国专利再颁发号30,351 (基于US 3,899,309)、US 4,717,394和US 5,085,676中描述的一般方法来 制备。

当识别层在被应用于槽层之后,固化识别层时,用于制备识别层的组 合物优选地包括引发剂、优选地为热引发剂或光引发剂。引发剂可以选自 前文对槽层所描述的引发剂。

可以通过任何合适的技术在槽层上形成识别层,例如通过包括前文所 述的与制备槽层有关的任何的涂覆方法的工艺。

为了改进槽层上识别层的粘附性,在槽层上形成识别层之前,可以通 过电晕放电或等离子体处理来处理槽层。对于电晕或等离子体处理,一般 优选0.5kJ/m2至100kJ/m2的能量剂量。

可以通过任何合适的技术在识别层上形成可选择的保护层,例如通过 包括上面所述的与制备槽层有关的任何的涂覆方法的工艺。

保护层(在存在时)优选对将被分离的气体或蒸汽是高度可渗透的。 优选地,保护层包括二烷基硅氧烷基团。

保护层可选择地具有影响复合膜的功能的表面特性,例如通过使膜表 面更亲水。

复合膜优选地具有在20℃下小于6×10-8m3/m2.s.kPa、更优选小于 3×10-8m3/m2.s.kPa的纯水渗透性。

复合膜的总干厚度将典型地为20至500μm,优选地为30至300μm。

在一个实施例中,将可辐射固化组合物通过弯月面式浸渍涂覆到多孔 支撑件上来将槽层应用至多孔支撑件,并通过反向吻合凹面涂覆、弯月面 式浸渍涂覆或预计量式狭缝模具涂覆将识别层(或来源于识别层的组分) 应用于槽层。可选地,可以通过预计量式狭缝模具涂覆或多辊凹面涂覆将 可辐射固化组合物应用于支撑件。如果需要,也可以通过帘式涂覆应用可 辐射固化组合物和识别层。

对于小规模的复合膜的制造,通过反向吻合凹面涂覆、正向吻合凹面 涂覆、弯月面式浸渍涂覆、预计量式狭缝模具涂覆或旋转涂覆应用全部层 (即,槽层、识别层、保护层(当存在时))是方便的。还可以使用三辊 胶版凹面涂覆(three-roll offset gravure coating),特别是当将被应用于支 撑件等的组合物具有相对高的粘度时。

如果需要,用于制造复合膜的工艺可以含有更多的步骤,例如洗涤和/ 或干燥各个层中的一个或多个,以及例如通过蒸发从复合膜去除惰性溶剂。

复合膜优选地为管式,或者更优选地为片式。管式膜有时被称为中空 纤维型膜。片式膜适合用于例如螺旋缠绕型、板框型和包封型筒。

复合膜特别适合用于将含目标气的原料气分离成富含目标气的气流和 贫化目标气的气流。

例如,包括极性和非极性气体的原料气可以被分离成富含极性气体的 气流和贫化极性气体的气流。在许多情况中,相对于例如烷烃、H2和N2的非极性气体,膜对例如CO2、H2S、NH3、SOx和氮氧化物,尤其是NOx的极性气体具有高渗透性。

目标气可以是例如对复合膜的使用者有价值以及使用者想要收集的气 体。可选地,目标气可以是使用者希望从气流中分离出以保护环境的不期 望的气体,例如污染物或“温室效应气体”。

复合膜特别用于通过去除极性气体(CO2、H2S)纯化天然气(包括甲 烷的混合物);用于纯化合成气;以及用于从氢气以及从燃料气中除去CO2。 燃料气通常是从壁炉、烤箱、炉子、锅炉、内燃机和发电厂产生的。燃料 气的组成取决于被燃烧的东西,但通常其主要包括来源于空气的氮气(通 常超过三分之二)、来源于燃烧的二氧化碳(CO2)和水蒸气以及氧气。燃 料气还含有小比例的污染物,诸如颗粒物质、一氧化碳、氮氧化物和硫氧 化物。最近,关于环境问题(全球变暖),CO2的分离和捕获已引起了注 意。

本发明的复合膜特别可用于分离以下:将包括CO2和N2的原料气分离 成比原料气含有更多CO2的气流和比原料气含有更少CO2的气流;将包括 CO2和CH4的原料气分离成比原料气含有更多CO2的气流和比原料气含有 更少CO2的气流;将包括CO2和H2的原料气分离成比原料气含有更多CO2的气流和比原料气含有更少CO2的气流;将包括H2S和CH4的原料气分离 成比原料气含有更多H2S的气流和比原料气含有更少H2S的气流;和将包 括H2S和H2的原料气分离成比原料气含有更多H2S的气流和比原料气含有 更少H2S的气流。

优选地,复合膜的CO2/CH4选择性(αCO2/CH4)>20。优选地,在6000 kPa的进料压力和40℃的温度下,通过包括使膜暴露于CO2和CH4的体积 比为13:87的混合物的工艺来测定选择性。

优选地,复合膜的CO2/N2选择性(αCO2/N2)>35。优选地,在2000kPa 的进料压力和40℃的温度下,通过包括使膜分别暴露于CO2和N2的工艺 来测定选择性。

虽然本说明书中强调了本发明的复合膜用于分离气体,特别是对极性 和非极性气体的有用性,但可以理解复合膜也可以用于其他目的,例如在 钢铁生产工业中提供用于直接还原铁矿石的还原气,使有机溶剂脱水(例 如乙醇脱水),渗透蒸发和蒸汽分离,以及也用于透气式服装。本发明的 复合膜对于从沼气中精炼甲烷特别有益,例如,使用与吸收溶液结合的膜/ 吸收混合方法,例如,如JP-A-2007-297605中的描述。

根据本发明的另一个方面,提供了一种包括根据本发明的第一个方面 的复合膜的气体分离模块。

该模块可以采取任何方便的形式,例如,优选地包括螺旋、中空、褶 状、管状、平板和框型模块等。

本发明的复合膜表现出良好的通量和分离选择性。其可以承受弯曲并 且具有形成不期望的针孔的较低的趋势。在包括热度和湿度条件的各种情 况下,膜均是稳定的。

附图说明

图1和图2示例性示出了根据本发明的复合膜

具体实施方式

现通过下列非限制性实例说明本发明,其中除非另有说明,否则所有 的份数和百分比按重量计算。(“Ex.”表示实例。“CEx.”表示对比例。GL表 示槽层,DL表示识别层,且PL表示保护层)。

在实施例中使用下列材料:

PAN       是聚丙烯腈L10超滤膜,来自GMT Membrantechnik  GmbH,德国(多孔支撑件)。

X-22-162C 是交联剂(具有羧酸活性基团的双端活性有机硅,粘度为 220mm2/s,并且活性基团当量为2300g/mol),来自 Shin-Etsu Chemical Co.,Ltd.(MWT 4,600)

DBU       是1,8-二氮杂二环[5.4.0]十一碳-7-烯,来自Sigma Aldrich

UV9300    是SilForceTM UV9300,来自Momentive Performance  Materials Holdings。这是包括活性环氧基团和线型聚二甲 基硅氧烷链的可热固化共聚物。而且,在光引发剂的存在 下用UV光照射时该共聚物快速固化。

I0591    4-异丙基-4'-甲基二苯基碘鎓四钛(五氟苯酚)硼酸盐 (C40H18BF20I),来自Tokyo Chemical Industries N.V.(比 利时):

Ti(OiPr)4 是异丙醇钛(IV),来自Dorf Ketal Chemicals(MWT 284)。

正庚烷    是正庚烷,来自Brenntag Nederland BV.10。

MEK       是2-丁酮,来自Brenntag Nederland BV。

MIBK      是甲基异丁基酮,来自Brenntag Nederland BV。

APTMS     是3-三甲氧基甲硅烷基丙烷-1-胺,来自Sigma Aldrich

THF       是四氢呋喃,来自Brenntag Nederland BV。

PI1       是6FDA-TeMPD x/DABA y,x/y=20/80;获自Fujifilm  Corporation,具有以下结构:

聚([({2,3,5,6-四甲基-1,4-苯二胺}-交替-{5,5'-[2,2,2-三氟 -1-(三氟甲基)乙烷-1,1-二取代基]双(异苯并呋喃-1,3- 二酮)})-共-[{5-羧基-1,3-苯二胺}-交替-{5,5'-[2,2,2-三氟 -1-(三氟甲基)乙烷-1,1-二取代基]双(异苯并呋喃-1,3- 二酮)}]),获自Fujifilm Corporation。

PI2       是聚([({2,3,5,6-四甲基-1,4-苯二胺}-交替-{5,5'-[2,2,2- 三氟-1-(三氟甲基)乙烷-1,1-二取代基]双(异苯并呋喃 -1,3-二酮)})-共-[{1,3-苯二胺}-交替-{5,5'-[2,2,2-三氟-1- (三氟甲基)乙烷-1,1-二取代基]双(异苯并呋喃-1,3-二 酮)}]-共-[{5-(2-甲基丙烯酰氧基)乙氧基羰基-1,3-苯二 胺}-交替-{5,5'-[2,2,2-三氟-1-(三氟甲基)乙烷-1,1-二取 代基]双(异苯并呋喃-1,3-二酮)}]),其中2,3,5,6-四甲 基-1,4-苯二胺基团、1,3-苯二胺基团和5-(2-甲基丙烯酰 氧基)乙氧基羰基-1,3-苯二胺基团的比例为40:50:10, 获自Fujifilm Corporation。

CA        是乙酸纤维素CA-398-3,来自Eastman Chemicals。

AC        是丙酮,来自Brenntag Nederland BV

PS783    是乙烯基终止的(84%,以重量计)二甲基硅氧烷和(16% 以重量计)二苯基硅氧烷,来自UCT inc.

PC072     是含有2%-3%的铂(以重量计)的铂丁二烯复合物,来 自UCT inc.

PS123     是具有30%-35%(以重量计)的甲基氢基团的三甲基硅 烷基终止的甲基氢、二甲基硅氧烷共聚物,来自UCT inc.

所有的材料均无需进一步纯化即可使用。

(A)通过ToF-SIMS深度剖析的层厚度的测量

使用UIVAC-PHI TRIFT V纳米TOF表面分析设备,通过ToF-SIMS深 度剖析测量包括识别层的层厚度DLe和DLi。使用下列条件:

UIVAC-PHI TRIFT V纳米TOF,

Bi3++初级离子(30kV、ADC 4nA),

用于深度剖析分析的Ar-GCIB AAr2500+,15kV,1nA。

(B)粘附性

使用根据JIS-K5600的方法测量复合膜的层之间的粘附性强度。在25 摄氏度和60%的RH下老化16小时之后,使用叶片刀(6个叶片)将试验 下的复合膜的表面切出2mm的间隔。将胶布(长77mm)的粘性侧应用于 切割面,然后撕去胶布。之后,观察/使用显微镜检查切割表面以评价从复 合膜处去除的层的程度。然后通过以下方式对膜给出分数:

OK-表面保持完整

M-表面仅有适中的损坏

NOK-胶布去除了表面层

可辐射固化聚合物PCP1和PCP2的制备

以表1中示出的量将组分UV9300、X-22-162C和DBU溶解于正庚烷 中,并且在95℃的温度下保持168小时以产生部分固化聚合物PCP1。PCP1 有12.2的Si含量(meq/g聚合物),并且得到的PCP1的正庚烷溶液的粘 度在25℃下为22.8m.Pa.s。PCP2是100%的UV9300。

表1-用于制备PCP1的原料

PCP2的制备如下:

在丙酮中将催化剂PC072稀释为10%(以重量计)的溶液。将PS783 (硅氧烷,4.0g)、PS123(交联剂,0.10g)、丙酮(12.0g)和稀释的PC072 溶液(0.11g,10%(以重量计)的PC072)的混合物放置于加盖的试管中, 并保持在61℃的烘箱中四个小时,以约20分钟的时间间隔定期地手动翻 转。

可固化组合物G1和G2的制备

为制造可固化组合物G1,将从前文之前步骤中生成的PCP1的溶液冷 却至20℃,并且使用正庚烷稀释以产生下文表2中示出的PCP1的浓度。 然后通过孔径为2.7μm的滤纸过滤溶液。之后,以表2中示出的量将光引 发剂I0591和金属复合物(Ti(OiPr)4)加入到滤液中以产生可固化组合物 G1。在G1中存在的Ti(OiPr)4的量为每克PCP1对应105.6μmol的Ti(OiPr)4。 G1中金属与硅的摩尔比为0.0087。

为制造可固化组合物G2,然后将PCP2聚合物的最终溶液倒入含丙酮 (83.684g)的烧杯内以将预固化的PS783稀释至4%(以重量计)的溶液 (在100g总溶液中为4.0g)。然后将第二等份(0.10g)的PS123加入到 100g溶液中以帮助后固化

可固化组合物G1和G2具有以下表2中示出的配方:

表2-可固化组合物G1和G2的制备

在表2中的G2的上述百分比(%)涉及丙酮中相关组分的浓度。

如下文更详细的描述,使用可固化组合物G1和G2以制备槽层和/或保 护层。

步骤a)槽层的形成

如下文所描述地制备两个多孔支撑件+槽层组合物,PSG1和PSG2。

多孔支撑件+槽层组合物PSG1的制备

通过旋转涂覆将可固化组合物G1应用至PAN(多孔支撑件),并且 随后使用来自熔融UV系统的Light Hammer LH10(配备有强度为24kW/m 的D灯)固化并干燥。通过切穿PAN+槽层组合物并使用SEM从PAN支 撑件的表面向外在多个位置处测量厚度并计算平均值来测量平均槽层厚度。 发现平均槽层厚度为400nm。

多孔支撑件+槽层组合物PSG2的制备

通过弯月面式涂覆工艺在10m/min下将可固化组合物G2应用至PAN (多孔支撑件)。允许在环境空气中蒸发溶剂并且在约60℃的烘箱中后固 化组合物2小时以完全固化硅氧烷。通过切穿PAN+槽层组合物并使用SEM 从PAN支撑件的表面向外在多个位置处测量厚度并计算平均值来测量平 均槽层厚度。发现平均槽层厚度为1000nm。

步骤b)识别层的形成

通过混合表3中示出的组分制备用于制备识别层的组合物D1和D9:

表3

组分 D1 D2 D3 D4 D5 D6 D7 D8 D9 PI1 1.5 1.5 1.5 1.5 1.5 1.5 - - 1.0 PI2 - - - - - - - 1.5 - CA - - - - - - 1.5 - - APTMS 0.0015 0.0015 0.0015 0.0015 0.0015 - - 0.0015 - MIBK 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 - THF 7.485 17.485 27.485 37.485 47.485 7.500 7.485 7.485 - MEK 86.50 76.50 66.50 56.50 46.50 86.50 86.50 86.50 - AC - - - - - - - - 99.0

通过旋转涂覆将组合物D1至D9的每个分别应用至下文的表4中示出 的多孔支撑件+槽层的组合物。从而,制备一系列具有不同识别层厚度和不 同与槽层混合的百分比(%)的复合膜。

对于表4中描述的每种复合膜,使用ToF-SIMS深度剖析以测量(i) 未与槽层混合的识别层的部分的平均厚度(DLe);(ii)与槽层混合的识 别层的部分的平均厚度(DLi);以及(iii)识别层的平均总厚度(DLt)。 总识别层厚度DLt=DLi+DLe。通过等式[DLi/(DLe+DLi)]×100%计算与槽 层混合的识别层的百分比(%),并且结果在表4中示出。

步骤c)保护层的形成

使用旋转涂覆将表2描述的可辐射固化的组合物G1应用于由步骤b) 产生的在表4中示出的PAN+槽层+识别层组合物膜。使用来自熔融UV系 统的Light Hammer LH10(配备有强度为24kW/m的D灯)在其上固化并 干燥组合物G1。

通过切穿复合膜并且通过SEM从识别层的表面测量最外层的厚度来 测量保护层的厚度。在包括保护层的实例中,发现保护层的厚度为600nm。

结果

产生的复合膜的粘性性能在下文的表4中进行了描述:

表4

注意:在表4中,“PSG”表示用于制造复合膜的多孔支撑件+槽层组 合物。D1至D9表示用于制造识别层的组合物。G1表示用于制造保护层(当 存在时)的可固化组合物。通过ToF-SIMS深度剖析测量DLe和DLi

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号