首页> 中国专利> 一种微晶硅非晶硅径向双结纳米线太阳能电池

一种微晶硅非晶硅径向双结纳米线太阳能电池

摘要

本发明公开了一种微晶硅非晶硅径向双结纳米线太阳能电池,包括内核、外壳和导电电极,其特征在于:内核包括p型微晶硅纳米线型核,和由内向外依次沉积在p型微晶硅纳米线型核外的微晶硅本征层和重掺杂n+型微晶硅层,外壳包括由内向外沉积在重掺杂n+型微晶硅层外的重掺杂p+型非晶硅层,非晶硅本征层和n型非晶硅层,重掺杂n+型微晶硅层和重掺杂p+型非晶硅层之间形成隧穿结,而n型非晶硅层和p型微晶硅纳米线型核的伸出端外均沉积作为导电电极用且相互隔断的透明氧化物导电层。该电池通过将微晶硅/非晶硅构筑成叠层结构,实现了对更宽太阳能波段(300~1100nm)更加充分地吸收,从而有效提高了纳米线太阳能电池的光电转换效率。

著录项

  • 公开/公告号CN104064619A

    专利类型发明专利

  • 公开/公告日2014-09-24

    原文格式PDF

  • 申请/专利权人 苏州大学;

    申请/专利号CN201410242634.8

  • 申请日2014-06-03

  • 分类号H01L31/076(20120101);H01L31/0352(20060101);H01L31/0368(20060101);H01L31/0376(20060101);

  • 代理机构11331 北京康盛知识产权代理有限公司;

  • 代理人伊美年

  • 地址 215000 江苏省苏州市工业园区仁爱路199号

  • 入库时间 2023-12-17 01:34:31

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-08-14

    专利权的转移 IPC(主分类):H01L31/076 登记生效日:20200727 变更前: 变更后: 申请日:20140603

    专利申请权、专利权的转移

  • 2016-10-26

    授权

    授权

  • 2014-10-22

    实质审查的生效 IPC(主分类):H01L31/076 申请日:20140603

    实质审查的生效

  • 2014-09-24

    公开

    公开

说明书

技术领域

本发明涉及一种微晶硅非晶硅径向双结纳米线太阳能电池。

背景技术

一方面传统能源日趋减少,且传统能源的过度使用严重污染了地球的生态环境,而另一方面人类对能源的需求却在日趋增加,因此太阳能电池作为一种清洁环保可再生的新型能源被世界各国大力发展。目前太阳能电池朝着多元化方向发展,一类是面向国家电网的大面积太阳能电池,另一类是面向集成电路的微纳光伏电源。随着纳米技术的发展,人们对微纳尺度器件的构筑能力不断成熟。近年来,纳米结构太阳能电池,尤其是单根纳米线太阳能电池被证明具有独特的电子传输和光吸收特性,为微纳光伏领域开辟了新的实现途径。最近美国哈佛大学研究组制作出了径向p-i-n硅纳米线太阳能电池(Nature Photonics,2003,7,306–310),其效率和输出功率远高于Thomas J.Kempa等人研制出的轴向p-i-n硅纳米线太阳能电池(NanoLetter,2008,8(10),3456–3460)。有力地证明了径向p-i-n硅纳米线电池相对于轴向p-i-n结的纳米线太阳能电池在提高效率上确实具有优越性。目前关于单根纳米线单结电池的研究比较多,但是双结的研究则比较少,而微晶硅/非晶硅径向叠层结构的单根纳米线电池目前还没有报道。为了推广太阳能电池的应用,我们需要增加光电转换效率,同时又能减少其成本。其中,增加器件的光吸收能力是提高太阳能电池的转换效率的一种有效办法,尤其是对更宽光谱的更加充分地吸收。通常,单结纳米线太阳能电池只能吸收部分波段的光或者只是在某波段的吸收较强而其它波段较弱。比如单根微晶硅纳米线太阳能电池,可吸收波长在1100nm以下的光波,但其吸光能力相对非晶硅较弱,而单根非晶硅只能吸收波长在800nm以下的波段,不能吸收800~1100nm的近红外光(Progress in Photovoltaics:Research andApplications,2004,12,113–142),造成了该波段的浪费。

发明内容

本发明目的是:针对目前单结构纳米线太阳能电池光波吸收力弱,吸收范围窄的缺陷,而提供一种微晶硅非晶硅径向双结纳米线太阳能电池,该电池通过将微晶硅/非晶硅构筑成叠层结构,实现了对更宽太阳能波段(300~1100nm)的更加充分地吸收,从而有效提高纳米线太阳能电池的光电转换效率。

本发明的技术方案是:一种微晶硅非晶硅径向双结纳米线太阳能电池,包括内核、外壳和导电电极,其特征在于:所述内核包括p型微晶硅纳米线型核,和由内向外依次沉积在p型微晶硅纳米线型核外的微晶硅本征层和重掺杂n+型微晶硅层,所述外壳则包括由内向外沉积在重掺杂n+型微晶硅层外的重掺杂p+型非晶硅层,非晶硅本征层和n型非晶硅层,所述重掺杂n+型微晶硅层和重掺杂p+型非晶硅层之间形成隧穿结,而在外壳的最外层,即n型非晶硅层及p型微晶硅纳米线型核的伸出端外均沉积作为导电电极用且相互隔断的透明氧化物导电层。

进一步的,本发明中所述p型微晶硅纳米线型核的半径为15~40nm,所述微晶硅本征层的厚度为150~250nm,重掺杂n+型微晶硅层的厚度为15~40nm。(尺寸范围更改同权利要求书)

进一步的,本发明中所述重掺杂p+型非晶硅层的厚度为10~15nm,所述非晶硅本征层的厚度为20~40nm,n型非晶硅层的厚度均为10~15nm。

进一步的,本发明中所述透明氧化物导电层的厚度为70~80nm。

进一步的,本发明中所述透明氧化物导电层选自AZO、FTO、ITO之一。即:ZnO:Al层(AZO类)、SnO2:F(FTO类)、In2O3:Sn(ITO类)。

进一步的,本发明中所述的整个纳米线太阳能电池的长度为2~10μm。

本发明提供的这种纳米线太阳能电池,实际上利用径向双结微晶硅(内核)/非晶硅(外壳)电池串联增加开路电压而提高器件的整体光电转换效率。内核的p-i-n+是微晶硅,外壳的p+-i-n是非晶硅,其中n+和p+是重掺杂并形成隧穿结。最外层是透明氧化物导电层,用作导电电极,在不影响光照器件的前提下有效搜集并传输载流子。最内层的p型微晶硅纳米线型核需要比其它层更长一些,以便在伸出端沉积导电层,从而保证此器件有另一端电极。

该体系中涉及的光与微纳结构的相互作用可以通过求解麦克斯韦方程精确描述,求解方法包括有限时域、有限元和边界元等数值方法。通过时域和频域的数值仿真,可以获得典型的光谱响应曲线。光谱响应的内在物理机制是各种共振波导模式,从而使光吸收增强。通过模拟纳米线对光的吸收谱,粗略计算出不同尺寸下核与壳的电流,通过调整尺寸使核壳电流达到匹配并优化到饱和值,并得到对应各层尺寸。

本发明的优点是:

1)本发明将微晶硅作为核层可以充当高效的载流子收集器,以补偿非晶硅少子扩散长度短(约100nm)的缺陷,非晶硅作为壳层可以充当高效的能量收集器以克服微晶硅较低的吸光能力。本发明正是由于采用这种微晶硅/非晶硅构筑成叠层的结构设计,可增强纳米线在宽波段内对光的吸收能力,实现对更宽太阳能波段(300~1100nm)的充分吸收,从而有效提高纳米线太阳能电池的光电转换效率。

2)本发明设计成径向pn结的纳米线太阳能电池,将光吸收和载流子运输的方向进行正交化,利用轴向较大的吸光面积增大对光的吸收,而在径向载流子分离距离短有助于收集光生载流子,从而提高电池的光电转换效率。

3)实验结果表明本发明的纳米线具有极低的反射率,故可免去减反层的沉积,从而进一步地减少器件成本。

4)本发明提供的这种纳米线太阳能电池,利用径向双结微晶硅(内核)/非晶硅(外壳)电池串联不仅增加开路电压,且在更宽光谱更加充分吸收光也同样提高器件的整体光电转换效率。

5)本发明使用非晶硅取代部分微晶硅(即与传统的微晶硅纳米线太阳能电池相比,本发明使用非晶硅:“重掺杂P+型非晶硅层”、“非晶硅本征层”和“n型非晶硅层”取代了表层部分微晶硅,等于将原先核壳均为微晶硅的微晶硅纳米线中的壳层采用非晶硅来代替),既可减少材料成本,又能增大器件的整体吸收。做成径向pn结构还可以减少载流子的运输路径从而利于收集光生载流子。有鉴于此,本方案得到的是高性能且成本不高的纳米线太阳能电池。

附图说明

下面结合附图及实施例对本发明作进一步描述:

图1为电池的立体图;

图2为图1电池的垂直截面图;

图3为图1电池的水平截面图。

其中:1、p型微晶硅纳米线型核;2、微晶硅本征层;3、重掺杂n+型微晶硅层;4、重掺杂p+型非晶硅层;5、非晶硅本征层;6、n型非晶硅层;7、负极透明氧化物导电层;8、正极透明氧化物导电层。

具体实施方式

实施例1:结合图1~图3所示,本发明提供的这种微晶硅非晶硅径向双结纳米线太阳能电池,其由内核、外壳和导电电极组成。所述内核由p型微晶硅纳米线型核1(半径30nm,长2μm),和由内向外依次沉积在p型微晶硅纳米线型核1外的微晶硅本征层2(厚度240nm)和重掺杂n+型微晶硅层3(厚度30nm)构成,所述外壳位于内核外层,其构成是由内向外沉积在重掺杂n+型微晶硅层3外的重掺杂p+型非晶硅层4(厚度10nm),非晶硅本征层5(厚度40nm)和n型非晶硅层6(厚度10nm),所述重掺杂n+型微晶硅层3和重掺杂p+型非晶硅层4之间形成隧穿结,而在最外壳的外层,也即n型非晶硅层的外层沉积作为导电电极的负极透明氧化物导电层7。而p型微晶硅纳米线型核1的右侧伸出端上沉积作为导电电极的正极透明氧化物导电层8。本实施例中负极透明氧化物导电层7和正极透明氧化物导电层8的材料均为ITO(铟锡金属氧化物In2O3:Sn)。

上述微晶硅非晶硅径向双结纳米线太阳能电池的制备过程如下:

1)在平面硅基底上,以直径为60nm左右的金纳米颗粒为催化剂,99.99%的高纯硅烷气体SiH4做硅源,0.5%(用氢气稀释)的硼烷气体B2H6作为p型掺杂物,纯度为1%(用氢气稀释)的磷烷气体PH3作为n型掺杂物,H2作为载气。激发等离子体的射频电源的频率为13.56MHz,或者电源是频率为60MHz的甚高频。

在催化剂金纳米颗粒上生长出半径为30nm,长度为2μm的p型微晶硅纳米线型核1纳米线阵列:

使用电源为甚高频(60MHz),其中各气体体积比为:氢气:硅烷气体:硼烷气体=60:(5~7):(0.02~0.1),功率密度为0.1~1.0W/cm2,反应时间为20~40min,反应气体压力为550~650Pa,腔室温度为260~320℃;

2)而后使用等离子增强化学气相沉积技术在p型微晶硅纳米线型核1(单层(硅核)纳米线阵列)上逐步沉积厚度为240nm的微晶硅本征层2:

使用电源为甚高频(60MHz),其中各气体体积比为:氢气:硅烷气体=60:(5~10),腔室内功率密度为0.1~1.0W/cm2,反应时间为30~420min,反应气体压力为220~250Pa,腔室温度为200~240℃;

3)厚度为30nm的重掺杂n+型微晶硅层3:

使用电源为13.56MHz,其中各气体体积比为:氢气:硅烷气体:磷烷气体=60:(3~8):0.2,腔室中的功率密度为0.1~1.0W/cm2,反应时间2~3min,反应气压力为220~250Pa,反应温度为200~240℃;

4)厚度为10nm的重掺杂p+型非晶硅层4:

使用电源为甚高频(60MHz),其中各气体体积比为:氢气:硅烷气体:硼烷气体=60:(8~12):(0.02~0.1),功率密度为0.1~1.0W/cm2,反应时间为1.5~2min,反应气体压力为550~650Pa,腔室温度为100~120℃;

5)厚度为40nm的非晶硅本征层5:

使用电源为甚高频(60MHz),其中各气体体积比为:氢气:硅烷气体=60:(5~10),腔室内功率密度为0.1~1.0W/cm2,反应时间为5~7min,反应气体压力为180~250Pa,腔室温度为150~200℃;

6)厚度为10nm的n型非晶硅层6:

使用电源为13.56MHz,其中各气体体积比为:氢气:硅烷气体:磷烷气体=60:(3~8):0.1,腔室中的功率密度为0.05~0.1W/cm2,反应时间2~3min,反应气压力为200~220Pa,反应温度为200~250℃。

生长成上述多层(如图1~3中1~6标注)的纳米线阵列后(所述纳米线阵列具体是指已经在硅基上生长/沉积好的多层硅纳米线阵列,包含p型微晶硅纳米线型核、微晶硅本征层、重掺杂n+型微晶硅层、重掺杂p+型非晶硅层、非晶硅本征层、n型非晶硅层。这种纳米线阵列不是单根结构,之后需要从阵列中分离某一根而得到单根结构从而再加工为太阳能电池),用氧等离子体清洗基底,然后再用等离子增强化学气相沉积法在多层硅纳米线阵列上均匀地沉积一层厚度为30nm的SiO2作为掩膜。将生长于平面基底上的硅纳米线阵列剥离,利用高功率超声分散技术将多层(如图1~3中1~6标注)纳米线阵列充分分离于乙醇中,用吸管吸取纳米线悬浮液滴在清洁的表层300nm被氧化的硅片表面,烘干,使纳米线均匀分散于绝缘衬底表面。之后,利用定位技术对准某根多层纳米线进行操作并制备成器件。

其操作过程可分解为:1)利用电子束刻蚀法将多层(如图1~3中1~6标注)纳米线上端各层多出部分刻蚀掉;2)用电子束刻蚀法刻蚀铬垫并用热蒸发法选择性的沉积SiO2掩膜以固定纳米线;3)使用电子束刻蚀技术定义出一个刻蚀窗以暴露选定区域的p型微晶硅纳米线型核1,首先用稀HF腐蚀掉刻蚀窗区纳米线表面的SiO2掩膜,然后用KOH溶液进一步腐蚀掉底层的硅纳米线壳,直至暴露出p型微晶硅纳米线型核1,然后用稀HF将纳米线外层其余部分的SiO2腐蚀掉;4)利用等离子增强化学气相沉积技术在多层(如图1~3中1~6标注)纳米线上沉积一层厚度为80nm的铟锡金属氧化物(ITO)作为透明电极,并利用电子束刻蚀技术将n型非晶硅层6上的ITO与p型微晶硅纳米线型核1上的ITO隔断开,分别作为正、负极(即图1中的正极透明氧化物导电层8和负极透明氧化物导电层7),避免正、负极短路。从n型非晶硅层6上的ITO与p型微晶硅纳米线型核1上的ITO上分别引出导线,在太阳光照下,借助数字源表可测量出此电池的伏安特性曲线,从而可得到短路电流、开路电压和光电转换效率等电池性能参数。

实施例2:其结构参见图1~图3所示,与实施例1相同,不同之处在于p型微晶硅纳米线型核的半径,及某些层的厚度改变。其中p型微晶硅纳米线型核的半径为由实施例1中的30nm变为20nm,长度由原来的2μm变为5μm,所述微晶硅本征层的厚度由实施例1中的240nm变为160nm,重掺杂n+型微晶硅层的厚度由实施例1中的30nm变为20nm,重掺杂p+型非晶硅层的厚度仍为10nm,非晶硅本征层的厚度由实施例1中的40nm变为25nm,n型非晶硅层的厚度仍为10nm,透明氧化物导电层的厚度由实施例1中的80nm变为70nm。

该电池的制备方法参见实施例1,省略。

以上仅为本发明的优选实施例,当然,本发明还可以有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,比如改变尺寸、形状或者改变材料等,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号