首页> 中国专利> 离子注入形成N型重掺杂漂移层台面的碳化硅UMOSFET器件制备方法

离子注入形成N型重掺杂漂移层台面的碳化硅UMOSFET器件制备方法

摘要

本发明涉及一种离子注入形成N型重掺杂漂移层台面的UMOSFET器件制备方法,外延生长N型漂移区;离子注入形成N+阱;N+阱刻蚀为台面;外延生长P-外延层;外延生长N+源区层;刻蚀成槽;刻蚀形成源区;氧化形成槽栅;淀积多晶硅;开接触孔:制备钝化层,开电极接触孔;制备电极:蒸发金属,制备电极。本发明通过离子注入和刻蚀工艺提高了带有N型漂移层台面的碳化硅UMOSFET器件中的N型漂移区台面的掺杂浓度,降低了该器件的导通电阻。

著录项

  • 公开/公告号CN103928345A

    专利类型发明专利

  • 公开/公告日2014-07-16

    原文格式PDF

  • 申请/专利权人 西安电子科技大学;

    申请/专利号CN201410166460.1

  • 申请日2014-04-21

  • 分类号H01L21/336(20060101);H01L21/265(20060101);H01L29/78(20060101);

  • 代理机构

  • 代理人

  • 地址 710071 陕西省西安市雁塔区太白南路2号

  • 入库时间 2023-12-17 00:30:37

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-03-11

    文件的公告送达 IPC(主分类):H01L21/336 专利号:ZL2014101664601 专利申请号:2014101664601 收件人:西安电子科技大学专利负责人 文件名称:恢复权利请求审批通知书

    文件的公告送达

  • 2016-09-07

    授权

    授权

  • 2014-08-13

    实质审查的生效 IPC(主分类):H01L21/336 申请日:20140421

    实质审查的生效

  • 2014-07-16

    公开

    公开

说明书

技术领域

本发明涉及微电子技术领域,尤其涉及一种离子注入形成N型重掺杂漂移层台面的碳化硅UMOSFET器件制备方法。 

背景技术

第三代半导体材料碳化硅具有宽带隙,高临界击穿电场,高电子饱和漂移速度和较高的热导率等优良的物理和化学性质,在高温,高压,大功率半导体器件中具有很大优势。 

功率MOSFET作为开关,其正向导通电阻和反向击穿电压是一对矛盾关系,而纵向结构的UMOSFET消除了寄生积累层电阻和JFET电阻,所以UMOSFET在这方面和横向结构的MOSFET相比具有一定的优势。 

UMOSFET自身也存在缺点,其槽栅拐角处的电场集中效应导致器件提前发生击穿,降低了器件的可靠性。一种能够降低槽栅拐角电场的带有N-漂移层台面的SiC UMOSFET器件已经被发明出来,该器件的P-外延层包裹了槽栅拐角,以SiC PN结界面代替了拐角的SiO2/SiC界面来承受反向电压,提高了器件的可靠性。 

但是由于该方案中P-外延层包裹了槽栅拐角,使导电通路在台面处变窄,而且台面处的杂质浓度和漂移层浓度相等,掺杂浓度较低,这都是对导通电阻不利的因素。 

鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本创作。 

发明内容

本发明的目的在于提供一种离子注入形成N型重掺杂漂移层台面的UMOSFET器件制备方法,用以克服上述技术缺陷。 

为实现上述目的,本发明提供一种离子注入形成N型重掺杂漂移层台 面的UMOSFET器件制备方法,该具体过程为: 

步骤a,外延生长N型漂移区:在碳化硅N+衬底样片上外延生长厚度约为12μm~25μm,氮离子掺杂浓度为1×1015cm-3~5×1015cm-3的N型漂移区; 

步骤b,离子注入形成N+阱:在N型漂移区中进行离子注入,形成重掺杂的N+阱,N+阱宽度为3μm~4μm,注入杂质为氮离子,深度为0.5μm,掺杂浓度为1×1017cm-3; 

步骤c,N+阱刻蚀为台面:把N+阱刻蚀成一个台面,台面高度和N+阱的深度相等,台面宽度与阱的宽度相等; 

步骤d,外延生长P-外延层:在N型漂移区和N+漂移层台面上生长一层P-外延层,厚度为3μm,铝离子掺杂浓度为5×1017cm-3~1×1018cm-3; 

步骤e,外延生长N+源区层:在P-外延层上生长一层N+源区层,厚度为0.5μm,掺杂浓度为5×1018cm-3; 

步骤f,刻蚀成槽:在N型重掺杂漂移层台面正上方采用ICP刻蚀形成槽,宽度为6μm,深度为3μm,这样槽的两个底角被P-外延层包裹; 

步骤g,刻蚀形成源区:采用ICP刻蚀形成源区接触; 

步骤h,氧化形成槽栅:通过热氧化工艺制备槽栅介质SiO2,厚度为100nm。 

步骤i,淀积多晶硅:在槽栅内的槽栅介质SiO2上淀积polySi层; 

步骤j,开接触孔:制备钝化层,开电极接触孔; 

步骤k,制备电极:蒸发金属,制备电极。 

进一步,在上述步骤a中,先对N型的碳化硅衬底片进行RCA标准清洗,然后在整个衬底片上外延生长厚度为12μm~25μm,氮离子掺杂浓度为1×1015cm-3~5×1015cm-3的N-漂移层,其工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用液态氮气。 

进一步,上述步骤b的具体过程为: 

步骤b01,采用低压化学汽相淀积方式在整个碳化硅表面淀积一层厚度为0.2μm的SiO2,再淀积厚度为1μm的Al作为氮离子注入的阻挡层,通过光刻和刻蚀形成N+阱注入区,N+阱注入区宽度为3-4μm; 

步骤b02,在500℃的环境温度下进行三次氮离子注入,先后注入能量分别为520keV、300keV、150keV,对应的剂量为9.8×1011cm-2、7×1011cm-2、4.9×1011cm-2,注入深度为0.5μm; 

步骤b03,采用标准RCA对碳化硅表面进行清洗,烘干后做C膜保护。然后在1750℃氩气氛围中进行离子激活退火,时间为15min。 

进一步,上述步骤c中,N+阱宽度为3μm~4μm,注入杂质为氮离子,深度为0.5μm,掺杂浓度为1×1017cm-3,其工艺条件为:注入温度500℃,离子激活退火温度1750℃,退火时间10min。 

进一步,上述步骤d中,在N型漂移区和N+漂移层台面上生长一层P-外延层,厚度为3μm,铝离子掺杂浓度为5×1017cm-3~1×1018cm-3;N+阱刻蚀为台面,台面的高度等于N+阱宽度,其工艺条件为:ICP线圈功率850W,源功率100W,反应气体SF6和O2分别为48sccm和12sccm。 

进一步,在上述步骤e中,在P-外延层上生长一层厚度为0.5μm,氮离子掺杂浓度为5×1018cm-3的N型碳化硅外延层,作为N+源区层,其工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用液态氮气。 

进一步,在上述步骤f中,首先磁控溅射一层的Ti膜作为ICP刻蚀掩膜,然后涂胶光刻,进行ICP刻蚀,刻蚀出槽的宽度为6μm,深度为3μm,最后去胶,去刻蚀掩膜,清洗成光片;工艺条件为:ICP线圈功率850W,源功率I00W,反应气体SF6和O2分别为48sccm和12sccm。 

进一步,在上述步骤g中,首先磁控溅射一层的Ti膜作为ICP刻蚀掩膜,然后涂胶光刻,进行ICP刻蚀,形成源区接触孔,最后去胶,去刻蚀掩膜,清洗成光片;工艺条件为:ICP线圈功率850W,源功率100W,反应气体SF6和O2分别为48sccm和12sccm。 

进一步,在上述步骤h中,采用干氧工艺在1150℃下制备SiO2栅,厚度为100nm,然后在1050℃,N2氛围下进行退火,降低SiO2薄膜表面的粗糙度。 

进一步,在上述步骤i中,采用低压热壁化学汽相淀积法生长ploySi填满沟槽,淀积温度为600~650℃,淀积压强为60~80Pa,反应气体为硅烷和磷化氢,载运气体为氦气,然后涂胶光刻,刻蚀ploySi层,形成多晶硅栅,最后去胶,清洗。 

与现有技术相比较本发明的有益效果在于:本发明通过离子注入和刻蚀工艺提高了带有N型漂移层台面的碳化硅UMOSFET器件中的N型漂移区台面的掺杂浓度,降低了该器件的导通电阻;离子注入工艺可以精确的控制注入离子的浓度和深度,另外对于基体材料来说,离子注入没有明显界 面,因此不存在粘附破裂和剥落问题,而且离子注入不浪费材料节省成本。 

附图说明

图1为本发明带有N型漂移层台面的碳化硅UMOSFET器件的结构示意图; 

图2为本发明带有N型漂移层台面的碳化硅UMOSFET器件的制作工艺流程图。 

具体实施方式

以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。 

请参阅图2所示,其为本发明带有N型漂移层台面的碳化硅UMOSFET器件的结构示意图,该具体过程为: 

步骤a,外延生长N型漂移区:在碳化硅N+衬底样片上外延生长厚度约为12μm~25μm,氮离子掺杂浓度为1×1015cm-3~5×1015cm-3的N型漂移区; 

步骤b,离子注入形成N+阱:在N型漂移区中进行离子注入,形成重掺杂的N+阱,N+阱宽度为3μm~4μm,注入杂质为氮离子,深度为0.5μm,掺杂浓度为1×1017-3; 

步骤c,N+阱刻蚀为台面:把N+阱刻蚀成一个台面,台面高度和N+阱的深度相等,N+阱宽度为3μm~4μm,注入杂质为氮离子,深度为0.5μm,掺杂浓度为1×1017-3,其工艺条件为:注入温度500℃,离子激活退火温度1750℃,退火时间10min。 

步骤d,外延生长P-外延层:在N型漂移区和N+漂移层台面上生长一层P-外延层,厚度为3μm,铝离子掺杂浓度为5×1017cm-3~1×1018cm-3;N+阱刻蚀为台面,台面的高度等于N+阱宽度,其工艺条件为:ICP线圈功率850W,源功率100W,反应气体SF6和O2分别为48sccm和12sccm。 

步骤e,外延生长N+源区层:在P-外延层上生长一层N+源区层,厚度为0.5μm,掺杂浓度为5×1018cm-3; 

步骤f,刻蚀成槽:在N型重掺杂漂移层台面正上方采用ICP刻蚀形成槽,宽度为6μm,深度为3μm,这样槽的两个底角被P-外延层包裹; 

步骤g,刻蚀形成源区:采用ICP刻蚀形成源区接触; 

步骤h,氧化形成槽栅:通过热氧化工艺制备槽栅介质SiO2,厚度为 100nm。 

步骤i,淀积多晶硅:在槽栅内的槽栅介质SiO2上淀积polySi层; 

步骤j,开接触孔:制备钝化层,开电极接触孔; 

步骤k,制备电极:蒸发金属,制备电极。 

基于上述步骤的各实施例,如下所述: 

实施例一: 

步骤a1,外延生长N型漂移区,如图2中的a所示; 

先对N型的碳化硅衬底片进行RCA标准清洗,然后在整个衬底片上外延生长厚度为12μm,氮离子掺杂浓度为I×1015cm-3的N-漂移层,其工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用液态氮气。 

步骤b1,离子注入形成N+阱,如图2中的b所示; 

步骤b11,采用低压化学汽相淀积方式在整个碳化硅表面淀积一层厚度为0.2μm的SiO2,再淀积厚度为1μm的Al作为氮离子注入的阻挡层,通过光刻和刻蚀形成N+阱注入区,N+阱注入区宽度为3μm; 

步骤b12,在500℃的环境温度下进行三次氮离子注入,先后注入能量分别为520keV、300keV、150keV,对应的剂量为9.8×1011cm-2、7×1011cm-2、4.9×1011cm-2,注入深度为0.5μm; 

步骤b13,采用标准RCA对碳化硅表面进行清洗,烘干后做C膜保护。然后在1750℃氩气氛围中进行离子激活退火,时间为15min。 

步骤c1,N+阱刻蚀为台面,如图2中的c所示; 

首先磁控溅射一层的Ti膜作为ICP刻蚀掩膜,然后涂胶光刻,进行ICP刻蚀,将N+阱刻蚀成台面结构,台面高度等于N+阱深度。最后去胶,去刻蚀掩膜,清洗成光片。ICP刻蚀工艺条件为:ICP线圈功率850W,源功率100W,反应气体SF6和O2分别为48sccm和12sccm。 

步骤d1,外延生长P-外延层,如图2中的d所示; 

在N型漂移区和重掺杂的漂移区台面上生长一层厚度为3μm,铝离子掺杂浓度为5×1017cm-3的P-外延层,其外延生长工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用三甲基铝。 

步骤e1,外延生长N+源区层,如图2中的e所示; 

在P-外延层上生长一层厚度为0.5μm,氮离子掺杂浓度为5×1018cm-3 的N型碳化硅外延层,作为N+源区层,其工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用液态氮气。 

步骤f1,刻蚀成槽,如图2中的f所示; 

首先磁控溅射一层的Ti膜作为ICP刻蚀掩膜,然后涂胶光刻,进行ICP刻蚀,刻蚀出槽的宽度为6μm,深度为3μm,最后去胶,去刻蚀掩膜,清洗成光片。工艺条件为:ICP线圈功率850W,源功率100W,反应气体SF6和O2分别为48sccm和12sccm。 

步骤g1,刻蚀形成源区,如图2中的g所示; 

首先磁控溅射一层的Ti膜作为ICP刻蚀掩膜,然后涂胶光刻,进行ICP刻蚀,形成源区接触孔,最后去胶,去刻蚀掩膜,清洗成光片。工艺条件为:ICP线圈功率850W,源功率100W,反应气体SF6和O2分别为48sccm和12sccm。 

步骤h1,氧化形成槽栅,如图2中的h所示; 

采用干氧工艺在1150℃下制备SiO2栅,厚度为100nm,然后在1050℃,N2氛围下进行退火,降低SiO2薄膜表面的粗糙度。 

步骤i1,淀积多晶硅,如图2中的i所示; 

采用低压热壁化学汽相淀积法生长ploySi填满沟槽,淀积温度为600~650℃,淀积压强为60~80Pa,反应气体为硅烷和磷化氢,载运气体为氦气,然后涂胶光刻,刻蚀ploySi层,形成多晶硅栅,最后去胶,清洗。 

步骤j1,开接触孔,如图2中的j所示; 

在器件表面淀积一层场氧或者Si3N4层,然后涂胶光刻,腐蚀钝化层开电极接触孔,最后去胶,清洗。 

步骤k1,制备电极,如图2中的k所示; 

电子束蒸发Ti/Ni/Au制作正面栅,源电极,然后涂胶光刻,金属腐蚀形成正面栅,源电极接触图形,去胶,清洗。 

在背面电子束蒸发Ti/Ni/Au制作背面漏电极,然后制作正面栅,源电极,最后在Ar气氛中围快速退火3min,温度为1050℃。 

实施例二: 

步骤a2,外延生长N型漂移区; 

先对N型的碳化硅衬底片进行RCA标准清洗,然后在整个衬底片上外延生长厚度为25μm,氮离子掺杂浓度为5×1015cm-3的N-漂移层,其工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载 运气体采用纯氢气,掺杂源采用液态氮气。 

步骤b2,离子注入形成N+阱; 

步骤b21,采用低压化学汽相淀积方式在整个碳化硅表面淀积一层厚度为0.2μm的SiO2,再淀积厚度为1μm的Al作为氮离子注入的阻挡层,通过光刻和刻蚀形成N+阱注入区,N+阱注入区宽度为4μm; 

步骤b22,在500℃的环境温度下进行三次氮离子注入,先后注入能量分别为520keV、300keV、150keV,对应的剂量为9.8×1011cm-2、7×1011cm-2、4.9×1011cm-2,注入深度为0.5μm; 

步骤b23,采用标准RCA对碳化硅表面进行清洗,烘干后做C膜保护。然后在1750℃氩气氛围中进行离子激活退火,时间为15min。 

步骤c2,与实施例一的步骤c1相同; 

步骤d2,外延生长P-外延层; 

在N型漂移区和重掺杂的漂移区台面上生长一层厚度为3μm,铝离子掺杂浓度为1×1018cm-3的P-外延层,其外延生长工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用三甲基铝。 

步骤e2,与实施例一的步骤e1相同。 

步骤f2,与实施例一的步骤f1相同。 

步骤g2,与实施例一的步骤g1相同。 

步骤h2,与实施例一的步骤h1相同。 

步骤i2,与实施例一的步骤i1相同。 

步骤j2,与实施例一的步骤j1相同。 

步骤k2,与实施例一的步骤k1相同。 

实施例三: 

步骤a3,外延生长N型漂移区; 

先对N型的碳化硅衬底片进行RCA标准清洗,然后在整个衬底片上外延生长厚度为20μm,氮离子掺杂浓度为3×1015cm-3的N-漂移层,其工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用液态氮气。 

步骤b3,离子注入形成N+阱; 

步骤b31,采用低压化学汽相淀积方式在整个碳化硅表面淀积一层厚度为0.2μm的SiO2,再淀积厚度为1μm的Al作为氮离子注入的阻挡层,通过光刻和刻蚀形成N+阱注入区,N+阱注入区宽度为3.5μm。 

步骤b32,在500℃的环境温度下进行三次氮离子注入,先后注入能量分别为520keV、300keV、150keV,对应的剂量为9.8×1011cm-2、7×1011cm-2、4.9×1011cm-2,注入深度为0.5μm; 

步骤b33,采用标准RCA对碳化硅表面进行清洗,烘干后做C膜保护。然后在1750℃氩气氛围中进行离子激活退火,时间为15min。 

步骤c3,与实施例一的步骤c1相同。 

步骤d3,外延生长P-外延层; 

在N型漂移区和重掺杂的漂移区台面上生长一层厚度为3μm,铝离子掺杂浓度为8×1017cm-3的P-外延层,其外延生长工艺条件是:温度为1600℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,掺杂源采用三甲基铝。 

步骤e3,与实施例一的步骤e1相同。 

步骤f3,与实施例一的步骤f1相同。 

步骤g3,与实施例一的步骤g1相同。 

步骤h3,与实施例一的步骤h1相同。 

步骤i3,与实施例一的步骤i1相同。 

步骤j3,与实施例一的步骤j1相同。 

步骤k3,与实施例一的步骤k1相同。 

以上所述仅为本发明的较佳实施例,对发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。 

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号