首页> 中国专利> CIGS基或CZTS基薄膜太阳能电池及其制备方法

CIGS基或CZTS基薄膜太阳能电池及其制备方法

摘要

提供了一种铜铟镓硒(CIGS)基或铜锌锡硫(CZTS)基太阳能电池,该太阳能电池包括背电极层和光吸收层,其中,光吸收层具有Cu

著录项

  • 公开/公告号CN103811571A

    专利类型发明专利

  • 公开/公告日2014-05-21

    原文格式PDF

  • 申请/专利权人 韩国科学技术研究院;

    申请/专利号CN201310407360.9

  • 申请日2013-09-09

  • 分类号H01L31/032;H01L31/0392;H01L31/18;

  • 代理机构北京铭硕知识产权代理有限公司;

  • 代理人刘灿强

  • 地址 韩国首尔

  • 入库时间 2024-02-20 00:20:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-03-30

    授权

    授权

  • 2014-06-25

    实质审查的生效 IPC(主分类):H01L31/032 申请日:20130909

    实质审查的生效

  • 2014-05-21

    公开

    公开

说明书

本申请要求于2012年11月9日提交到韩国知识产权局的第 10-2012-0126525号韩国专利申请的优先权,该申请的公开通过引用全部包含 于此。

技术领域

下面的公开涉及一种铜铟镓硒(CIGS)基或铜锌锡硫(CZTS)基薄膜 太阳能电池及其制备方法。更具体地说,下面的公开涉及一种具有可控二硒 化钼(MoSe2)层的厚度的CIGS基或CZTS基薄膜太阳能电池及制备该太阳 能电池的方法,所述薄膜太阳能电池使层间分层能够长期稳定并且能够有高 的光电转换效率。

背景技术

由于直接通过太阳光发电的太阳能电池安全地产生清洁能源,因此可以 说它是最具发展前景的能源产生系统之一。目前为止,大多数已经成功商业 化的太阳能电池是基于硅材料的。然而,生产适合于太阳能电池应用的硅的 工艺需要对厂房和设备及其维修和操作大量投资。因此,此类基于硅的太阳 能电池在成本效益方面是没有优势的。作为这些电池的替代品,已经对薄膜 太阳能电池进行了许多尝试,这是因为由于它们的重量轻而适用于柔性衬底 并且它们使用相对较低量的原材料。因此,最近,薄膜太阳能电池的市场占 有率迅速增加。

在这种薄膜太阳能电池中,铜铟镓硒(在下文中也被称为CIGS)太阳能 电池具有20%或更高的非常高的光电转换效率。当考虑到薄膜太阳能电池的 技术特征和发展速度时,在不久的将来,期望CIGS太阳能电池将在太阳能电 池的商业化中占主导地位。此外,通过分别用锌和锡替换CIGS中的铟和镓, 并且用硫部分或全部替换CIGS中的硒获得的基于铜锌锡硫(在下文中也被称 为CZTS)的太阳能电池具有与CIGS基太阳能电池相似的特征,并且与CIGS 基太阳能电池相比具有显著的成本效益,因为锌和锡分别比铟和镓更便宜。 因此,CZTS基太阳能电池被认为是最具前景的太阳能电池之一。

通常,CIGS基或CZTS基薄膜太阳能电池包括:基板;钼背电极层;光 吸收层;缓冲层;透明电极层。为了在薄膜太阳能电池中获得高的光电转换 效率,形成带有较少缺陷的每一层并且顺序地层叠带有较少表面缺陷的每一 层是至关重要的。在薄膜太阳能电池制备的几个工艺中,硒化工艺是非常重 要的。硒化通常在高温、混合硒蒸汽的惰性或还原性气氛下进行,以诱导光 吸收层的薄膜致密化或者(和)诸如晶粒生长和晶粒对齐(纹理)的微观结 构调控中的一种(或两种)。因此,硒化工艺影响光吸收层的物理和光学性质 并且引起微观结构变化,例如,钼背电极层向二硒化钼(MoSe2)的转化。由 于二硒化钼相比于金属钼具有非常低的晶胞密度,因此实验观察到钼的硒化 提供了大约4倍的巨大的体积膨胀。自然地,这种在钼的硒化过程中的巨大的 体积膨胀在二硒化钼层和剩余的钼层之间引起高的压力,这种压力是导致太 阳能电池的层间分层(背电极部分或全部分裂)和最终机械故障的主要原因。 另外,由于二硒化钼相的韧性远远低于钼的韧性,因此钼的硒化对获得的薄 膜太阳能电池的机械稳定性是更有害的。

以上所述的层间分层由于严重的机械损坏以及增大的层间电阻,从而阻 碍了高效薄膜太阳能电池的构成。因此,在硒化过程中,需要控制硒蒸汽从 硒化气氛穿过光吸收层到钼背电极的传输,以防止或减少二硒化钼层的形成。

发明内容

本公开的一个实施例致力于提供一种铜(Cu)涂覆的钼背电极(为了简 要起见,下文中称为CMBE)用来制备铜铟镓硒(CIGS)基或铜锌锡硫(CZTS) 基太阳能电池,其中,所述CMBE在硒化过程中起到减少二硒化钼的形成的 目的,从而防止层间分层,保证长期的机械耐久性以及高的光电转换效率。

本公开的另一个实施例致力于提供一种CIGS基或CZTS基薄膜太阳能 电池的制备方法,该方法能够控制钼背电极层向二硒化钼的转变。

本公开的另一个实施例致力于提供一种通过上述方法得到的CIGS基或 CZTS基薄膜太阳能电池,并具有适当控制比的二硒化钼和钼,从而防止层间 分层以及耐久性和光电转换效率的劣化。

在一个一般方面中,提供了一种用于制备铜铟镓硒(CIGS)基或铜锌锡 硫(CZTS)基太阳能电池的CMBE,包括若干部件,所述部件包括:基板; 钼层(由于分别适应不同涂覆条件,所以可以包括两种不同微观结构特征的 钼层);以及铜层。(与CIGS基以及CZTS基薄膜太阳能电池中的常规术语 相比,在所述CMBE中双层或三层的钼和铜对应于传统太阳能电池中的钼背 电极。)

根据一个实施例,涂覆在CMBE上的光吸收粉末层可具有 CuxInyGa1-y(SzSe1-z)2(其中,0<x<1、0<y<1、0<z<1,并且x、y和z 中的每个都代表实数)或Cu(2-p)Zn(2-q)Snq(SrSe(1-r))4(其中,0<p<2、0<q<2、 0<r<2,并且p、q和r中的每个都代表实数)的组分;并且可通过非真空 型工艺涂覆,非真空性工艺包括刮刀涂布工艺、丝网印刷工艺、旋转涂布工 艺、喷涂工艺或印刷工艺。

根据另外一个实施例,钼层可具有0.5-5μm的厚度;铜层可具有对应于 过量涂覆在CMBE上的光吸收粉末层厚度的1-10%的厚度。

在另一个一般方面中,提供了一种制备CIGS基或CZTS基太阳能电池 的方法,包括:

在基板的一个表面上形成钼层;

在钼层上形成铜薄膜;

在CMBE上形成铜铟镓硒或铜锌锡硫的光吸收层,以用于制备CIGS基 或CZTS基太阳能电池;以及

对在CMBE上合成的光吸收层热处理,以获得目标微观结构和组分。

根据一个实施例,基板可从由玻璃、金属、陶瓷以及聚合物组成的组中 选择。

根据另外一个实施例,可以通过电子束镀膜、溅射、化学气相沉积或金 属有机化学气相沉积工艺使钼涂覆到基板上来执行形成钼层的工艺。

根据另外一个实施例,可以通过真空蒸镀、热真空蒸镀、电子束镀膜、 溅射、化学气相沉积(CVD)、金属有机化学气相沉积(MOCVD)或电化学 沉积工艺在钼层上叠加地涂覆铜层来执行形成铜层的工艺。

根据另外一个实施例,在CIGS基或CZTS基太阳能电池的CMBE上形成光 吸收粉末层的工艺可包括通过非真空型工艺在非真空环境下,涂覆具有 CuxInyGa1-y(SzSe1-z)2(其中,0<x<1、0<y<1、0<z<1,并且x、y和z中的 每个都代表实数)或Cu(2-p)Zn(2-q)Snq(SrSe(1-r))4(其中,0<p<2、0<q<2、0< r<2,并且p、q和r中的每个都代表实数)组成的粉末或糊料,非真空型工艺 包括刮刀涂布工艺、丝网印刷工艺、旋转涂布工艺、喷涂工艺或印刷工艺。

根据另外一个实施例,热处理形成在CMBE上的光吸收粉末层的工艺可 包括以250-900℃的温度在惰性或还原性硒气体气氛下热处理,并且在热处理 过程中,在CMBE内的铜层可被光吸收层吸收或扩散到光吸收层,所以光吸 收层的组分可变为CuxInyGa1-y(SzSe1-z)2(其中,0.85≦x<1、0<y<1、0<z <1,并且x、y和z中的每个都代表实数)或Cu(2-p)Zn(2-q)Snq(SrSe(1-r))4(其中, 1.4≦p<2、0<q<2、0<r<2,并且p、q和r中的每个都代表实数)。

根据另外一个实施例,制备CIGS基或CZTS基太阳能电池的方法还可以 包括通过化学浴沉积(CBD)、电子束镀膜、溅射或化学气相沉积(CVD) 工艺在光吸收层的顶部上通过沉积CdS、ZnS(O,OH)、ZnSe、InS(O,OH)、In2S3、 ZnInxSey、Zn1-xMgxO(其中,0<x<1、0<y<1,并且x和y中的每个都代表 实数)或者它们的组合来形成缓冲层。

根据另外一个实施例,制备CIGS基或CZTS基太阳能电池的方法还可以 包括通过电子束镀膜或溅射工艺在光吸收层的顶部上通过沉积ZnO、掺铝氧 化锌(AZO)、掺硼氧化锌(BZO)、氧化铟锡(ITO)、掺氟氧化锡(FTO) 或者它们的组合来形成透明电极。

在另一个一般方面中,提供了一种通过上述方法得到的CIGS基或CZTS 基太阳能电池。

根据本公开,可得到不会产生层间分层并且耐久性和光电转换效率都 得到改善的CIGS基或CZTS基薄膜太阳能电池。也可实现使钼背电极层向二 硒化钼的转变最小化的CIGS基或CZTS基薄膜太阳能电池的制备方法。

附图说明

通过下面结合附图进行的详细描述,公开的示例性实施例的上述和其它 方面,特征和优势将更加明显,在附图中:

图1是示出根据实施例的铜铟镓硒(CIGS)基或铜锌锡硫(CZTS)基 太阳能电池的示意图;

图2是示出根据实施例的太阳能电池的制备方法的示意性流程图;

图3是示出根据实施例,在太阳能电池制备方法中,热处理前后的钼背 电极层、铜薄膜层和光吸收层的示意图;

图4是示出根据实施例,在太阳能电池制备方法中,钼背电极层的扫描 电镜(SEM)图像;

图5是示出根据实施例,在太阳能电池制备方法中,铜薄膜的SEM图像;

图6是示出根据实施例,在太阳能电池制备方法中,涂覆在铜薄膜上面的 光吸收粉末层的SEM图像;

图7是示出根据实施例,在太阳能电池制备方法中,光吸收层薄膜用硒气 体热处理后的SEM图像;

图8是示出根据对比示例,在省略涂覆铜薄膜层的操作的太阳能电池制备 方法中,光吸收层薄膜用硒气体热处理后的SEM图像;以及

图9是示出根据实施例的光吸收层薄膜的X射线衍射(XRD)图像与对比 示例的未涂覆铜薄膜层得到的光吸收层薄膜的XRD图像相比较的曲线图。

〈主要元件的详细描述〉

100:基板    200:钼背电极层

210:二硒化钼层

300:光吸收层    310:光吸收粉末层

400:缓冲层    500:透明电极层

800:铜薄膜

具体实施方式

通过下面结合附图对实施例的描述,本公开的优势、特征和方面将变得 明显,这在下文中进行阐明。

图1是示出根据实施例的铜铟镓硒(CIGS)基或铜锌锡硫(CZTS)基 薄膜太阳能电池的示意图,图2是示出根据实施例的CIGS基或CZTS基太 阳能电池的制备方法的示意性流程图。如图1和图2中所示,钼背电极层200 首先形成在基板100的一个表面上(S1)。例如,基板可从由玻璃、金属、陶 瓷以及聚合物组成的组中选择,但不限于此。对基板100的材料的物理/化学 性质没有特别的限制,只要该材料可让钼沉积,并且适用作太阳能电池基板。

通过电子束镀膜工艺、溅射工艺、化学气相沉积(CVD)工艺或金属有 机化学气相沉积(MOCVD)工艺使钼涂覆到基板100上,可执行操作(S1)。 在基板100上沉积钼可通过本领域技术人员已知的任何工艺来执行。形成的钼 背电极层在其厚度方面不受限制。然而,钼背电极层可被形成为0.5μm-5μm 的厚度,以提供具有有效厚度的薄膜太阳能电池。

下一步,在钼背电极层上形成铜薄膜(S2)。可以选择本领域技术人员 已知的各种工艺来形成铜薄膜和执行形成铜薄膜的沉积。虽然对形成铜薄膜 的工艺没有特别的限制,但铜薄膜可通过真空蒸镀工艺、热真空蒸镀工艺、 电子束镀膜工艺、溅射工艺、CVD工艺、MOCVD工艺或电化学沉积工艺形 成。特别地,溅射工艺可在惰性气体气氛下使用。在随后的热处理操作(S4) 中,铜薄膜通过被吸收或扩散到光吸收层300而将被去除,因此在示意性地示 出完成的太阳能电池的结构的图1中没有示出铜薄膜。铜薄膜的厚度和密度可 采用这样的方式来确定,在热处理时,获得的光吸收层具有期望厚度的 CuxInyGa1-y(SzSe1-z)2(其中,0.85≦x<1、0<y<1、0<z<1,并且x、y和z 中的每个都代表实数)或Cu(2-p)Zn(2-q)Snq(SrSe(1-r))4(其中,1.4≦p<2、0<q< 2、0<r<2,并且p、q和r中的每个都代表实数)的组分。例如,铜薄膜可形 成为具有对应于热处理后的光吸收层的厚度的1-10%的厚度。

然后,在铜薄膜上形成包含铜铟镓硒(CIGS)或铜锌锡硫(CZTS)的 光吸收粉末层(图1中未示出)(S3)。以这种方式,提供制备CIGS基或CZTS 基太阳能电池的预处理薄膜,所述预处理薄膜包括基板;钼背电极层;铜薄 膜;光吸收粉末层。可通过非真空型工艺使具有CuxInyGa1-y(SzSe1-z)2(其中, 0<x<1、0<y<1、0<z<1,并且x、y和z中的每个都代表实数)的组分的 CIGS粉末或糊料或者具有Cu(2-p)Zn(2-q)Snq(SrSe(1-r))4(其中,0<p<2、0<q<2、 0<r<2,并且p、q和r中的每个都代表实数)的组分的CZTS粉末或糊料涂覆 到铜薄膜上来执行操作(S3),非真空型工艺包括刮刀涂布工艺、丝网印刷工 艺、旋转涂布工艺、喷涂工艺或印刷工艺。根据本发明的一个实施例,预处 理薄膜包括可以顺序地堆叠的基板、钼背电极层、铜薄膜、以及光吸收粉末 层。

然后,利用惰性或还原性硒气体在250℃-900℃的温度对如上所述得到 的用于制备CIGS基或CZTS基太阳能电池的预处理薄膜进行热处理(S4)。经 热处理(S4)后,光吸收粉末层310致密化,从而转变为光吸收层300。

根据本公开,当通过用硒气体进行热处理S4形成光吸收层300时,铜薄膜 起到防止硒气体渗透进钼背电极层200中的屏障的作用。另外,根据铜薄膜的 密度或厚度期望地控制二硒化钼210的生成。同时,如上所述,在250℃-900℃ 的这样的高温环境下,铜薄膜通过逐渐被吸收或扩散到光吸收层300而被去除 。图3中示意性地示出了操作(S4),图3中示出了基板100、钼背电极层200 、光吸收粉末层310和光吸收层300。在此,最初已经被涂覆为粉末或糊料相 的光吸收粉末层310转变为光吸收层300,光吸收层300包括合并到光吸收层 300中的铜薄膜800并具有CuxInyGa1-y(SzSe1-z)2(其中,0.85≦x<1、0<y<1 、0<z<1,并且x、y和z中的每个都代表实数)或Cu(2-p)Zn(2-q)Snq(SrSe(1-r))4( 其中,1.4≦p<2、0<q<2、0<r<2,并且p、q和r中的每个都代表实数) 的组分。

这表明铜薄膜的引入起到抵抗二硒化钼(图1中的210)生成的改善的控 制器的作用。因此,通过控制铜薄膜的厚度和密度,能够抑制二硒化钼210 过量的生成或者以诱导期望量的二硒化钼的生成。

如上所述,二硒化钼210具有韧性差且容易被损坏。此外,由于二硒化钼 的晶胞密度比钼的晶胞密度低四倍,因此当钼转变为二硒化钼时,发生了显 著的体积膨胀,因此,压应力作用到二硒化钼层上。因此,过于大量的二硒 化钼的形成引起层间分层,这使太阳能电池的电池耐久性和光电转换效率严 重降低。在此公开的制备CIGS基或CZTS基薄膜太阳能电池的方法允许容易 地控制二硒化钼210的生成。因此,通过在此公开的方法得到的薄膜太阳能电 池不会出现由二硒化钼引起的问题,且因此能够长时间使用并且提供高的光 电转换效率。

热处理(S4)结束后,在光吸收层300上形成缓冲层400(S5)。缓冲层 400可包括CdS、ZnS(O,OH)、ZnSe、InS(O,OH)、In2S3、ZnInxSey、Zn1-xMgxO (其中,0<x<1、0<y<1,并且x和y中的每个都代表实数)或者是它们的 组合,并可通过化学浴沉积(CBD)、电子束镀膜、溅射或化学气相沉积(CVD) 工艺形成。然而,上面列出的用于形成缓冲层的组分和工艺仅仅是为了说明 的目的,且本领域技术人员已知的任何组分和工艺可用于形成缓冲层。因此, 用于形成缓冲层的组分和工艺不限于上述示例。另外,缓冲层可预先形成在 基板上。在此情况下,可省略形成缓冲层的操作。可选择地,可以不形成缓 冲层。

然后,透明电极层500形成在缓冲层400上(S6)。透明电极层500可包括 ZnO、掺铝氧化锌(AZO)、掺硼氧化锌(BZO)、氧化铟锡(ITO)、掺氟氧 化锡(FTO)或者它们的组合,并可通过诸如溅射工艺形成。上述用于形成 薄膜太阳能电池的透明电极层的组分和工艺仅仅是为了说明的目的,且本领 域技术人员普遍已知的任何组分和工艺可用于形成透明电极层。因此,用于 形成透明电极层的组分和工艺不限于上述示例。另外,透明电极层可预先形 成在基板上。在此情况下,可省略形成透明电极层的操作。可选择地,可以 不形成透明电极层。

根据在此公开的CIGS基或CZTS基薄膜太阳能电池的制备方法,能够提 供一种CIGS基或CZTS基薄膜太阳能电池,包括:基板100;钼背电极层200; 光吸收层300;缓冲层400;透明电极层500,其中,硒化过程中控制二硒化钼 的生成,以便防止层间分层,并且改善耐久性和光电转换效率。另外,在此 公开的CIGS基或CZTS基薄膜太阳能电池中,期望地控制了钼背电极层向二 硒化钼的转变。如在这里所描述的,由于铜薄膜的扩散或吸收,CIGS基或 CZTS基薄膜太阳能电池的光吸收层具有CuxInyGa1-y(SzSe1-z)2(其中,0.85≦x <1、0<y<1、0<z<1,并且x、y和z中的每个都代表实数)或 Cu(2-p)Zn(2-q)Snq(SrSe(1-r))4(其中,1.4≦p<2、0<q<2、0<r<2,并且p、q 和r中的每个都代表实数)的组分。

此外,根据本公开的实施例在钼向二硒化钼的这种转变最小化时,在此 公开的CIGS基或CZTS基薄膜太阳能电池的钼背电极层的特征是:在X射线衍 射(XRD)测试中,二硒化钼的2θ角度处观察到的峰强度与钼的2θ处观察到 的峰强度的比值在1:10-25的范围内,其中,二硒化钼的2θ为32°±0.5°或 57°±0.5°,钼的2θ角度为40.5°±0.5°(参见图9顶部的XRD曲线)。

示例

现在将描述示例以及实验。下述示例和实验仅仅是为了说明的目的,而 不意图限制本公开的范围。

示例:铜铟镓硒(CIGS)基薄膜太阳能电池的制备

1)钼背电极层的形成

首先,用有机溶剂和蒸馏水清洗钠钙玻璃基板并且在60℃干燥12小时。 通过DC溅射工艺,在5毫托的氩气气氛以及DC150W下利用钼靶(纯度: 99.999%)溅射50分钟,将金属钼背电极层沉积在干燥的钠钙玻璃基板上。沉 积的钼背电极层具有大约1μm的厚度,晶粒尺寸为大约100nm(参见图4), 并且薄膜电阻为大约0.18Ω/□(欧姆/平方)。

2)铜薄膜的形成

在5毫托的氩气氛以及DC100W下,采用铜靶(纯度:99.999%)溅射3 分钟40秒,将厚度为100nm的铜薄膜通过DC溅射工艺沉积在钼电极上(参见 图5)。

3)CIGS薄膜(光吸收粉末层或光吸收层)的形成

采用在其中均匀分散有包含CIGS粉末的涂覆溶液,来通过丝网印刷工艺 将CIGS薄膜涂覆到如上所述地获得的Cu/Mo/钙钠玻璃基板上,以形成具有6 μm-8μm厚度的CIGS层(光吸收层),如图6所示。获得的CIGS层在含有4%氢 的氩气气氛下用硒源在550℃的温度热处理1小时。如此,在铜薄膜被吸收进 光吸收层中的同时,光吸收粉末层被转变为光吸收层,且钼电极层变为与烧 结的CIGS光吸收层直接接触(见图3和图7)。根据硒化条件,如果铜薄膜被 吸收并且进一步发生硒化,一部分钼薄膜可形成出现在光吸收层和钼薄膜之 间的二硒化钼层。通过调整铜薄膜的厚度和密度,能够按照期望地控制二硒 化钼层的厚度。

4)缓冲层和透明电极层的形成

通过化学浴沉积(CBD)工艺在CIGS薄膜上形成厚度为50nm的CdS层, 然后,通过RF溅射工艺用ZnO靶来沉积厚度为50nm的i-型ZnO透明电极。此 外,通过同样的射频溅射工艺,采用掺铝ZnO(AZO)靶来沉积厚度为500nm 的AZO透明电极,以提供太阳能电池。此外,为了收集电流,通过采用网格 掩模图案的热蒸发工艺,在太阳能电池的表面上形成由50nm的Ni和1μm的 Al形成的网格电极。

对比示例:CIGS基薄膜太阳能电池的制备

除了未执行形成铜薄膜的操作外,重复示例中描述的相同的工艺,来提 供一种CIGS基薄膜太阳能电池。在图8中示出了得到的太阳能电池光吸收层 薄膜的SEM图像。可看见硒化引起56%的钼电极层(1.1μm厚度中的0.62μm) 转化为二硒化钼层。由于0.62μm厚度钼层的转化引起的体积膨胀,形成了 2.6μm厚度的二硒化钼。

测试示例和对比测试示例

为了比较示例和对比例中钼背电极层的硒化程度,在图9中示出了薄膜 (图7和图8)的X射线衍射(XRD;型号为Bruker D8Advance)图案(顶部 为示例,下部为对比示例)。示例的薄膜主要示出了钼的图案以及CIGS光吸 收层的图案。可以观察到钼峰(Mo,2θ=40.5°±0.5°)的强度比二硒化钼峰 (MoSe2,2θ=32°±0.5°or57°±0.5°)的强度大大约20倍。与此相反,对比示 例的薄膜呈现较小的钼(Mo)峰以及较大的二硒化钼(MoSe2)峰(钼峰是 二硒化钼峰的大约1.2倍)。

从前述中可以发现,根据本公开,能够在硒化过程中如所期望地控制薄 膜太阳能电池的二硒化钼的量,因此解决由二硒化钼体积膨胀而导致的层间 分层以及耐久性和光电转换效率劣化的问题。

虽然已经关于具体实施例描述了本公开,但是本领域技术人员应当明白, 在不脱离如权利要求书所限定的本公开的精神和范围的情况下,可以进行各 种变化和修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号