首页> 中国专利> 一种Ni-Mn基铁磁形状记忆合金/压电体复合材料及电场调控自旋翻转的应用

一种Ni-Mn基铁磁形状记忆合金/压电体复合材料及电场调控自旋翻转的应用

摘要

一种Ni-Mn基铁磁形状记忆合金/压电体复合材料,Ni-Mn基铁磁形状记忆合金与压电材料构成复合材料;压电材料为PMN-PT单晶;Ni-Mn基铁磁形状记忆合金的分子式是Ni-Mn-Sn,二种材料均是片状材料贴合成复合材料,铁磁形状记忆合金的厚度为20-50μm的快淬薄带叠合成1-2mm或为1-2mm的块材,压电体厚度为0.5mm。本发明利用压电体产生的应力调节Ni-Mn基记忆合金反铁磁和铁磁的界面耦合,通过电场调控的交换偏置效应在零偏置场实现了电场调控的自旋翻转。

著录项

  • 公开/公告号CN103824935A

    专利类型发明专利

  • 公开/公告日2014-05-28

    原文格式PDF

  • 申请/专利权人 南京大学;

    申请/专利号CN201410071849.8

  • 发明设计人 王敦辉;杨艳婷;都有为;

    申请日2014-02-28

  • 分类号

  • 代理机构南京瑞弘专利商标事务所(普通合伙);

  • 代理人陈建和

  • 地址 210093 江苏省南京市鼓楼区汉口路22号

  • 入库时间 2024-02-20 00:07:10

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-03-10

    未缴年费专利权终止 IPC(主分类):H01L43/10 授权公告日:20160907 终止日期:20190228 申请日:20140228

    专利权的终止

  • 2016-09-07

    授权

    授权

  • 2014-06-25

    实质审查的生效 IPC(主分类):H01L43/10 申请日:20140228

    实质审查的生效

  • 2014-05-28

    公开

    公开

说明书

技术领域

本发明涉及一种具有电场调控自旋翻转特性的Ni-Mn基铁磁形状记忆合金/压电体复合材料。

技术背景

电场调控的自旋翻转,在高密度存储、传感器和自旋电子学等领域有广泛的应用前景。目前在单相多铁材料、磁隧道结、铁磁/压电(铁电)等体系中均报道了电场调控的自旋翻转。调控方式主要体现在通过电场改变矫顽力、磁畴和磁电阻变化来控制自旋的翻转。但是单相多铁材料中电场自旋调控的翻转大都在低温条件下才能实现且需要大的外磁场驱动,消耗巨大的能量;磁隧道结易受地域条件限制,对设备仪器要求极为苛刻,制备工艺复杂不利于器件小型化。所以研究低能耗、零偏置磁场下电场调控的自旋翻转是存储领域中一个亟待解决的科学课题。

交换偏置效应因其在传感器、磁记录等领域有广阔的应用前景引起了人们密切的关注。在高锰Ni-Mn基铁磁形状记忆合金中低温时由于反铁磁和铁磁耦合共存有较大的交换偏置现象,同时Mn-Mn原子间的反铁磁交换作用对应力极其敏感。

发明内容

本发明的目的是,提供一种Ni-Mn基铁磁形状记忆合金/压电体复合材料以及的Ni-Mn基铁磁形状记忆合金/压电体复合材料及其具有电场调控自旋翻转特性的应用。

本发明的技术方案:一种Ni-Mn基铁磁形状记忆合金/压电体复合材料,Ni-Mn基铁磁形状记忆合金与压电材料构成复合材料;压电材料为PMN-PT单晶;Ni-Mn基铁磁形状记忆合金的分子式是Ni-Mn-Sn,二种材料均是片状材料贴合成复合材料,铁磁形状记忆合金的厚度为20-50um的快淬薄带叠合成1-2mm或为1-2mm的块材,压电体厚度为0.5mm。

所述复合材料由电场调控自旋翻转特性:

加电场通过压电材料产生应力,电场强度范围:0-4kV/cm;Ni-Mn基铁磁形状记忆合金的交换偏置场发生变化,交换偏置场变化范围:0-122Oe,同时伴随着矫顽力及饱和磁化强度的变化,矫顽力变化范围:0-94Oe,饱和磁化强度变化范围:0-2.38emu/g,零磁场时通过加电场以内后实现自旋翻转,电场强度范围4kV/cm;

加电场通过压电体产生的应力,在Ni-Mn基铁磁形状记忆合金/压电体复合材料中无需偏置磁场实现电场调控的自旋翻转。

采用“电写磁读”实现的信息存储过程,更有利于器件的实用设计,在低能耗、高密度存储领域有很高的应用价值。

具有电场调控自旋翻转特性的Ni-Mn基铁磁形状记忆合金/压电体复合材料。其应用在于

(1)通过向压电体施加电场,可以调节Ni-Mn基铁磁形状记忆合金的交换偏置场,同时调节矫顽力及饱和磁化强度。

(2)在零偏置磁场下,通过给复合材料施加电场,可以实现自旋翻转。

(3)利用零偏置磁场下的电场调控自旋翻转可以实现“电写磁读”的数据储存方式,保证了数据读写的高效性和稳定性,有利于发展低能耗高密度存储器件。

本发明有益效果是,选择Ni-Mn基铁磁形状记忆合金和压电体PMN-PT合成的复合材料,利用压电体产生的应力调节Ni-Mn基记忆合金反铁磁和铁磁的界面耦合,通过电场调控的交换偏置效应在零偏置场实现了电场调控的自旋翻转。利用电场调控的自旋翻转,可以实现高密度、低能耗、快速读写和高稳定的新型存储器件。

附图说明

图1加电场后,压电体产生的机械应力传递给Ni-Mn基铁磁形状记忆合金,引起材料磁性能变化示意图。

图2通过加某一电场X后,Ni-Mn基铁磁形状记忆合金在不同温度(T1图(a)和T2图(b))的交换偏置、矫顽力及饱和磁化强度发生明显变化。

图3通过在零偏置磁场加电场,自旋翻转示意图。如图(a)所示,加某一电场X后,自旋由M1翻转到M2,同时符号由正到负变化。图(b)是电场调控的由负到正的自旋翻转。

具体实施方案

图1所示,通过向压电体施加电场,压电体产生的应力作用在Ni-Mn基铁磁形状记忆合金上,该应力影响反铁磁和铁磁的界面耦合,从而调控交换偏置以及自旋翻转。研究结果表明,通过向压电体施加电场,Ni-Mn基铁磁形状记忆合金的交换偏置发生了改变,且伴随矫顽力及饱和磁化强度的变化,自旋符号随电场发生翻转。磁性的测量表明通过在零偏置磁场施加电场,自旋发生翻转,可以降低能量损耗、提高存储密度。

复合材料为压电材料为PMN-PT单晶;Ni-Mn基铁磁形状记忆合金的分子式是Ni-Mn-Sn,二种材料均是片状材料贴合,其中铁磁形状记忆合金的厚度为30微米的快淬薄带叠合或为1mm,压电体厚度为0.5mm。

图2是上述样品通过加某一电场0.5kV/cm后,Ni-Mn基铁磁形状记忆合金在不同温度(室温=T1图(a)和80℃=T2图(b))的交换偏置、矫顽力及饱和磁化强度发生明显变化。一般T1和T2温度也是视具体材料情况而定的。

图3通过在零偏置磁场加电场,自旋翻转示意图。如图(a)所示,加某一电场X后(1kV/cm),自旋由M1翻转到M2,同时符号由正到负变化。图(b)是电场调控的由负到正的自旋翻转。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号