首页> 中国专利> 一种基于公差参数化的工件定位误差分析与调整方法

一种基于公差参数化的工件定位误差分析与调整方法

摘要

本发明涉及一种基于公差参数化的工件定位误差分析与调整方法,其特征在于:根据矩形平面的公差,计算矩形平面误差;根据圆柱面的公差,计算圆柱面误差;计算矩形平面与矩形平面贴合的定位点误差;计算圆柱面与圆柱面同轴的定位点误差;计算工件定位误差;计算定位点误差的传递系数;计算公差调整方案。本发明通过公差参数化和将夹具转化为6个点位点,实现了工件定位误差分析与调整,具有较高的计算精度和通用性。所提方法通过调整工件和夹具的公差控制工件定位误差,能在一定程度上规避夹具结构调整带来的成本增加。

著录项

  • 公开/公告号CN103729559A

    专利类型发明专利

  • 公开/公告日2014-04-16

    原文格式PDF

  • 申请/专利权人 西北工业大学;

    申请/专利号CN201310739029.7

  • 发明设计人 余剑锋;金丽莎;张杰;唐文斌;

    申请日2013-12-26

  • 分类号G06F19/00;

  • 代理机构西北工业大学专利中心;

  • 代理人王鲜凯

  • 地址 710072 陕西省西安市友谊西路127号

  • 入库时间 2024-02-19 23:28:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-10-05

    授权

    授权

  • 2014-05-14

    实质审查的生效 IPC(主分类):G06F19/00 申请日:20131226

    实质审查的生效

  • 2014-04-16

    公开

    公开

说明书

技术领域

本发明涉及机械加工技术领域,具体地说是,一种基于公差参数化的工件定位误 差分析与调整方法。

背景技术

在机械加工中,工件定位基准误差和夹具误差导致工件位置产生误差,是影响工 件加工质量的重要因素。量化工件定位误差,并根据分析结果制定工件定位误差的调 整方案,对避免可能出现的工件加工质量问题具有重要意义。

目前,国内外针对工件定位的研究侧重夹具的设计与优化,较少有能够满足不同 夹具布局形式的工件定位误差方法。专利“一种高精度旋转定位工作台”(申请号: 201120500632.6)通过两气缸控制夹头松紧夹具的夹头松紧度和调节万向节高度以实 现工作台的精确调整,以满足研磨作业中的高精度定位要求。专利“一种定位夹具” (申请号:201220203288.9)设计了一种具有较高定位精度,同时能保证工件定位稳 定性的定位夹具。文献“Avariational method ofrobust fixture configuration design for3-D  workpieces”(W.Cai,S.Hu,J.Yuan,《Journal of Manufacturing Science and  Engineering》,1997,119(4A)∶593-602.)建立了定位销误差与工件定位误差之间的数学 模型。文献“Locating error analysis and tolerance assignment for computer-aided fixture  design”(RongY,Hu W,Kang Y,《International Journal of Production Research》,2001, 39(15):3529-3545.)针对3-2-1、孔-销和V型块3种夹具布局形式,分别给出了工件定 位误差分析方法。从国内外研究现状来看,目前的围绕工件定位误差分析仍然存在不 足:1)夹具布局形式具有多样性,而每一种夹具布局形式下的工件定位误差分析方法 需要分别建立,通用性差;2)在工件定位误差调整或控制方面,依赖于夹具结构的调 整,成本较高。本发明将夹具布局形式转化为6个定位点,提出一种基于公差参数化 的工件定位误差分析与调整方法。所提方法根据工件定位误差调整工件和夹具的公差, 以达到控制工件定位误差的目的,具有较高的计算精度和通用性。

发明内容

要解决的技术问题

本发明的目的是克服现有技术的不足,提供一种基于公差参数化的工件定位误差 分析与调整方法。

技术方案

一种基于公差参数化的工件定位误差分析与调整方法,其特征在于:所述方法包 括以下步骤:

步骤1:根据矩形平面的公差,计算矩形平面误差;根据圆柱面的公差,计算圆 柱面误差;

步骤2:计算矩形平面与矩形平面贴合的定位点误差;计算圆柱面与圆柱面同轴 的定位点误差;

步骤3:计算工件定位误差,步骤如下:

步骤(1):分别在工件的主定位面、次定位面、第三定位面上分别选择3、2、1 个定位点,将定位点记为Li,其中i=1,2,…,6,Li=[lix,liy,liz]T

步骤(2):计算工件定位误差δu=-J-1·Φ·w,其中:δu=[δxp,δyp,δzp,δα,δβ,δγ]T表示工件定位误差,表示6个定位点的误差; J=[J1,J2,J3,J4,J5,J6]T,Ji=[-nix,-niy,-niz,niyliz-nizliy,nizlix-nixliz,nixliy-niylix],其中nix、niy、 niz分别为点Li的法矢的x轴、y轴、z轴的坐标分量;

Φ=n1T000000n2T000000n3T000000n4T000000n5T000000n6T

式中ni=[nix,niy,niz]T

步骤(3):计算工件上的测量点的法向误差,

e=(-δγ×my+δβ×mz+δxp)×ax+(-δγ×mx-δα×mz+δyp)×ay+(-δβ×mx+δα×my+δzp)×az

式中e为测量点的法向误差,mx、my、mz为工件上的测量点的三个坐标值,ax、 ay、az为测量点的单位法矢的三个坐标值;

步骤4:计算定位点误差的传递系数;

●计算定位点L1的误差的传递系数:

(a)计算由定位点L1引起的工件定位误差:s1=-J-1·Φ·w1

式中s1=[s11,s12,s13,s14,s15,s16]T,w1=[n1,03×1,03×1,03×1,03×1,03×1]T,n1=[n1x,n1y,n1z]T表示工 件上L1处的单位法矢,03×1表示3行1列的零向量;

(b)计算由定位点L1的误差的传递系数

c1=(-s16×my+s15×mz+s11)×ax+(-s16×mx-s14×mz+s12)×ay+(-s15×mx+s14×my+s13)×az

●计算定位点L2的误差的传递系数:

(a)计算由定位点L2引起的工件定位误差s2=-J-1·Φ·w2

式中s2=[s21,s22,s23,s24,s25,s26]T,w2=[03×1,n2,03×1,03×1,03×1,03×1]T,n2=[n2x,n2y,n2z]T表 示工件上L2处的单位法矢,03×1表示3行1列的零向量;

(b)计算由定位点L2的误差的传递系数

c2=(-s26×my+s25×mz+s21)×ax+(-s26×mx-s24×mz+s22)×ay+(-s25×mx+s24×my+s23)×az

●计算定位点L3的误差的传递系数:

(a)计算由定位点L3引起的工件定位误差s3=-J-1·Φ·w3

式中s3=[s31,s32,s33,s34,s35,s36]T,w3=[03×1,03×1,n3,03×1,03×1,03×1]T,n3=[n3x,n3y,n3z]T表 示工件上L3处的单位法矢,03×1表示3行1列的零向量;

(b)计算由定位点L3的误差的传递系数:

c3=(-s36×my+s35×mz+s31)×ax+(-s36×mx-s34×mz+s32)×ay+(-s35×mx+s34×my+s33)×az

●计算定位点L4的误差的传递系数:

(a)计算由定位点L4引起的工件定位误差:s4=-J-1·Φ·w4

式中s4=[s41,s42,s43,s44,s45,s46]T,w4=[03×1,03×1,03×1,n4,03×1,03×1]T,n4=[n4x,n4y,n4z]T表示工件上L4处的单位法矢,03×1表示3行1列的零向量;

(b)计算由定位点L4的误差的传递系数:

c4=(-s46×my+s45×mz+s41)×ax+(-s46×mx-s44×mz+s42)×ay+(-s45×mx+s44×my+s43)×az

●计算定位点L5的误差的传递系数:

(a)计算由定位点L5引起的工件定位误差:s5=J-1·Φ·w5

式中s5=[s51,s52,s53,s54,s55,s56]T,w5=[03×1,03×1,03×1,03×1,n5,03×1]T,n5=[n5x,n5y,n5z]T表 示工件上L5处的单位法矢,03×1表示3行1列的零向量;

(b)计算由定位点L5的误差的传递系数:

c5=(-s56×my+s55×mz+s51)×ax+(-s56×mx-s54×mz+s52)×ay+(-s55×mx+s54×my+s53)×az

●计算定位点L6的误差的传递系数:

(a)计算由定位点L6引起的工件定位误差:s6=-J-1·Φ·w6

式中s6=[s61,s62,s63,s64,s65,s66]T,w6=[03×1,03×1,03×1,03×1,03×1,n6]T,n6=[n6x,n6y,n6z]T表 示工件上L6处的单位法矢,03×1表示3行1列的零向量;

(b)计算由定位点L6的误差的传递系数:

c6=(-s66×my+s65×mz+s61)×ax+(-s66×mx-s64×mz+s62)×ay+(-s65×mx+s64×my+s63)×az

步骤5:计算公差调整方案,步骤如下:

(1)重复步骤1~步骤3共N次,生成工件的测量点误差的样本ei,i=1,2,…,N;

(2)计算工件的测量点误差的方差

(3)计算测量点的超差比率d=(6×σ-Tf)/Tf;式中d为测量点的超差比率,Tf为测量点的公差要求;

(4)若d>0,

计算定位点L1上的公差调整方案T11=T110×c1×(1-d)T12=T120×c1×(1-d),式中为定位点L1上 的两个公差的原始值,T11、T12为定位点l1上的两个公差调整后的值;

计算定位点l2上的公差调整方案T21=T210×c2×(1-d)T22=T220×c2×(1-d)式中为定位点L2上的 两个公差的原始值,T21、T22为定位点L2上的两个公差调整后的值;

计算定位点L3上的公差调整方案T31=T310×c3×(1-d)T32=T320×c3×(1-d),式中为定位点L3上 的两个公差的原始值,T31、T32为定位点L3上的两个公差调整后的值;

计算定位点L4上的公差调整方案T41=T410×c4×(1-d)T42=T420×c4×(1-d),式中为定位点L4上 的两个公差的原始值,T41、T42为定位点L4上的两个公差调整后的值;

计算定位点L5上的公差调整方案T51=T510×c5×(1-d)T52=T520×c5×(1-d),式中为定位点L5上 的两个公差的原始值,T51、T52为定位点L5上的两个公差调整后的值;

计算定位点L6上的公差调整方案T61=T610×c6×(1-d)T62=T620×c6×(1-d),式中为定位点L6上 的两个公差的原始值,T61、T62为定位点L6上的两个公差调整后的值。

所述N次为10000次。

有益效果

本发明通过公差参数化和将夹具转化为6个点位点,实现了工件定位误差分析与 调整,具有较高的计算精度和通用性。所提方法通过调整工件和夹具的公差控制工件 定位误差,能在一定程度上规避夹具结构调整带来的成本增加。

附图说明

图1为依据本发明实施方式的算例模型。

图2为工件的定位点和测量点选取示意图。

其中,1为工件,2为夹具,f3为工件上的主定位面,f4为夹具上的主定位面,f5为工件上次定位面(孔),f6为夹具上的次定位面(销),f7为工件上的第三定位面,f8为夹具上的第三定位面,M1、M2、M3和M4为测量点,L1、L2、L3、L4、L5和L6为定 位点。

具体实施方式

基于公差参数化的工件定位误差分析与调整方法步骤如下:

1)根据矩形平面的公差,计算矩形平面误差;根据圆柱面的公差,计算圆柱面误 差。

2)计算矩形平面与矩形平面贴合的定位点误差;计算圆柱面与圆柱面同轴的定位 点误差。

3)计算工件定位误差。

4)计算定位点误差的传递系数。

5)计算公差调整方案。

所述的根据矩形平面的公差,计算矩形平面误差包括以下步骤:

(1)以矩形平面Pk上的一个点o1为原心、平面的单位法矢为z轴,建立直角坐标 系o1x1y1z1,其中k表示编号,o1为坐标系原点,x1为x轴,y1为y轴,z1为z轴。

(2)令矩形平面pk的公差为Tk1,按照均值为0、标准差为Tk1/6的正态分布生成 3个随机数Δk1、Δk2、Δk3

(3)选取矩形平面Pk的3个端点τk1、τk2、τk3,将它们的三维坐标分别记为 [τk1x,τk1y,τk1z]T、[τk2x,τk2y,τk2z]T、[τk3x,τk3y,τk3z]T

(4)计算矩形平面Pk沿z1轴的平移误差tk1z,其具体表达式为:

tk1z=-(τk2y×τk2xk2x×τk3y)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k1+(τk1y×τk3xk1x×tk3y)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k2+(-τk1y×τk2xk1x×τk2y)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k3

(5)计算矩形平面Pk绕x1轴的旋转误差θk1x,其具体表达式为:

θk1x=(τk3xk2x)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k1-(τk3xk1x)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k2-(-τk2xk1x)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k3

(6)计算矩形平面Pk绕y1轴的旋转误差θk1y,其具体表达式为:

θk1y=(τk3yk2y)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k1-(τk3yk1y)/(-τk2y×τk3xk2x×τk3xk1x×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k2-(-τk2yk1y)/(-τk2y×τk3xk2x×τk3yk1y×τk3xk1x×τk3yk1y×τk2xk1x×τk2y)×△k3

(7)计算矩形平面Pk上的点的法向误差,其具体表达式如下:

ξk=-θk1y×lixk1x×liy+tk1z

式中ξk为矩形平面Pk上第i个点Li的法向误差,Li=[lix,liy,liz]T,lix、liy、liz为Li的 坐标值。

所述的根据圆柱面的公差,计算圆柱面误差包括以下步骤:

(1)以圆柱面Ck的轴线上的一个点o2为原心、轴线的单位方向矢量为z轴,建 立直角坐标系o2x2y222,其中k表示编号,o2为坐标系原点,x2为x轴,y2为y轴,z2为 z轴。

(2)令圆柱面轴线的公差为Tk2,按照均值为0、标准差为Tk2/(6[(4-π)/2]1/2)的 正态分布生成4个随机数δk1、δk2、δk3、δk4

(3)选取圆柱面轴线的2个端点γk1、γk2,将它们的三维坐标分别记为 [γk1x,γk1y,γk1z]T、[γk2x,γk2y,γk2z]T

(4)计算圆柱面轴线沿x2轴的平移误差tk2x,其具体表达式为:

tk2x=-γk2z/(-γk2zk1z)×δk1k1z/(-γk2zk1z)×δk3

(5)计算圆柱面轴线沿y2轴的平移误差tk2y,其具体表达式为:

tk2y=-γk2z/(-γk2zk1z)×δk2k1z/(-γk2zk1z)×δk4

(6)计算圆柱面轴线绕x2轴的旋转误差θk2x,其具体表达式为:

θk2x=-1/(-γk2zk1z)×δk2+1/(-γk2zk1z)×δk4

(7)计算圆柱面轴线绕y2轴的旋转误差θk2y,其具体表达式为:

θk2y=1/(-γk2zk1z)×δk1-1/(-γk2zk1z)×δk3

(8)计算圆柱面轴线上的点的x轴方向和y轴方向的误差,其具体表达式为:

rixk=θk2y×liz+tk2x

riyk=-θk2x×liz+tk2y

式中和分别为圆柱面轴线上第i个点Li的x轴方向和y轴方向的误差, Li=[lix,liy,liz]T,lix、liy、liz为Li的坐标值。

所述的计算夹具定位面与工件定位面贴合的定位点误差的表达式如下:

△Li=(ξ12)ni

式中△Li为定位点Li的误差,ξ1表示矩形平面P1上的点的误差,ξ2表示矩形平面P2上的 点的误差,ni=[nix,niy,niz]T为定位点Li的法矢。

所述的计算夹具定位销与工件定位孔同轴的定位点误差的表达式如下:

ΔLi=[rix1+rix2,riy1+riy2,0]T

式中△Li为定位点li的误差,和分别表示圆柱面C1的轴线上点Li的x向误差和y向误差,和分别圆柱面C2的轴线上点li的x向误差和y向误差。

所述的计算工件定位误差包括以下步骤:

(1)分别在工件的主定位面、次定位面、第三定位面上分别选择3、2、1个定位 点,将定位点记为Li,其中i=1,2,…,6,Li=[lix,liy,liz]T

(2)令表示工件定位误差, 表示6个定位点的误差,工件定位误差计算表达式如下:

δu=-J-1·Φ·w

式中J=[J1,J2,J3,J4,J5,J6]T,Ji=[-nix,-niy,-niz,niyliz-nizliy,nizlix-nixliz,nixliy-niylix],其中nix、 niy、niz分别为点Li的法矢的x轴、y轴、z轴的坐标分量,Φ的表达式如下:

Φ=n1T000000n2T000000n3T000000n4T000000n5T000000n6T

上式中ni=[nix,niy,niz]T

(3)计算工件上的测量点的法向误差,其具体表达式如下:

e=(-δγ×my+δβ×mz+δxp)×ax+(-δγ×mx-δα×mz+δyp)×ay+(-δβ×mx+δα×my+δzp)×az

式中e为测量点的法向误差,mx、my、mz为工件上的测量点的三个坐标值,ax、ay、 az为测量点的单位法矢的三个坐标值。

所述的计算定位点误差的传递系数包括以下步骤:

(1)计算定位点L1的误差的传递系数。

(2)计算定位点L2的误差的传递系数。

(3)计算定位点L3的误差的传递系数。

(4)计算定位点L4的误差的传递系数。

(5)计算定位点L5的误差的传递系数。

(6)计算定位点L6的误差的传递系数。

所述的计算定位点L1的误差的传递系数包括以下步骤:

(a)计算由定位点L1引起的工件定位误差,其具体表达式如下:

s1=-J-1·Φ·w1

式中s1=[s11,s12,s13,s14,s15,s16]T,w1=[n1,03×1,03×1,03×1,03×1,03×1]T,n1=[n1x,n1y,n1z]T表示工 件上L1处的单位法矢,03×1表示3行1列的零向量。

(b)计算由定位点L1的误差的传递系数,其具体表达式如下:

c1=(-s16×my+s15×mz+s11)×ax+(-s16×mx-s14×mz+s12)×ay+(-s15×mx+s14×my+s13)×az

所述的计算定位点L2的误差的传递系数包括以下步骤:

(a)计算由定位点L2引起的工件定位误差,其具体表达式如下:

s2=-J-1·Φ·w2

式中s2=[s21,s22,s23,s24,s25,s26]T,w2=[03×1,n2,03×1,03×1,03×1]T,n2=[n2x,n2y,n2z]T表示 工件上L2处的单位法矢,03×1表示3行1列的零向量。

(b)计算由定位点L2的误差的传递系数,其具体表达式如下:

c2=(-s26×my+s25×mz+s21)×ax+(-s26×mx-s24×mz+s22)×ay+(-s25×mx+s24×my+s23)×az

所述的计算定位点L3的误差的传递系数包括以下步骤:

(a)计算由定位点L3引起的工件定位误差,其具体表达式如下:

s3=-J-1·Φ·w3

式中s3=[s31,s32,s33,s34,s35,s36]T,w3=[03×1,03×1,n3,03×1,03×1,03×1]T,n3=[n3x,n3y,n3z]T表示 工件上L3处的单位法矢,03×1表示3行1列的零向量。

(b)计算由定位点L3的误差的传递系数,其具体表达式如下:

c3=(-s36×my+s35×mz+s31)×ax+(-s36×mx-s34×mz+s32)×ay+(-s35×mx+s34×my+s33)×az

所述的计算定位点L4的误差的传递系数包括以下步骤:

(a)计算由定位点L4引起的工件定位误差,其具体表达式如下:

s4=-J-1·Φ·w4

式中s4=[s41,s42,s43,s44,s45,s46]T,w4=[03×1,03×1,03×1,n4,03×1,03×1]T,n4=[n4x,n4y,n4z]T表示 工件上L4处的单位法矢,03×1表示3行1列的零向量。

(b)计算由定位点L4的误差的传递系数,其具体表达式如下:

c4=(-s46×my+s45×mz+s41)×ax+(-s46×mx-s44×mz+s42)×ay+(-s45×mx+s44×my+s43)×az

所述的计算定位点L5的误差的传递系数包括以下步骤:

(a)计算由定位点L5引起的工件定位误差,其具体表达式如下:

s5=-J-1·Φ·w5

式中s5=[s51,s52,s53,s54,s55,s56]T,w5=[03×1,03×1,03×1,03×1,n5,03×1]T,n5=[n5x,n5y,n5z]T表示 工件上L5处的单位法矢,03×1表示3行1列的零向量。

(b)计算由定位点L5的误差的传递系数,其具体表达式如下:

c5=(-s56×my+s55×mz+s51)×ax+(-s56×mx-s54×mz+s52)×ay+(-s55×mx+s54×my+s53)×az

所述的计算定位点L6的误差的传递系数包括以下步骤:

(a)计算由定位点L6引起的工件定位误差,其具体表达式如下:

s6=-J-1·Φ·w6

式中s6=[s61,s62,s63,s64,s65,s66]T,w6=[03×1,03×1,03×1,03×1,03×1,n6]T,n6=[n6x,n6y,n6z]T表示 工件上L6处的单位法矢,03×1表示3行1列的零向量。

(b)计算由定位点L6的误差的传递系数,其具体表达式如下:

c6=(-s66×my+s65×mz+s61)×ax+(-s66×mx-s64×mz+s62)×ay+(-s65×mx+s64×my+s63)×az

所述的计算工件定位误差的方差包括以下步骤:

(1)重复步骤1)至步骤5)共10000次,生成工件的测量点误差的样本,记为ei, i=1,2,…,10000。

(2)计算工件的测量点误差的方差,其具体表达式如下:

σ2=Σi=110000(ei-e)2/10000

(3)计算测量点的超差比率,其具体表达式如下:

d=(6×σ-Tf)/Tf

式中d为测量点的超差比率,Tf为测量点的公差要求。

(4)若d>0,计算定位点L1上的公差调整方案,其具体表达式如下:

T11=T110×c1×(1-d)T12=T120×c1×(1-d)

式中为定位点L1上的两个公差的原始值,T11、T12为定位点L1上的两个公差调 整后的值。

(5)若d>0,计算定位点L2上的公差调整方案,其具体表达式如下:

T21=T210×c2×(1-d)T22=T220×c2×(1-d)

式中为定位点L2上的两个公差的原始值,T21、T22为定位点L2上的两个公差调 整后的值。

(6)若d>0,计算定位点L3上的公差调整方案,其具体表达式如下:

T31=T310×c3×(1-d)T32=T320×c3×(1-d)

式中为定位点L3上的两个公差的原始值,T31、T32为定位点L3上的两个公差调 整后的值。

(7)若d>0,计算定位点L4上的公差调整方案,其具体表达式如下:

T41=T410×c4×(1-d)T42=T420×c4×(1-d)

式中为定位点L4上的两个公差的原始值,T41、T42为定位点L4上的两个公差调 整后的值。

(8)若d>0,计算定位点L5上的公差调整方案,其具体表达式如下:

T51=T510×c5×(1-d)T52=T520×c5×(1-d)

式中为定位点L5上的两个公差的原始值,T51、T52为定位点L5上的两个公 差调整后的值。

(9)若d>0,计算定位点L6上的公差调整方案,其具体表达式如下:

T61=T610×c6×(1-d)T62=T620×c6×(1-d)

式中为定位点L6上的两个公差的原始值,T61、T62为定位点L6上的两个公 差调整后的值。

实施例

如图1所示,一个200mm×200mm×100mm的立方体工件在夹具上完成定位,工 件和夹具上的定位面(参看图1中的f3,f4,f5,f6,f7,f8)的公差均取0.2mm。参看图2, 将图1中的4和3构成的夹具定位面与工件定位面贴合转化为3个定位点(L1、L2、 L3);将图1中的6和5构成的夹具定位销与工件定位孔同轴转化为2个定位点(L4、 L5);将图1中的8和7构成的夹具定位面与工件定位面贴合转化为1个定位点(L6)。 6个点位点的位矢、法矢,见表1。参看图2,取4个测量点,它们的位矢和法矢见表 2。

表1定位点及其对工件定位误差的贡献度

定位点 位矢 法矢 L1[-100,100,0] [0,0,-1] L2[-100,-100,0] [0,0,-1] L3[100,-100,0] [0,0,-1] L4[-50,-50,0] [-1,0,0] L5[-50,-50,0] [0,-1,0] L6[100,100,10] [0,-1,0]

表2测量点

测量点 位矢 法矢 M1[-100,-100,100] [0,0,1] M2[100,-100,100] [0,0,1] M3[100,100,100] [0,0,1] M4[100,-100,100] [0,0,1]

本发明计算得到的测量点误差的方差与3DCS计算得到的测量点误差的方差见表 3。所述的3DCS是商用公差分析软件。从表3可以看出,本发明计算结果具有很高的 精度。

表3本发明计算结果与3DCS计算结果对比

测量点 本发明计算结果 3DCS计算结果 相对误差 M10.0471 0.0475 0.77% M20.0466 0.0467 0.25% M30.0817 0.0822 0.71% M40.0472 0.0475 0.74%

4个测量点的公差要求取0.4mm,计算得到M1、M2、M3和M4的超差比率分别 为-0.2930、-0.3008、0.2248和-0.2923。从4个测量点的超差比率可以看出,M3的超 出公差要求22.5%,因此,选择M3计算定位点误差的传递系数。计算得到6个定位 点传递系数见表4。根据测量点M3计算公差调整方案,结果见表5。根据表5的公差 调整方案重新计算测点的超差比率,并将结果与调整前进行对比,见表6。从表6可 以看出调整后的测量点超差比率相对调整前均变小,且所有的值均为负值,说明测量 点误差均在公差要求范围内,即工件定位误差得到了有效控制。

表4定位点误差的传递系数

定位点 L1L2L3L4L5L6传递系数 1 1 1 0 0 0

表5公差调整方案

特征 f3f4f5f6f7f8公差 0.15 0.15 0.2 0.2 0.2 0.2

表6公差调整前后超差比率对比

测量点 M1M2M3M4公差调整前 -0.2930 -0.3008 0.2248 -0.2923 公差调整后 -0.4710 -0.4723 -0.0823 -0.4723

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号