首页> 中国专利> 一种形貌可控的导电聚苯胺/有机化粘土纳米复合材料的制备方法

一种形貌可控的导电聚苯胺/有机化粘土纳米复合材料的制备方法

摘要

本发明涉及一种形貌可控的导电聚苯胺/有机化粘土纳米复合材料的制备方法。聚苯胺被认为是最有工业化应用前景的导电高分子材料,但聚苯胺的无定型结构及不规则形貌使其在纳米模版、纳米传感器等前沿领域的应用受到限制。本发明以纳米级具有特殊形貌的有机化粘土为模板,引发苯胺单体在有机化粘土表面接枝聚合,制备形貌规则的聚苯胺/有机化粘土纳米复合材料。本发明纳米复合材料的形貌可以根据所使用有机化粘土的形貌进行控制,并且具有较高的电导率,可达0.5~7S/cm。

著录项

  • 公开/公告号CN103554490A

    专利类型发明专利

  • 公开/公告日2014-02-05

    原文格式PDF

  • 申请/专利权人 陕西科技大学;

    申请/专利号CN201310509398.7

  • 发明设计人 邵亮;朱京玥;冯洁;

    申请日2013-10-25

  • 分类号C08G73/02;C08K13/06;C08K9/06;C08K7/00;C08K3/34;C08L79/02;

  • 代理机构西安新思维专利商标事务所有限公司;

  • 代理人黄秦芳

  • 地址 710021 陕西省西安市未央大学城

  • 入库时间 2024-02-19 21:48:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-09-30

    授权

    授权

  • 2014-03-12

    实质审查的生效 IPC(主分类):C08G73/02 申请日:20131025

    实质审查的生效

  • 2014-02-05

    公开

    公开

说明书

技术领域

    本发明涉及一种导电聚苯胺纳米复合材料的制备方法,具体涉及一种形貌可控的导电聚苯胺/有机化粘土纳米复合材料的制备方法。

背景技术

导电聚合物又称导电高分子,是由具有共轭双键的高分子主链经化学或电化学掺杂而显示半导体甚至导体性质的聚合物。通过可逆的掺杂-脱掺杂能够实现导电性能的转换,可根据使用的需要在绝缘体、半导体和导体之间进行调节。导电聚合物所具有的物理化学性能,是迄今为止任何材料都无法比拟的。 

聚苯胺以其优良的导电性能、较高的热稳定性、相对好的可加工性等特点,成为现有导电高分子材料中综合性能最好的一类,被认为是最有实际应用前景的导电聚合物之一。自上世纪80年代MacDiarmid重新开发聚苯胺以来,已得到长足的发展,并在诸多领域获得了一定的应用。纳米结构的聚苯胺,特别是纳米结构的管、棒、线及其功能化目前尚处在科研探索阶段,仅在为数不多的领域得到应用。

电子通讯技术和计算技术等方面的飞速发展对电子器件的集成度提出了更高的要求。如果将导电聚苯胺在分子水平上的“自构筑”的分子设计与合成,自组装为分子导线、分子线圈和分子器件的方法和技术,应用到计算机中的逻辑开关和分子连接线,将会对未来具有生物思维的计算机的做出巨大贡献。此外, 聚苯胺在人造肌肉、传感器、图像处理、气体分离薄膜及智能窗等方面也具有广泛的应用价值。但聚苯胺的无定型结构导致的不规则形貌及较低的导电性使其在很多前沿领域的应用受到限制。

发明内容

本发明的目的是提供一种价格低廉、工艺简单的形貌可控的导电聚苯胺/有机化粘土纳米复合材料的制备方法。

为解决上述技术问题,本发明所采取的技术方案是:一种形貌可控的导电聚苯胺/有机化粘土纳米复合材料的制备方法,其特别之处在于:

(1)将苯胺单体加入到0.5~3 mol/L的酸溶液中,加入纳米级具有形貌的有机化粘土,有机化粘土与苯胺单体的质量比为0.03/1~0.5/1,搅拌0.1~1h,超声波振动处理5~60 min;

(2)超声处理之后,在                                               条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为0.5/1~4/1,聚合时间为4~12 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用有机溶剂淋洗反应产物,室温干燥,制备得聚苯胺/有机化粘土纳米复合材料。

所述步骤(1)中酸溶液的浓度为2 mol/L,有机化粘土与苯胺单体的质量比为0.2/1;所述步骤(2)中过硫酸铵与苯胺单体的质量比例为0.5/1。

所述酸溶液为盐酸、硫酸、氨基磺酸或樟脑磺酸;所述有机溶剂为乙醇、甲醇或丙酮;所述有机化粘土为纳米棒状、纳米片状或者纳米管状。

所述的有机化粘土为经偶联剂γ-氨丙基三乙氧基硅烷或苯胺三乙氧基硅烷改性的粘土。

    与现有技术相比较,本发明具有以下有益效果:

以纳米级具有不同形貌的有机化粘土为模板,如凹凸棒(纳米棒状)、埃洛石(纳米管状)、蒙脱土(纳米片状)、蛭石(纳米片状)或海泡石(纳米片状)中的一种,实现对导电聚苯胺形貌的控制,模板选择性较大,且价格低廉,容易获得。所制备的导电聚苯胺/有机化粘土纳米复合材料,根据有机化粘土形貌的不同,可实现对复合材料形貌的控制,获得形貌规则的导电聚苯胺/有机化粘土纳米复合材料,且具有较高的电导率,可达0.5~7 S/cm。

附图说明

     图1 为KH-550改性凹凸棒/聚苯胺纳米纤维的照片;

     图2为KH-550改性埃洛石/聚苯胺纳米管的照片;

图3为ND-42改性凹凸棒/聚苯胺纳米纤维的照片;

图4为ND-42改性埃洛石/聚苯胺纳米管的照片。

具体实施方式

下面结合具体实施方式对本发明进行详细的说明。

本发明所述的一种形貌可控的导电聚苯胺/有机化粘土纳米复合材料的制备方法,由以下步骤实现:

(1)将苯胺单体加入到0.5~3 mol/L的酸溶液中,加入纳米级具有形貌的有机化粘土,有机化粘土与苯胺单体的质量比为0.03/1~0.5/1,搅拌0.1~1h,超声波振动处理5~60 min;

(2)超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为0.5/1~4/1,聚合时间为4~12 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用有机溶剂淋洗反应产物,室温干燥,制备得聚苯胺/有机化粘土纳米复合材料。

所述步骤(1)中酸溶液的浓度为2 mol/L,酸溶液为盐酸、硫酸、氨基磺酸或樟脑磺酸;有机化粘土与苯胺单体的质量比为0.2/1;所述步骤(2)中过硫酸铵与苯胺单体的质量比例为0.5/1。

所述有机溶剂为乙醇、甲醇及丙酮;所述有机化粘土为纳米棒状、纳米片状或者纳米管状,例如凹凸棒(纳米棒状)、埃洛石(纳米管状)、蒙脱土(纳米片状)、蛭石(纳米片状)或海泡石(纳米片状)中的一种;有机化粘土为经偶联剂γ-氨丙基三乙氧基硅烷或苯胺三乙氧基硅烷改性的粘土。

实施例一:

将苯胺单体加入到0.5mol/L的溶液中,加入纳米级具有形貌的有机化粘土,有机化粘土与苯胺单体的质量比为0.03/1,搅拌0.1h,超声波振动处理10min;

(2)超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为0.5/1,聚合时间为4 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用有机溶剂淋洗反应产物,室温干燥,制备得聚苯胺/有机化粘土纳米复合材料。

实施例二:

(1)将苯胺单体加入到2 mol/L的溶液中,加入有机化凹凸棒(经KH-550改性),有机化凹凸棒与苯胺单体的质量比为0.2/1,搅拌0.5 h,超声波振动处理20 min。

(2)超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为1.5/1,聚合时间为6 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用无水乙醇淋洗反应产物,室温干燥,制备得聚苯胺/有机化凹凸棒纳米复合材料。

该纳米复合材料的微观形貌与有机化凹凸棒的形貌直接相关,呈现以聚苯胺为壳,凹凸棒为核的纳米棒状。电导率为4.1 S/cm。其形貌如图1所示

实施例三:

(1)将苯胺单体加入到2 mol/L的溶液中,加入有机化埃洛石(经KH-550改性),有机化埃洛石与苯胺单体的质量比为0.2/1,搅拌0.5 h,超声波振动处理20 min。

(2)超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为1.5/1,聚合时间为6 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用无水乙醇淋洗反应产物,室温干燥,制备得聚苯胺/有机化埃洛石纳米复合材料。

该纳米复合材料的微观形貌与有机化埃洛石的形貌直接相关,呈现以聚苯胺为壳,埃洛石为核的纳米管状。电导率为3.5 S/cm,其形貌如图2所示

实施例四:

(1)将苯胺单体加入到2 mol/L的溶液中,加入有机化凹凸棒(经ND-42改性),有机化凹凸棒与苯胺单体的质量比为0.2/1,搅拌0.5 h,超声波振动处理20 min。

(2)超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为1.5/1,聚合时间为6 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用无水乙醇淋洗反应产物,室温干燥,制备得聚苯胺/有机化凹凸棒纳米复合材料。

该纳米复合材料的微观形貌与有机化凹凸棒的形貌直接相关,呈现以聚苯胺为壳,凹凸棒为核的纳米棒状。电导率为3.3 S/cm,其形貌如图3所示。

实施例五:

(1)将苯胺单体加入到2 mol/L的溶液中,加入有机化埃洛石(经ND-42改性),有机化埃洛石与苯胺单体的质量比为0.2/1,搅拌0.5 h,超声波振动处理20 min。

(2)超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为1.5/1,聚合时间为6 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用无水乙醇淋洗反应产物,室温干燥,制备得聚苯胺/有机化埃洛石纳米复合材料,该纳米复合材料的微观形貌与有机化埃洛石的形貌直接相关,呈现以聚苯胺为壳,埃洛石为核的纳米管状。电导率为3.8 S/cm。其形貌如图4所示。

实施例六:

(1)将苯胺单体加入到2 mol/L的溶液中,加入有机化蒙脱土(经KH550改性),有机化蒙脱土与苯胺单体的质量比为0.2/1,搅拌0.5 h,超声波振动处理20 min。

超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为1.5/1,聚合时间为6 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用无水乙醇淋洗反应产物,室温干燥,制备得聚苯胺/有机化蒙脱土纳米复合材料,该纳米复合材料的微观形貌与有机化蒙脱土的形貌直接相关,呈现以聚苯胺为壳,蒙脱土为核的纳米片状。电导率为2.1 S/cm。

实施例七:

(1)将苯胺单体加入到3mol/L的溶液中,加入有机化蒙脱土(经KH550改性),有机化蒙脱土与苯胺单体的质量比为0.5/1,搅拌1h,超声波振动处理60 min。

超声处理之后,在条件下,滴加过硫酸铵溶液引发苯胺单体聚合,过硫酸铵与苯胺单体的质量比例为4/1,聚合时间为12 h,将反应产物抽滤,用蒸馏水洗至滤液呈中性,使用无水乙醇淋洗反应产物,室温干燥,制备得聚苯胺/有机化蒙脱土纳米复合材料,该纳米复合材料的微观形貌与有机化蒙脱土的形貌直接相关,呈现以聚苯胺为壳,蒙脱土为核的纳米片状。电导率为7 S/cm。

本发明以纳米级具有特殊形貌的有机化粘土为模板,引发苯胺单体在有机化粘土表面接枝聚合,制备形貌规则的聚苯胺/有机化粘土纳米复合材料,该纳米复合材料的形貌可以根据所使用有机化粘土的形貌进行控制,并且具有较高的电导率。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号