首页> 中国专利> 构图血浆介导激光钻孔晶状体囊和三维超声乳化分割的方法和装置

构图血浆介导激光钻孔晶状体囊和三维超声乳化分割的方法和装置

摘要

本发明涉及一种构图血浆介导激光钻孔晶状体囊和三维超声乳化分割的方法和装置。在眼组织中在不同深度进行切口的系统和方法。此系统和方法可以一种图案将光线会聚在处于眼组织中不同深度的各种焦点。分割的晶状体可用于同时产生多个焦点。可通过顺序或者同时地将光聚焦在不同深度、产生扩大的血浆柱以及产生长腰束而获得最佳切口。

著录项

  • 公开/公告号CN103536390A

    专利类型发明专利

  • 公开/公告日2014-01-29

    原文格式PDF

  • 申请/专利权人 光学医疗公司;

    申请/专利号CN201110250567.0

  • 申请日2006-01-10

  • 分类号A61F9/008(20060101);A61F9/007(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人刘金凤;王忠忠

  • 地址 美国加利福尼亚州

  • 入库时间 2024-02-19 21:01:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-29

    专利权的转移 IPC(主分类):A61F9/008 登记生效日:20200511 变更前: 变更后: 申请日:20060110

    专利申请权、专利权的转移

  • 2015-07-22

    授权

    授权

  • 2014-03-12

    实质审查的生效 IPC(主分类):A61F9/008 申请日:20060110

    实质审查的生效

  • 2014-01-29

    公开

    公开

说明书

本申请为发明名称为“构图血浆介导激光钻孔晶状体囊和三维超声乳化分割的方法和装置”、申请号为200680001991.9、申请日为2006年1月10日的专利申请的分案申请。

本申请要求享有2005年1月10日申请的美国临时申请60/643,056的权益。

技术领域

本发明涉及眼外科手术和系统。

发明背景

白内障摘除术是世界范围内最常用的外科手术之一,估计每年在美国有2.5百万病例,在全世界有9.1百万病例。预计截止2006年全球会增长至大约13.3百万病例。此市场由各个部分组成,包括供移植的人工晶状体,便于手术动作的粘弹性聚合体,包括超声乳化探头、管道、各种刀和钳的一次性仪器。在前晶状体囊中进行开口(称为前晶状体囊切开术或者最近的晶状体囊切开术)之后,现代的白内障摘除术典型地通过称为超声乳化的技术进行,在这种技术中,具有用于冷却的相关水流的超声探头用于雕刻(sculpt)晶状体较硬的核。在这些步骤以及通过抽吸方法在没有分割的情况下去除剩余的较软晶状体皮质之后,合成的可折叠人工晶状体(IOL)通过小切口插入眼中。此技术在多数情况下具有超过95%极高的解剖和视力成功率,并且可使视力迅速恢复。

手术中最早而且最重要的步骤之一是执行晶状体囊切开术。此步骤源自较早的称为开罐式解囊的技术,其中尖针用于以圆形方式穿孔前晶状体囊,接下来去除直径通常为5-8mm的圆形晶状体囊部分。这有助于通过超声乳化进行下一步的核雕刻。由于各种与初始开罐技术相关的复杂性,本领域的一流专家试图开发一种在乳化步骤之前去除前晶状体囊的更好技术。Neuhann和Gimbel在这一点上领先,并且于1991年在出版物中突出了这些(Gimbel,Neuhann, Development Advantages and Methods of the Continuous Curvilinear Capsulorhexis. Journal of Cataract and Refractive Surgery 1991;17:110-111,包含在此作为参考)。晶状体囊切开术的概念在于提供一种平滑连续的圆形开口,通过这些开口不仅可以安全而简单地进行核超声乳化而且可容易插入人工晶状体。这样提供了用于插入的清晰中心通道,以及通过患者将图像传送至视网膜的永久开口,还提供了限制脱位(dislocation)可能的位于剩余囊内的IOL支承。

采用较老的开罐式截囊术乃至使用连续晶状体囊切开术,会产生如下问题:医师由于缺少红色反射而不能充分显示囊,不能安全地抓住囊,不能没有径向开口和扩展地撕开合适尺寸的平滑圆孔;或者产生下面的技术问题:初始切开之后维持前腔深度,小尺寸瞳孔,或者由于晶状体不透明而缺少红反射。通过采用染料例如亚甲蓝或者靛青绿可尽量减少一些显示问题。另外的复杂性存在于具有弱悬韧带的患者(通常为老年患者)以及具有非常软和弹性的囊而且很难机械撕裂的非常年幼的患者。

最后,在术中外科步骤中以及在前连续环形晶状体囊切开术步骤之后,其直径通常处于5-7mm的范围,以及在IOL插入之前,进行水分离、水分层以及超声乳化步骤。这些是为了从眼中去除而识别和软化核。这些步骤最长,并且由于采用超声脉冲,其会引起无意撕裂后晶状体囊、晶状体碎片后脱位、以及之前对角膜内皮和/或虹膜以及其它精密的人工结构可能的损坏,所以认为这些步骤最危险。经历最浑浊并因此经历最大视力损害的晶状体中心核在结构上最硬并且需要特殊技术。产生了采用超声分隔并且要求医师很高技术灵活性的各种外科操作,包括雕刻晶状体即所谓的“划分和克服技术”以及大量相似的原创性命名技术,例如劈裂技术。这些均存在通常的与精密人工动作相关的复杂性(Gimbel. Chapter 15: Principles of Nuclear PhacoEmulsification. In Cataract Surgery Techniques Complications and Management. 2nded Edited by Steinert et al. 2004:153-181,组合在此作为参考)。

在白内障手术之后,视力不健全的其中一个重要原因在于后晶状体囊中不透明性的缓慢发展,其通常作为支撑晶状体的方法在白内障手术中保持完好以提供良好的IOL集中性,还作为一种防止半脱位在后面进入玻璃体腔的手段。据估计大约28-50%的患者出现复杂的后晶状体囊浑浊(Steinert and Richter. Chapter 44. In Cataract Surgery Techniques Complications and Management. 2nded.Edited by Steinert et al. 2004:pg. 531-544,并且组合在此作为参考)。由于这个问题,认为其发生原因在于沿后晶状体囊的上皮和纤维化的发生,后晶状体囊处于留在晶状体中纬线附近剩余上皮细胞小胰岛的中心,开发了起初采用手术夹层以及最近采用钕YAG激光以在中心无创开口的技术。但是,仍然认为大多数这些技术较为初级,其要求医师较高程度的灵活性并且产生一系列在后晶状体囊上手工规划的1到10mJ的高能脉冲,同时要努力防止对人工晶状体的损坏。Steinert 和 Richter. Chapter 44. In Cataract Surgery Techniques Complications and Management. 2nded的图44-10,第 537页(参见完整的上述引用)中清楚描述了所产生开口的过程。

所需要的是提高白内障医疗标准的眼科方法、技术以及设备和其它眼科病理学。

发明概述

这里公开的技术和系统具有许多优点。特别是,可以采用三维构图激光切割实现快速而准确地打开晶状体囊和切割晶状体核以及皮质。降低了此步骤的持续时间和打开囊与切割硬核的风险,同时提高了手术的精度。采用构图激光扫描和仅仅采用细吸针去除了切成小碎片的晶状体。采用如下技术去除了切成小碎片的晶状体,即构图激光扫描和使用常规超声乳化技术的超声乳化器,或者被修正以识别切割晶状体更易去除(即要求较低的手术精度或者灵活性)和/或至少明显降低超声乳化能量、精度和/或持续时间的技术。能够在晶状体囊上的精确位置形成非常小且几何准确的开口,这里采用常规、纯手工技术如果可能将非常困难地形成晶状体囊中开口。这些开口使得常规眼科手术更加精确或者改变更大,并且可以产生新方法。例如,这里描述的技术可有助于促进前和/或后晶状体去除、植入可注射或者小的可折叠IOL,以及注射适于形成适合IOL的化合物或者结构。

这里所描述的技术可实现的另一个步骤控制形成前晶状体表面中的半圆或者环形瓣。这与需要完整的圆或者几乎完整的圆切割的常规方法相反。采用常规、手工晶状体囊切开术技术形成的开口主要依赖于晶状体囊组织的机械剪切特征和晶状体囊的不可控撕裂形成开口。这些常规技术限制在中心晶状体部分或者采用常规切割仪器可到达的区域,并且在形成撕裂期间以变化的限制程度利用精确的解剖测量。相反,这里所描述的可控制构图激光技术可用于在前晶状体表面上的任何位置以及以任何形状产生半圆囊瓣。其可自发密封或者借助自体或者合成组织胶或者其它方法密封。而且,这里所描述的可控制构图激光技术还具有可用性和/或采用精确的晶状体囊尺寸、测量和其它允许形成瓣或者开口同时最小化对周围组织影响的空间信息。瓣不限于半圆形状,而可以是任何有益于继续例如下面步骤的形状,即注射或者形成复杂或者高级的IOL设备或者所谓的可注射聚合物或者固定的适应IOL。

可在白内障手术期间采用这里所公开的技术以去除所有或者一部分前囊,或者将其用在术中需要去除后囊的环境中,例如孩子的特殊环境或者当存在于去除核之后不能通过抽吸去除的密集后囊不透明性时。在白内障手术的第一、第二和第三年,后晶状体囊的间接不透明性会普遍,并且会通过采用这里所公开技术而使得执行或者改进的后晶状体囊切开术受益。

因为采用这里的技术所形成切口的准确性和无损伤性,因此认为对最小创伤眼科手术和可自己愈合的晶状体切口产生了新的含意。

一方面,在眼组织中形成切口的方法包括产生光束,将光束聚集在位于眼组织中第一深度的第一焦点,以一定图案的光束扫描眼部同时将光束聚集在第一深度,将光束聚集在位于眼组织中与第一深度不同的第二深度的第二焦点,并以此图案的光束扫描眼部同时将光束聚集在第二深度。

另一方面,在眼组织中形成切口的方法包括产生光束、使光束通过多焦距光学元件,从而第一部分光束聚集在位于眼组织中第一深度的第一焦点,第二部分光束聚集在位于眼组织中与第一深度不同的第二深度的第二焦点。

而另一方面,在眼组织中形成切口的方法包括产生至少具有第一光脉冲和第二光脉冲的光束,将第一和第二光脉冲连续地聚集在眼组织中,其中第一脉冲在眼组织中的第一深度产生血浆(plasma),并且第二脉冲在血浆消失之前到达并被血浆吸收以使血浆沿光束在眼组织中延伸。

而另一方面,在眼组织中形成切口的方法包括产生光束,将此光聚集在眼组织中以在眼组织中产生长聚集光柱,其中聚集包括使光通过下面元件的至少一个:非球面晶状体、具有球面像差的高度聚集晶状体、曲面镜、柱面晶状体、自适应光学元件、棱镜以及衍射光学元件。

另一方面,从眼中去除晶状体和碎屑的方法包括产生光束,将光聚集到眼中以将晶状体切割成块,去除晶状体块,然后将光聚集到眼中以烧蚀眼中的碎屑。

另一方面,从眼中的晶状体囊去除晶状体的方法包括产生光束,将光聚集进眼中以在晶状体囊中形成切口,将超声探针通过切口插入并插入晶状体囊以使晶状体破裂为碎片,从晶状体囊去除晶状体碎片,清洗晶状体囊以从中去除内皮细胞,并将至少一个合成的可折叠人工晶状体或者光学透明的凝胶插入晶状体囊。

另一方面,治疗眼组织的眼科手术系统包括产生光束的光源,将光束聚集在眼组织上的传送系统,控制光源和传送系统从而使光束聚集在眼组织中多个深度上多个焦点的控制器。

而另一方面,治疗眼组织的眼科手术系统包括产生具有第一光脉冲和第二光脉冲光束的光源,将光束聚集在眼组织上的传送系统,控制光源和传送系统从而使第一和第二光脉冲连续聚集在眼组织上的控制器,其中第一脉冲在眼组织中的第一深度产生血浆,其中第二脉冲在血浆消失之前到达并被血浆吸收以使血浆在眼组织中沿光束延伸。

另一方面,治疗眼组织的眼科手术系统包括产生光束的光源,将光束聚集在眼组织上的传送系统,传送系统包括下面元件的至少一个:非球面晶状体、具有球面像差的高度聚集晶状体、曲面镜、柱面晶状体、自适应光学元件、棱镜以及衍射光学元件,控制光源和传送系统从而在眼组织中产生长聚集光柱的控制器。

通过浏览说明书、权利要求书和附加的附图将清楚本发明的其它目的和特征。

附图简介

图1是将光束射入或者扫描进患者眼中的系统平面图。

图2是眼部前腔和在晶状体囊上的焦点产生血浆的激光束的视图。

图3是用于前晶状体囊切开术(capsulorexis)的虹膜和环形图案晶状体的平面图。

图4是应用在用于前腔轴面OTC测量的晶状体上的线图案视图。

图5是眼部前腔和应用于晶状体囊的3维激光图案的视图。

图6是通过连续应用延迟短于血浆寿命的脉冲串(1,2和3)而在焦点区产生的轴向长血浆柱。

图7A-7B为将激光束聚集在沿着相同轴上的三个点的多片段晶状体。

图7C-7D为具有焦点沿相同的轴但是焦距F1、F2、F3不同的共轴和不共轴部分的多段晶状体。

图8是以一套晶状体聚焦为多个点(1,2,3)并因此在组织内不同深度(1,2,3)上产生血浆的纤维轴向阵列(1,2,3)。

图9是示出可应用于核分割的图案实例的视图。

图10A-C是用于分割晶状体囊切开术和超声分割的一些组合图案的平面图。

图11是将光束发射或扫描进患者眼部的一个系统实施例的平面图。

图12是将光束发射或扫描进患者眼部的另一个系统实施例的平面图。

图13是将光束发射或扫描进患者眼部的另一个系统实施例的平面图。

图14是示出在材料去除的“跟踪和治疗”方法中所采用步骤的流程图。

图15是示出在采用用户输入的材料去除“跟踪和治疗”方法中所采用步骤的流程图。

图16是由变形光学方案产生的横向焦点区的透视图。

图17A-17C是构成反向开普勒望远镜的变形望远镜配置透视图。

图18是用于沿单根经线延伸光束的棱镜侧视图。

图19是描述眼晶状体上横向焦点体位置和运动的顶视图。

图20描述了通过本发明一个实施例所产生眼晶状体的分割图案。

图21描述了通过本发明一个实施例所产生眼晶状体的环形切口。

优选实施例详述

本发明可通过将光束投射或者扫描进患者眼部1的系统例如图1所示出的系统实施。此系统包括光源10(例如激光器、激光器二极管等等),其可通过输入和输出设备14由控制电子装置12控制以产生光束11(cw或者脉冲)。控制电子装置12可以是计算机、微控制器等等。可通过采用一个或多个移动光学元件(例如透镜、光栅或者如图1所示的镜16)实现扫描,光学元件也可由控制电子装置12通过输入和输出设备14控制。镜16可倾斜以如图1所示偏离光束11,并将光束11指向患者眼部1。光学眼晶状体18可用于将光束11聚焦到患者眼部1。光束11的位置和特征和/或其在眼睛上形成的扫描图案还可进一步通过输入设备20例如操纵杆或者任何其它的合适用户输入设备控制。

这里的技术包括采用光源10例如配置为提供一个或多个如下参数的外科激光器:

1)脉冲能量达1μJ,重复速率达1MHz,脉冲宽度<1ps

2)脉冲能量达10μJ,重复速率达100kHz,脉冲宽度<1ps

3)脉冲能量达1000μJ,重复速率达1kHz,脉冲宽度<3ps。

此外,激光器可采用包括近红外范围:800-1100nm的各种范围波长。一方面,因为减少了组织吸收和散射而选择了近红外波长。此外,可配置激光器以提供近红外辐射低能超短脉冲,其可以是单独的脉冲宽度低于10ps或者1ps的脉冲或者在大于1kHz或者大于10kHz的高重复速率下与脉冲能量不超过100μJ的脉冲结合。

聚焦进眼组织2的短脉冲激光将在焦点产生电介质击穿,在光致血浆附近使组织2破裂(参见图2)。焦点直径通过d=λF/Db给出,这里,F是最后聚焦元件的焦距,Db是最后透镜的光束直径,λ是波长。对于焦距F=160mm,最后透镜的束直径Db=10mm,波长λ=1.04μm,则焦点直径将是d≈λ/(2·NA)≈λF/Db=15μm,这里聚焦光学设备的数值孔径NA≈Db/(2F)。

为连续切割,激光焦点不应被组织中激光脉冲所产生凹陷的多个宽度隔开。假定破裂区为R=15μm(在低能下在激光焦点的中心会发生电离但电离不会扩展至整个点尺寸),假定晶状体囊切开术圆的最大直径Dc=8mm,则如图3所示在接目镜(eye lens)3周围提供环形切割线22所需要的脉冲数为N=πDc/R=1675。对于从5-7mm的较小直径,所需要的脉冲数将更少。如果破裂区更大(例如50μm),则脉冲数将降至N=503。

为产生准确的环形切割,这些脉冲应当在短暂的眼部定影时间(fixation time)传送至组织。假定定影时间为t=0.2s,则激光器重复速率应当为:r=N/t=8.4kHz。如果定影时间更长,例如0.5s,则所需要的重复速率可降至3.4kHz。对于50μm的破裂区,重复速率可进一步降至1kHz。

以4ns脉冲电介质击穿的阈值辐射量大约为φ=100J/cm2。对于d=15μm的焦点直径,阈值脉冲能量将是Eth=φ*πd2/4=176μJ。对于稳定而可再现的操作,脉冲能量至少应超过阈值2倍,因此目标(target)脉冲能量为E=352μJ。产生气穴泡需要花费达10%的脉冲能量,即Eb=35μJ。此对应泡直径                                               。

可调整能量水平以防止对角膜内皮细胞造成损坏。同样,可通过降低脉冲宽度例如大约在0.1-1ps的范围而使得电介质击穿的阈值能量最小化。阈值辐射量φ对100fs的电介质击穿大约为φ=2J/cm2;对1ps其为φ=2.5J/cm2。采用上述脉冲宽度,和焦点直径d=15μm,阈值脉冲能量对100fs和1ps脉冲分别为Eth=φ*πd2/4=3.5和4.4μJ。可替换地选择脉冲能量为阈值能量倍数,例如至少为2倍。如果采用2倍,则目标上脉冲能量将分别为Eth=7和9μJ。这仅仅是两个实例。其它脉冲能量持续时间、焦点尺寸和阈值能量水平也可采用并且处于本发明的范围内。

可对更密集的激光束聚焦采用更高的重复速度和低脉冲能量。在一个特别的实例中,采用焦距F=50mm,而束直径保持为Db=10mm,以聚焦在直径大约4μm的点。还可采用非球面光学元件。可采用大约32kHz的重复速率在0.2s的时间内完成8mm直径开口。

可设置激光器10和控制器12以定位囊表面并保证束在期望开口的所有点上聚焦在晶状体囊上。这里所描述的成像特征和技术例如光学相干体层扫描(OCT)或者超声可用于确定位置和测量晶状体和晶状体囊的厚度以使激光聚焦方法更准确,包括2D和3D构图。还可采用一种或多种方法完成激光聚焦,这些方法包括直接观测对准光束、光学相干体层扫描(OCT)、超声、或者其它已知的眼科或者医疗成像特征及其组合。

如图4所示,可采用相同的激光器和/或相同的用于产生切割图案的扫描仪沿简单的线性扫描24跨过晶状体进行前腔的OCT成像。此扫描将提供关于前后晶状体囊的轴向位置、白内障核边界以及前腔深度的信息。此信息然后可装载到激光器3-D扫描系统中,并且用于编程和控制随后激光器辅助外科疗法。此信息可用于确定与所述疗法相关的各种参数,例如切割晶状体囊和分割晶状体皮质和核的焦点平面上轴限和下轴限、其它晶状体囊的厚度。可如图9所示沿3-线图案平均成像数据。

这种系统对实际的人晶状体的结果实例如图20所示。从在1045nm波长运行的激光器以50kHz脉冲重复速率传送的10μJ、1ps脉冲束聚焦在NA=0.05并从底部向上以4个圆的图案在8个轴向步幅(step)中扫描。这产生了图20所示出的眼晶状体中的切割图案。图21详细示出了合成的圆形切口,其直径为~10μm,长度为~100μm。

图2示出了采用这里所描述的技术以解剖限定晶状体可获得描绘的示例性描述。在图2中可以看出,可确定囊边界和厚度、皮质、上核和核。认为OCT成像可用于限定晶状体中核、皮质和其它结构边界,例如包含所有或者部分前或者后囊的晶状体囊的厚度。以最普通意义而言,本发明的一个方面为采用如这里所述获得的眼科成像数据,作为激光扫描和/或用作在新颖激光辅助眼科手术中应用激光能量的导引的构图处理算法或技术的输入。实际上,可采用相同的激光器和相同的扫描仪进行成像和治疗。尽管描述了使用激光器,但是还可采用其它能量形态。

要理解的是在束腰形成血浆。切割区的轴向范围由激光器束腰的一半长度L确定,其可表示为:L~λ/(4·NA2)=dF/Db。因此聚焦光学装置的NA越低,聚焦束的腰则越长,因此可产生更长的分割区。对F=160mm,最后晶状体的束直径Db=10mm,以及焦点直径d=15μm,激光束腰一半长度L将为240μm。

参考图5,三维应用激光能量26可沿着由如下多种方法的激光引发电介质击穿所产生的图案而实施在所述囊上,例如:

1) 以等于破裂区轴向长度的步幅在不同深度连续产生多个圆形或者其它图案扫描。因此,组织中的焦点(腰)深度借助每次连续的扫描向上或者向下递进。激光脉冲采用例如聚焦元件的轴向扫描或者调整聚焦元件光功率同时,可选地,同时或者依次扫描横向图案,而连续地施加于组织的不同深度上相同的横向图案上。可通过在组织中最大的要求深度上首先产生构图/聚焦,然后在较浅的组织空间上聚焦,而避免在激光束到达焦点之前在气泡、裂缝和/或组织部分上散射的不良结果。不仅此“颠倒”治疗技术降低目标组织层上面组织中不需要的束衰减,而且其还有助于保护目标组织层下面的组织。通过将发射超出气泡、裂缝和/或由前面扫描所产生的组织部分上焦点的激光辐射进行散射,这些缺陷有助于保护下层的视网膜。相似地,当分割晶状体时,激光可聚焦在晶状体最后面的部分上,然后随着手术继续而向前移动。

2) 通过如下方法在固定点产生轴向长的破裂区:

a) 在以几个ps分割的每个点中采用2-3个脉冲序列。可通过由前面脉冲产生的血浆28吸收每个脉冲,并因此将使血浆28向上如图6A所示沿着束移动。此方法中,激光能量应高2或3倍,即20-30μJ。连续脉冲之间的延迟将比血浆形成时间长(以0.1ps的数量级)但不超过血浆重组时间(以纳秒的数量级)。

b) 采用具有不同预聚焦的多个共轴束或者多焦点光学元件产生具有不同焦点的脉冲轴向系列。可通过多焦点光学元件(透镜、镜、衍射光学元件等等)实现这一点。例如,可将多部分透镜30用于将光束沿相同的轴聚焦到多个点(例如三个分开的点),同时例如采用共轴(参见图7A-7C)或者不共轴(参见图7D)部分以产生变化的焦距(例如F1、F2、F3)。此多焦点元件30可以是共轴、或者不共轴分割或者衍射。共轴元件可具有更多轴向对称的焦点,但是因为每个部分中束直径的不同因此将具有不同尺寸。不共轴元件可具有更少的对称焦点,但是所有的元件都可产生相同尺寸的焦距。

c) 采用下面的元件产生长聚焦柱(与仅仅几个分散焦点相反):(1)非球面光学装置,或者(2)利用高F数晶状体中的球面像差,或者(3)衍射光学元件(全息图)。

d) 采用多条光纤产生长电离区。例如,可以以一组晶状体34将不同长度的光纤阵列32如图8所示成像为组织内不同深度的多个焦点。

扫描图案:

对于前和后晶状体囊切开术,扫描图案可以是与破裂区长度类似的垂直步幅的圆形或者螺旋型。对于眼晶状体3的切割,其图案可以是线性、平面、径向、径向分割、圆、螺旋、曲线、及其包括两维和/或三维构图的组合。扫描可以是连续的直线或者曲线、或者一个或多个重叠或者间隔的点和/或线形部分。图9A和9B中描述了若干扫描图案36,图10A-10C中描述了扫描图案38的组合。因为晶状体厚度远大于束腰轴的长度,所以多焦点聚焦束扫描和/或构图系统特别有利于成功的晶状体切割。此外,这些及其它2D和3D图案可以和OCT组合使用以获得附加成像、解剖结构或者组成(即组织密度)或者眼部其它尺寸信息,这里眼部包括但不限于晶状体、角膜、视网膜以及眼部其它部分。

示例性图案考虑将晶状体皮质和核切成如下尺寸的部分,即其可以以吸针简单去除并单独使用以进行晶状体囊切开术。可选择地,激光构图可用于预分割或者分割核以进行后面的常规超声乳化。但是这种情况下,在不使用本发明分割技术的情况下,常规超声乳化将比执行的典型超声乳化少,这是因为晶状体已经切割。同样,考虑到缩短的步骤或者要求较少手术灵活性,超声乳化步骤将需要施加到眼部的更少的超声能量。

通过迅速进行构图激光切割(例如在少于自然眼部定影时间的时间段内)可减少或者消除手术期间眼部动作所引起的复杂性。根据激光功率和重复速率,可以超过1kHz的激光重复速率在5和0.5秒(或者更少)之间完成构图切割。

这里描述的技术可用于执行新的眼科手术或者改进已有的手术,包括前和后晶状体囊切开术、晶状体切割和软化、后柱(线状物、隔膜、视网膜)中组织切割、以及眼部其它区域例如但不限于巩膜和虹膜中的切割。

通过有利地利用开始聚焦在后柱之外然后在仅仅由医师进行的可视控制下或者结合采用这里所述技术所获得的成像数据逐渐向前移动的激光图案,可减少或者尽量降低后晶状体囊切开术期间对IOL所造成的损坏。

对于治疗束图案的合适对准,可首先以可见光将对准束和/或图案首先投射至目标组织上(表示将投射治疗图案的地方)。这允许医师调整治疗图案的尺寸、位置和形状。然后,可采用自动3维图案发生器(在电子装置12的控制下)通过高重复速率的短脉冲切割激光将治疗图案快速应用于目标组织。

此外,特别对于晶状体囊切开术和核分割,可采用利用成像形态的自动化方法,例如电-光、OCT、声、超声或者其它测量,以首先确定切割的最大和最小深度以及白内障核的尺寸及光学密度。这些技术允许医师解释晶状体厚度和硬度上的单独差异,并有助于确定患者中的最佳切割轮廓。采用OCT沿线和/或图案(这里所述的2D或者3D或者其它)测量前腔尺寸的系统可整体上与用于手术期间控制激光的扫描系统相同。同样,例如包括切割的上及下边界、以及核的位置和尺寸的数据可装入扫描系统以自动确定切割(即分割或者破裂)图案的参数。另外,为仅仅精确切割、分割或者破裂期望的组织(例如晶状体核、包括白内障的组织等等)而同时尽量降低或者避免对周围组织的破坏所进行的绝对和相对位置和/或眼中结构(例如前和后晶状体囊、插入的核及晶状体皮质)尺寸的自动测量(采用光、电-光、声、或者OCT设备或者上述的部分结合),可对当前或者将来的手术方法进行。此外,相同的超短脉冲激光可在低脉冲能量下用于成像,然后在高脉冲能量下用于手术。

可以以许多方法采用成像设备引导治疗束,例如上述方法以及接下来要解释的其它实例(其都用于表征组织,并继续处理直到去除目标)。例如,在图11中,激光源LS以及(可选)瞄准束源AIM具有采用镜DM1(例如二色镜)组合的输出。在此配置中,激光源LS可用于治疗和诊断。通过分裂激光源LS发出的光束B(中心线示出)向OCT干涉仪提供基准输入R和样品输入S的镜M1实现这一点。因为OCT干涉仪固有的灵敏性,可使镜M1仅仅反射一小部分到达的光。可选择地,采用偏振灵敏拾取镜的配置可以与四分之一波片(未示出)结合以提高此系统的整体光效率。透镜L1可以是用于调整设置为点P的束B 沿z轴最终尺寸或者位置的单个元件或者一组元件。当与X&Y轴中的扫描结合时,此配置可以进行3维扫描和/或可变的点直径(即通过沿z轴移动光的焦点)。

此实例中,通过采用一对提供目标2维随机访问扫描的直角检流计镜G1&G2实现横向(XY)扫描。应当注意可以以各种方法进行扫描,例如移动镜M2、旋转多边形、平移透镜或者曲面镜、旋转楔等等,而且采用检流计不会限制整个设计的范围。离开扫描仪之后,光遇到用于将光聚焦在患者眼EYE中点P的目标上的透镜L2。可选的眼科晶状体OL可用于帮助聚集光线。考虑到更稳定的处理,眼科晶状体OL可以是接触镜并进一步用于抑制眼EYE的任何运动。可使得晶状体L2沿z轴与光学系统剩余部分移动以提供治疗和诊断的3维扫描。在所示出的配置中,透镜L2理想地沿扫描仪G1&G2移动以维持远程中心性。知道这一点,可移动整个光学组件以沿z轴调整深度。如果与眼科晶状体OL一起使用,则可精确保持工作距离。例如Thorlabs EAS504精度步进电动机可用于提供移动长度连同必需的准确度和精度以可靠地以临床有意义的分辨率成像和治疗。如所示,其产生远程中心扫描,但不必限于此设计。

镜M2用于将光线引导至目标,并且可以以多种方法使用。镜M2可以是用户浏览以直接或者采用相机显示目标的二色元件,或者可以制造得尽可能地小,以为用户提供在其周围可使用双眼显微镜检查的机会。如果采用二色元件,则可使其作为光自适应的中间(photopically neutral)以避免阻挡用户视野。显示目标组织的装置图示地示出为元素V,并优选是具有产生目标组织图像的可选光源的照相机。可选的瞄准束AIM然后可为用户提供设置治疗束的视野或者所识别目标的位置。为仅仅显示目标,当扫描仪将AIM定位在认为是目标的区域上时, AIM可能是脉冲的。显示装置V的输出可经输入/输出设备IO送回系统并在屏幕上显示,例如图形用户接口GUI。在此实例中,由控制器CPU和经过输入/输出设备IO的数据控制整个系统。图形用户接口GUI可用于处理用户输入,并且显示由显示装置V和OCT干涉仪收集的图像。OCT干涉仪的配置有多种可能,包括美国专利5,748,898; 5,748,352;5,459,570;6,111,645;和6,053,613(其包含在此作为参考)中所述的时间和频率域方法、单束及双束方法等等。

关于白内障横向和轴向范围以及晶状体囊边界定位的信息然后用于确定最佳扫描图案、聚焦方案、和分割步骤的激光参数。可从目标组织的显示中获得即使不是所有也是大部分的此信息。例如,单脉冲分割区的轴向范围不应当超过(a)白内障和后囊和(b)前囊和角膜内皮之间的距离。在浅前腔和/或大白内障的情况下,应当选择较短的分割区,并因此需要更多扫描平面。相反,对于深前腔和/或白内障与后囊之间的大间隔可采用较长的分割区,并因此需要较少的扫描平面。为此,将从可利用的组件选择合适的聚焦元件。选择光学元件将确定分割区的宽度,其反过来又确定连续脉冲之间的间隔。这反过来又将确定激光脉冲扫描速率和重复速率之间的比率。此外,白内障的形状将确定分割区边界并因此确定扫描仪的包括分割区轴向和横向范围的最佳图案、扫描最佳形状、扫描平面数等等。

图12示出了成像和处理源不同的替换实施例。将二色镜DM2加至图11的结构以组合成像和处理光,并以束分裂器BS替换镜M1,该束分裂器在治疗波长透射性很强,但可有效地将光与在OCT干涉仪中所采用的成像源SLD隔开。成像源SLD可以是超级发光二极管,其光谱输出名义上为50nm宽,中心处于835nm或者其周围,例如SuperLum SLD-37。这样的光源与医疗应用匹配,而与治疗源光谱非常不同,因此允许使用可靠制造的元件DM和BS,而不需要如果成像源和治疗源波长更近所要求的复杂而昂贵的光涂层。

图13示出了采用作为成像系统的共焦显微镜CM的替换实施例。在此配置中,镜M1反射一部分从束B至晶状体L3的反向散射光。晶状体L3用于将此光线聚焦通过孔径A(用作空间过滤器)并最终到达监测器D。同样,孔径A和点P光学共轭,而且当孔径A足够小以阻挡几乎整个背景信号时检测器D接收的信号极为特殊。如现有技术中所知,此信号可用于成像。此外,可将荧光团引入目标以特别标记目标或者健康组织。这种方法中,可将极快的激光用于通过多光子处理而泵浦荧光团的吸收带,或者备选的源(未示出)可以以和图12相似的方式采用。

图14示出了描述在材料去除的“跟踪和治疗”方法中采用步骤的流程图。首先通过从点到点扫描而产生图像,并识别可能的目标。当治疗束设置在目标上时,系统发射治疗束并开始治疗。系统可在恒定移动时处理,或者停留于特别的位置直到在移至下一个点之前充分处理目标。

图14的系统操作可更改为包含用户输入。如图15所示,将完整的图像显示给用户,同时允许其识别目标。一旦识别,则系统可记录随后的图像,并跟踪用户定义的目标。这样的记录方案可以以多种方法应用,例如采用熟知而又计算有效的Sobel或者Canny沿检测方案。可选择地,可在目标组织中构造一个或多个容易识别的标记,同时采用治疗激光产生没有患者风险的信任基准(因为目标组织注定要去除)。

和常规激光技术相反,上述技术提供(a)施加一定图案的激光能,(b)高重复速率,以在自然眼部定影时间内完成图案,(c)施加亚ps脉冲以降低阈值能量,和(d)集成用于自动步骤的成像和处理的能力。

激光传送系统

可以以多种方法改变图1中的激光传送系统。例如可能通过所提供的控制台将激光源设置在外科显微镜和医师使用的显微镜光学装置上以施加激光。可选择地,激光和传送系统将与外科显微镜隔开并具有对准切割用光束的光学系统。这样的系统可在手术开始时采用连接到包括激光器的控制台的连接臂以摆入位置,然后离开以允许外科显微镜进入其位置。

采用的图案可在控制电子装置12的控制下从由可见瞄准束产生的图案集合中选择,然后由医师对准目标组织,并且根据需要对特别患者的手术区尺寸(瞳孔扩张级别,眼部尺寸等等)调整图案参数(例如包括平面或者轴向元件的尺寸、数量等等)。然后,系统计算基于图案尺寸施加的脉冲数。当图案计算结束时,用户以手术激光快速应用图案可启动激光治疗(即通过按压踏板)。

激光系统可自动地计算基于医师选择的图案实际横向尺寸而产生的某图案所需要的脉冲数。可以理解的是以固定单脉冲破裂区(由脉冲能量和聚焦光学装置的配置来确定)能执行这一点,因此切割某部分所需要的脉冲数可确定为由每个脉冲以破裂区的宽度划分的部分长度。可将扫描速率与激光重复速率联系以在组织上提供由期望距离确定的脉冲间隔。扫描图案的轴向步幅将由破裂区长度确定,破裂区长度由脉冲能量和聚焦光学装置的结构设置。

定影因素

这里所描述的方法和系统可单独使用或者结合等光程晶状体(例如如6,254,595专利所描述,组合在此作为参考)或者其它设备以配置角膜形状而有助于这里所描述的激光方法。当手术超过眼部常规定影时间时,环、钳或其它安全装置可用于定影眼部。无论是否使用眼部定影设备,这里所描述的构图和分割方法可进一步细分为可在自然眼部定影时间内进行的持续期的间隔。

另一个与晶状体皮质密集切割图案相关的潜在复杂性在于治疗的持续期:如果分割晶状体6×6×4=144m3的体积,则其需要N=722,000个脉冲。如果在50kHz下发送,则将花费15秒,而如果在10kHz下发送,则将花费72秒。这比自然的眼部定影时间长得多,而且需要眼部某些定影装置。因此,可仅仅选择硬化核以进行分割而便于去除。以OCT诊断确定其边界将有助于使分割区尺寸尽量减小,并因此尽量减小脉冲数、累计加热级和治疗时间。如果手术持续时间的分割步骤超出自然的定影时间,则采用常规的眼部定影时间可稳定眼部。

热因素

在需要或者期望非常密集的切割图案的地方,晶状体中过量的热积累会损坏周围的组织。为估计最大的热,假定晶状体主体被切成尺寸为1mm的立方体块。如果以每个脉冲E1=10μJ脉冲分割直径为15μm、长度为200μm体积的方式切割组织,则每15μm都会施加脉冲。这样1×1mm的平面将需要66×66=4356个脉冲。2侧的壁需要2×66×5=660个脉冲,因此每立方mm的组织将需要总N=5016个脉冲。因为在切割期间堆积的所有激光能量都会最终转换为热,所以温度升高将是DT=(E1*N)/pcV=50.16mJ/(4.19mJ/K)=12K。这会导致T=37+12℃=49℃的最大温度。由于热扩散,此热量会在大约一分钟内消散。因为晶状体周围区域将不会分割(以防止对晶状体囊的损坏),所以晶状体边界处的平均温度实际上会更低。例如,如果仅仅分割一半晶状体体积,则在晶状体边界上的平均升温将不超过6℃(T=43℃),而在视网膜上将不超过0.1℃。细胞和组织将会承受这样的升温。但是更高的温度是危险的且应当避免。

为减少发热,可形成相同宽度但轴向长度更大的图案,因此这些块将由通过针的吸收而去除。例如,如果将晶状体切割为1×1×4mm尺寸的块,则每4立方mm的组织将需要总数N=6996个脉冲。升温将是DT=(E1*N)/pcV=69.96mJ/(4.19mJ/K)/4=1.04K。细胞和组织将会承受这样的升温。

热限制的一个替换方案为,通过更紧密地聚焦激光束而降低分割所需要的总能量。在此方案中,可采用更高的重复速率和低脉冲能量。例如,F=50mm的焦距和Db=10mm的束直径可聚焦为直径大约为4μm的点。在此特殊实例中,大约32kHz的重复速率在大约0.2s内可提供直径为8mm的圆。

为防止在吸收短激光脉冲后由于黑素体爆炸性蒸发引起的视网膜损坏,RPE上的激光辐射量将不会超过100mJ/cm2。因此应当调整聚焦光学装置的NA,从而在视网膜上的激光辐射量将不会超过此安全界线。借助10μJ的脉冲能量,视网膜上的点尺寸应当大于0.1mm的直径,而借助1mJ的脉冲能量则其尺寸应当不小于1mm。假定晶状体和视网膜之间的距离为20mm,则这些值分别对应0.0025和0.025的最小数值开口。

为防止在晶状体分割期间热积累所引起的对视网膜的热损坏,对视网膜的激光辐射不应超过近IR辐射的热安全界限——0.6W/cm2的数量级。以直径大约10mm的视网膜区(由于发散,晶状体上的8mm图案尺寸+边缘上的1mm),其对应视网膜上0.5W的总功率。

横向焦点体积

还可产生横向焦点体积50以取代上述的轴向焦点体积。变形的光学方案可用于产生为“线”而非单个点的焦点区39,对球面对称元件通常如此(参见图16)。作为光学设计领域中的标准,术语“变形”在这里是为了描述在每个经线中具有不同等价焦距的任何系统。应当注意,任何焦点都具有场的离散深度。但是,对于紧密聚焦的束,例如获得以超短脉冲足以破坏生物材料的电场强度的束(定义为t脉冲<10ps),则聚焦的深度成比例地短。

可以采用柱面透镜和/或镜产生这样的1维焦点。可采用自适应的光学装置,例如MEMS镜或者相控阵。但是当采用相控阵时,应当小心这种衍射设备的彩色效应。图17A-17C描述了变形的望远镜结构,这里柱面光学装置40a/b和球面透镜42用于沿单条经线(参考图17A)构造逆向开普勒望远镜,从而提供与光轴垂直的长焦点体积(参考图17C)。可采用复合透镜以允许束的最后尺寸是可调的。

图18示出了采用一对棱镜46a/b以沿着单条经线延伸光束,其表示为CA。在此实例中,减小而非放大CA以产生线性焦点体积。

还可扫描焦点以最终产生图案。为影响轴向变化,可以使最终的晶状体沿系统z-轴移动以将焦点平移至组织。同样,最终的晶状体可以是复合的,并且可调整。还可旋转1维焦点,同时允许使其对准以产生各种图案,例如图9和10所示出的。可通过旋转柱面元件本身而实现旋转。当然,可采用多个单元件。还可通过采用附加元件例如Dove棱镜(未示出)而旋转焦点。如果采用自适应光学装置,则可通过重写此设备而实现旋转,因此通过消除移动部分而使系统设计成为流线型。

采用横线焦点允许通过从晶状体的后部分向前部分烧蚀而分割白内障晶状体。此外,线性焦点还可用于迅速打开晶状体囊,并准备提取。其还可用于任何其它的眼科切口,例如结膜等等(参见图19)。

采用跟踪并治疗方法的白内障去除

“跟踪并治疗”方法是一种结合光学眼部手术的成像和治疗方面以为了去除碎片例如在插入IOL之前的白内障和细胞材料提供自动化方法的方法。采用极快的激光将晶状体分割为足够小且可采用小尺寸冲洗/吸气探针去除的部分,而不必破裂晶状体囊。可采用例如使用小型、自愈合切口的方法以提供以凝胶或弹性IOL填充的囊。和需要大切口的传统硬IOLS不同,可将凝胶或者液体用于填充整个囊,从而更好地利用身体的自适应过程。同样,此方法不仅处理白内障而且处理远视眼。

可替换地,在为吸气尖头、冲洗尖头和去除晶状体主体的超声尖头制作两侧切口的地方,晶状体囊可保持完整。其后,可成功地漂洗/冲洗袋/囊的全部内容物,这将排出可导致第二次白内障的碎片。然后,保持晶状体囊完整,同时对可折叠IOL或者通过切口注入以填充袋/囊的光学透明凝胶进行最小的切口。此凝胶会用作具有较大自适应范围的自然晶状体。

应当理解本发明不限于上述和这里所述的实施例,而是包括任何和所有的落入附加权利要求书范围的变化。例如,上述材料、处理和数字仅仅是示例性的,而且不应当认为限制权利要求书。多部分晶状体30可用于将光束同时聚焦在非轴向重叠的多个点上(即将光束聚焦在目标组织上不同横向位置的多个焦点上)。进一步,由权利要求书和说明书可清楚,并非所有的方法步骤需要以所描述或请求保护的精确顺序进行,而是可以以实现手术目标的任何顺序进行。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号