首页> 中国专利> 一种具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子及其制备方法和应用

一种具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子及其制备方法和应用

摘要

本发明属于生物医药纳米材料技术领域,公开了一种具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子及其制备方法和应用。本发明纳米粒子由包括介孔二氧化硅纳米粒子、装载在介孔二氧化硅纳米粒子内部的药物及修饰在介孔二氧化硅纳米粒子表面的聚合物构成;所述修饰在介孔二氧化硅纳米粒子表面的聚合物具体为P(PEGMA‑co‑MAEBA)通过亚胺键修饰在介孔二氧化硅纳米粒子表面。本发明纳米粒子材料生物相容性好,利用酸敏感的亚胺键实现药物的可控释放:药物在正常细胞周围几乎不释放,而在肿瘤细胞的微酸性环境下,亚胺键断裂,聚合物脱落实现药物的快速释放,实现对肿瘤的靶向治疗,可应用于药物控制释放领域中。

著录项

  • 公开/公告号CN109589418A

    专利类型发明专利

  • 公开/公告日2019-04-09

    原文格式PDF

  • 申请/专利权人 华南理工大学;

    申请/专利号CN201811529839.9

  • 发明设计人 章莉娟;彭诗元;袁晓哲;

    申请日2018-12-14

  • 分类号A61K47/69(20170101);A61K47/32(20060101);A61K9/51(20060101);A61K31/337(20060101);A61K31/4745(20060101);A61K31/704(20060101);A61P35/00(20060101);

  • 代理机构44245 广州市华学知识产权代理有限公司;

  • 代理人裘晖

  • 地址 510640 广东省广州市天河区五山路381号

  • 入库时间 2024-02-19 06:59:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-08-18

    授权

    授权

  • 2019-05-03

    实质审查的生效 IPC(主分类):A61K47/69 申请日:20181214

    实质审查的生效

  • 2019-04-09

    公开

    公开

说明书

技术领域

本发明属于生物医药纳米材料技术领域,特别涉及一种具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子及其制备方法和应用。

背景技术

癌症是最复杂和最具有挑战性的疾病之一,严重威胁着人类的生命健康。因此,许多抗癌药物递送体系被研究开发,其中介孔二氧化硅纳米颗粒(MSN)具有比表面积和内孔容积大、孔径尺寸可调、结构高度有序、表面富含活性羟基基团易于修饰,以及具有良好的生物相容性、成本低廉等优点,特别适合用作药物递送材料。此外,通过封堵介孔可以达到“零泄露”的效果,在抗癌药物递送领域显示出良好的应用前景。

常用的介孔封堵方式主要分为两种类型,一种是利用粒径略大于MSN孔径的无机纳米粒子(如Fe3O4、Au、量子点等)、环状大分子(如环糊精、轮烷等)、生物大分子(如DNA、蛋白质等)来阻塞介孔孔道。Feng等[ACS>

另一种封堵方式是利用聚合物包裹MSN。该体系是通过将功能性聚合物覆盖在MSN的表面并堵塞MSN的孔道,而聚合物本身具有特定环境的降解性及良好的生物相容性,一旦这种纳米复合物处在特定环境,聚合物即发生降解、润湿性或者构象的变化,介孔孔道被暴露从而实现药物的释放。Fu等[Journal of Materials Chemistry 19,4764-4770]利用种子沉淀聚合法合成了一种温度敏感性聚合物作为壳层、磁性MSN为核的复合微球体系,通过调节羟甲基丙烯酰胺的含量,可以将所合成的有机-无机复合纳米粒子的体积相转变温度(VPTT)调节到38~44度之间,并具有明显的温度响应性释药行为。

专利申请CN106492221A公布了一种还原性氧化石墨烯包覆的介孔二氧化硅纳米粒子,利用氧化石墨烯作为纳米门阀,这种纳米粒子利用二硫键的还原响应性可以实现药物的可控释放。专利申请201610707768.1公布了一项以药物分子DOX固有的氨基与苯甲醛的醛基形成苯甲酰亚胺共价键作为控释药物开关,同时DOX作为运载药物和门控开关材料,达到DOX药物分子“自我门控”的效果。其中苯甲酰亚胺键在肿瘤组织和细胞弱酸性环境下断裂,达到pH响应性的可控释放。专利申请CN106727274A公布了一种核壳结构的聚吡咯/介孔二氧化硅/石墨烯量子点纳米复合材料的制备方法,该复合材料具有优良的光热转换性能,在近红外光照射下将光转化成热,控制被封装的介孔二氧化硅孔道打开。

以上两种介孔封堵方式均能有效防止药物的泄露,但聚合物可以在介孔二氧化硅表面引入更多的活性位点,有助于制备多功能的载药体系。目前,利用聚合物封堵介孔二氧化硅的载药体系通常在介孔二氧化硅表面引发聚合,利用不同刺激诱导聚合物的亲疏水性发生转变从而引发介孔暴露,但是聚合物并不会从介孔二氧化硅表面脱落,因而对药物的扩散造成一定的阻碍,导致药物的释放效率不高。

发明内容

为了克服上述现有技术中聚合物作为“门阀”封堵介孔孔道的缺点与不足,本发明的首要目的在于提供一种具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子。本发明纳米粒子在酸性环境中聚合物链会从介孔硅表面脱落,从而实现药物控释。

本发明另一目的在于提供一种上述具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子的制备方法。

本发明制备方法先制备一种含有醛基功能性基团的两亲性嵌段共聚物,再将其通过pH敏感的亚胺键包裹在载药抗癌药物DOX的介孔二氧化硅表面形成载药复合纳米颗粒。制备得到的纳米粒子在弱酸性pH微环境中亚胺键断裂,聚合物脱落实现DOX的释放。

本发明再一目的在于提供上述具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子在药物控制释放领域中的应用。

本发明的目的通过下述方案实现:

一种具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子,由包括介孔二氧化硅纳米粒子、装载在介孔二氧化硅纳米粒子内部的药物及修饰在介孔二氧化硅纳米粒子表面的聚合物构成。

所述的介孔二氧化硅纳米粒子的粒径优选为150~200nm,孔径优选为3~5nm。

所述的药物可为阿霉素(DOX)、喜树碱(CPT)、紫杉醇(PTX)等疏水性药物。所述药物的载药量为10~30wt%。

本发明纳米粒子中,所述药物具体装载在介孔二氧化硅纳米粒子孔道内部。

所述修饰在介孔二氧化硅纳米粒子表面的聚合物具体为P(PEGMA-co-MAEBA)通过亚胺键修饰在介孔二氧化硅纳米粒子表面。

所述P(PEGMA-co-MAEBA)通过包括以///下步骤方法制备得到:把溴代异丁酸乙酯、甲基丙烯酸单甲氧基聚乙二醇酯(PEGMA)、对(甲基丙烯氧基乙氧基)苯甲醛(MAEBA)、六甲基三亚乙基四胺、溴化铜及无水甲苯混合,搅拌后加入催化剂辛酸亚锡60~90℃下反应5~10h,得到含有醛基功能基团的P(PEGMA-co-MAEBA)。

各反应物的重量份如下:溴代异丁酸乙酯1~3份;甲基丙烯酸单甲氧基聚乙二醇酯40~67份;对(甲基丙烯氧基乙氧基)苯甲醛30~68份;六甲基三亚乙基四胺10~45份;溴化铜1~5份;辛酸亚锡10~46份。

所述搅拌优选为搅拌10~20min。

所述的甲基丙烯酸单甲氧基聚乙二醇酯(PEGMA)优选数均分子量为Mn=500Da。

所述反应后产物优选用四氢呋喃溶解,过滤除去溴化铜,旋转蒸发、沉淀、过滤、干燥,得到纯化的含有醛基功能基团的P(PEGMA-co-MAEBA)再用于反应。

本发明纳米粒子中,聚合物具体通过包括以下步骤的方法修饰在介孔二氧化硅纳米粒子表面:将含有醛基功能基团的P(PEGMA-co-MAEBA)与载药的表面氨基化的介孔二氧化硅(MSN-NH2)混合反应得到。

更具体为对介孔二氧化硅纳米粒子进行表面改性,得到表面氨基化的介孔二氧化硅(MSN-NH2),装载药物后,分散在PBS缓冲溶液中,再加入含有醛基功能基团的P(PEGMA-co-MAEBA)室温混合反应24~48h,得到表面修饰有聚合物的载药介孔二氧化硅纳米粒子。

所述反应后优选通过离心分离、冷冻干燥得到目标产物。

进一步地,所述对介孔二氧化硅纳米粒子进行表面改性,可通过包括以下步骤方法制备得到:

(1)将十六烷基三甲基溴化铵和碱源加入水中混合搅拌,再加入正硅酸乙酯,加热反应,得到含有模板剂的介孔二氧化硅;

(2)将含有模板剂的介孔二氧化硅分散于无水甲苯中,加入硅烷偶联剂,加热反应,分离产物;再分散于甲醇和浓盐酸混合溶液中,加热搅拌除去模板剂,得到表面氨基化的介孔二氧化硅(MSN-NH2)。

步骤(1)中,各反应物的重量份数如下:十六烷基三甲基溴化铵15~25份;碱源5~6份;正硅酸乙酯95~96份。

步骤(2)中,各反应物的重量份数如下:含有模板剂的介孔二氧化硅34.58~51.39份;硅烷偶联剂48.61~64.42份。

步骤(1)中,所述的碱源可为氢氧化钠、三乙醇胺和氨水中的至少一种。

步骤(2)中,所述的硅烷偶联剂可为氨丙基三乙氧基硅烷、氨丙基三甲氧基硅烷中的至少一种。

步骤(1)中,所述混合搅拌优选为搅拌0.5~1h。

步骤(1)中,所述加热反应优选为加热到70~80℃反应1.5~2.5h。

步骤(1)中,所述反应后体系可降温至室温后离心分离、洗涤、干燥,得到产物再用于下一步反应。

步骤(2)中,所述加热反应优选为80~100℃反应24~48h。

步骤(2)中,所述加热反应后体系可降温至室温后离心分离、洗涤得到产物再用于下一步反应。

步骤(2)中,所述加热搅拌优选为60~80℃搅拌24~36h。

步骤(2)中,所述除去模板剂后体系可利用乙醇和水反复洗涤、离心干燥,得到产物。

进一步地,所述装载药物通过将表面氨基化的介孔二氧化硅(MSN-NH2)分散于含有药物的分散液或溶液中,室温搅拌,分离,得到载药的表面氨基化的介孔二氧化硅。

所述室温搅拌优选为搅拌24~48h。

所述分离可为离心分离,并进行干燥。

本发明还提供一种上述具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子的制备方法,先制备含有醛基功能基团的P(PEGMA-co-MAEBA);将其通过亚胺键修饰在载药的表面氨基化的介孔二氧化硅表面得到。

具体包括以下步骤:

(1)将十六烷基三甲基溴化铵和碱源加入水中混合搅拌,再加入正硅酸乙酯,加热反应,得到含有模板剂的介孔二氧化硅;

(2)将含有模板剂的介孔二氧化硅分散于无水甲苯中,加入硅烷偶联剂,加热反应,分离产物;再分散于甲醇和浓盐酸混合溶液中,加热搅拌除去模板剂,得到表面氨基化的介孔二氧化硅(MSN-NH2);

(3)将表面氨基化的介孔二氧化硅(MSN-NH2)分散于含有药物的分散液或溶液中,室温搅拌,分离,得到载药的表面氨基化的介孔二氧化硅;

(4)把溴代异丁酸乙酯、甲基丙烯酸单甲氧基聚乙二醇酯(PEGMA)、对(甲基丙烯氧基乙氧基)苯甲醛(MAEBA)、六甲基三亚乙基四胺、溴化铜及无水甲苯混合,搅拌后加入催化剂辛酸亚锡60~90℃下反应5~10h,得到含有醛基功能基团的P(PEGMA-co-MAEBA);

(5)将含有醛基功能基团的P(PEGMA-co-MAEBA)与载药的表面氨基化的介孔二氧化硅(MSN-NH2)混合反应,得到具有pH响应性的席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子。

本发明中,先通过通过电子转移活化剂再生-原子转移自由基聚合(ARGET ATRP)得到含有功能基团醛基的聚合物;聚合物通过pH敏感的亚胺键修饰在纳米粒子表面,在弱酸性pH微环境中亚胺键断裂,聚合物脱落实现药物的释放,可应用于药物控制释放领域中。

本发明纳米粒子材料生物相容性好,利用酸敏感的亚胺键实现药物的可控释放:药物在正常细胞周围几乎不释放,而在肿瘤细胞的微酸性环境下快速释放,实现对肿瘤的靶向治疗。

本发明相对于现有技术,具有如下的优点及有益效果:

本发明以介孔二氧化硅纳米粒子作为药物载体,具有良好的药物包载能力与生物相容性;并且采用在pH环境中可断裂的亚胺键连接封孔剂和介孔二氧化硅赋予了体系良好的pH响应释放性能,可以实现载药体系在特定pH范围内快速释放的要求;且封孔剂采用刷装聚合物PPEGMA作为亲水嵌段,能提高载体表面的亲水性和抗蛋白能力,延长载体循环时间。

附图说明

图1为实施例1中聚合物P(PEGMA-co-MAEBA)的合成反应方程式。

图2为实施例1中MSN-NH2纳米粒子的扫描电镜(SEM)图。

图3为实施例1中Polymer@MSN纳米粒子的透射电镜(TEM)图。

图4为实施例1中MSN-NH2纳米粒子的粒径分布图。

图5为实施例1中MSN@CTAB、MSN-NH2和Polymer@MSN的红外光谱对比图。

图6为实施例1中MSN-NH2和Polymer@MSN纳米粒子的N2吸附脱附曲线对比图。

图7为实施例1中MSN-NH2和Polymer@MSN的孔径对比图。

图8为实施例1中MSN-NH2和Polymer@MSN纳米粒子的XRD对比图。

图9为实施例1中聚合物P(PEGMA-co-MAEBA)的凝胶渗透色谱图(GPC),流动相为四氢呋喃(THF)。

图10为实施例1中聚合物P(PEGMA-co-MAEBA)的1H>3。

图11为实施例9中Polymer@MSN-DOX纳米粒子体外药物释放曲线图。

图12为实施例10中Polymer@MSN-DOX纳米粒子的体外细胞毒性。

具体实施方式

下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。

下列实施例中涉及的物料均可从商业渠道获得。各组分用量以质量体积份计,g/mL。在实施例中部分化学品使用的缩写对照如下:

名称缩写名称缩写十六烷基三甲基溴化铵CTAB甲基丙烯酸单甲氧基聚乙二醇酯PEGMA正硅酸乙酯TEOS2-溴异丁酸乙酯EBriB氢氧化钠NaOH六甲基三亚乙基四胺HMTETA三乙醇胺TEOA氨丙基三甲氧基硅烷APS氨丙基三乙氧基硅烷APTES溴化铜CuBr2

实施例1

(1)含有表面活性剂的介孔二氧化硅的制备:取0.2质量份CTAB、0.7体积份NaOH溶液(2M)和96体积份水机械搅拌0.5h后,快速加入1.0体积份正硅酸乙酯,升温到80℃,持续反应2h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.20份CTAB;0.06份氢氧化钠;0.96份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.5质量份MSN@CTAB分散在20体积份无水甲苯中,N2下80℃回流2h,用注射器将硅烷偶联剂0.75体积份APTES逐滴加入,N2下80℃回流24h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在70℃下搅拌24h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:41.34份含模板剂的介孔二氧化硅;58.66份APTES。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备(反应方程式见图1):取0.03质量份EbriB,0.05质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将1.5质量份PEGMA、0.71质量份MAEBA、18体积份无水甲苯、0.47质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.81质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:5份CuBr2;67份PEGMA;68份MAEBA;45份HMTETA;46份Sn(Oct)2;3份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

图2为实施例1中MSN-NH2纳米粒子的扫描电镜(SEM)图。

图3为实施例1中Polymer@MSN纳米粒子的透射电镜(TEM)图。

图4为实施例1中MSN-NH2纳米粒子的粒径分布图。

图5为实施例1中MSN@CTAB、MSN-NH2和Polymer@MSN的红外光谱对比图。

图6为实施例1中MSN-NH2和Polymer@MSN纳米粒子的N2吸附脱附曲线对比图。

图7为实施例1中MSN-NH2和Polymer@MSN的孔径对比图。

图8为实施例1中MSN-NH2和Polymer@MSN纳米粒子的XRD对比图。

图9为实施例1中聚合物P(PEGMA-co-MAEBA)的凝胶渗透色谱图(GPC),流动相为四氢呋喃(THF)。

图10为实施例1中聚合物P(PEGMA-co-MAEBA)的1H>3。

实施例2

(1)含有表面活性剂的介孔二氧化硅的制备:取0.15质量份CTAB、3.75体积份TEOA溶液和96体积份水机械搅拌0.5h后,快速加入1.0体积份正硅酸乙酯,升温到80℃,持续反应2h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.15份CTAB;0.06份TEOA;0.95份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.6质量份MSN@CTAB分散在20体积份无水甲苯中,N2下80℃回流2h,用注射器将硅烷偶联剂0.5体积份APS逐滴加入,N2下80℃回流24h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在70℃下搅拌24h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:51.39份含模板剂的介孔二氧化硅;48.61份APS。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备:取0.01质量份EbriB,0.03质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将0.9质量份PEGMA、0.31质量份MAEBA、18体积份无水甲苯、0.28质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.49质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:3份CuBr2;40份PEGMA;30份MAEBA;27份HMTETA;28份Sn(Oct)2;1份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

实施例3

(1)含有表面活性剂的介孔二氧化硅的制备:取0.25质量份CTAB、2.5体积份氨水和96体积份水机械搅拌0.5h后,快速加入1.0体积份正硅酸乙酯,升温到80℃,持续反应2h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.15份CTAB;0.06份TEOA;0.95份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.5质量份MSN@CTAB分散在20体积份无水甲苯中,N2下80℃回流2h,用注射器将硅烷偶联剂1.0体积份APTES逐滴加入,N2下80℃回流24h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在70℃下搅拌24h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:34.58份含模板剂的介孔二氧化硅;65.42份APTES。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备:取0.02质量份EbriB,0.01质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将1.5质量份PEGMA、0.71质量份MAEBA、18体积份无水甲苯、0.28质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.49质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:1份CuBr2;67份PEGMA;68份MAEBA;27份HMTETA;28份Sn(Oct)2;2份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

实施例4

(1)含有表面活性剂的介孔二氧化硅的制备:取0.2质量份CTAB、0.7体积份NaOH溶液(2M)和96体积份水机械搅拌0.5h后,快速加入1.0体积份正硅酸乙酯,升温到80℃,持续反应2h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.2份CTAB;0.06份NaOH;0.96份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.5质量份MSN@CTAB分散在20体积份无水甲苯中,N2下80℃回流2h,用注射器将硅烷偶联剂0.75体积份APTES逐滴加入,N2下80℃回流24h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在70℃下搅拌24h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:41.34份含模板剂的介孔二氧化硅;58.66份APTES。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备:取0.01质量份EbriB,0.01质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将0.9质量份PEGMA、0.31质量份MAEBA、18体积份无水甲苯、0.1质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.18质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:1份CuBr2;67份PEGMA;68份MAEBA;10份HMTETA;10份Sn(Oct)2;1份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

实施例5

(1)含有表面活性剂的介孔二氧化硅的制备:取0.2质量份CTAB、0.7体积份NaOH溶液(2M)和96体积份水机械搅拌0.5h后,快速加入1.0体积份正硅酸乙酯,升温到80℃,持续反应2h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.20份CTAB;氢氧化钠0.06份;0.96份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.5质量份MSN@CTAB分散在20体积份无水甲苯中,N2下80℃回流2h,用注射器将硅烷偶联剂0.75体积份APTES逐滴加入,N2下80℃回流24h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在70℃下搅拌24h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:41.34份含模板剂的介孔二氧化硅;58.66份APTES。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备:取0.01质量份EbriB,0.01质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将1.5质量份PEGMA、0.71质量份MAEBA、18体积份无水甲苯、0.47质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.81质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:1份CuBr2;67份PEGMA;68份MAEBA;45份HMTETA;46份Sn(Oct)2;1份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

实施例6

(1)含有表面活性剂的介孔二氧化硅的制备:取0.15质量份CTAB、3.75体积份TEOA溶液和96体积份水机械搅拌0.5h后,快速加入1.0体积份正硅酸乙酯,升温到70℃,持续反应1.5h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.15份CTAB;0.06份TEOA;0.95份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.6质量份MSN@CTAB分散在20体积份无水甲苯中,N2下80℃回流2h,用注射器将硅烷偶联剂0.5体积份APS逐滴加入,N2下80℃回流24h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在60℃下搅拌24h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:51.39份含模板剂的介孔二氧化硅;48.61份APS。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备:取0.01质量份EbriB,0.03质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将0.9质量份PEGMA、0.31质量份MAEBA、18体积份无水甲苯、0.28质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.49质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:3份CuBr2;40份PEGMA;30份MAEBA;27份HMTETA;28份Sn(Oct)2;1份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

实施例7

(1)含有表面活性剂的介孔二氧化硅的制备:取0.15质量份CTAB、3.75体积份TEOA溶液和96体积份水机械搅拌1h后,快速加入1.0体积份正硅酸乙酯,升温到70℃,持续反应2.5h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.15份CTAB;0.06份TEOA;0.95份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.6质量份MSN@CTAB分散在20体积份无水甲苯中,N2下100℃回流2h,用注射器将硅烷偶联剂0.5体积份APS逐滴加入,N2下100℃回流48h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在80℃下搅拌36h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:51.39份含模板剂的介孔二氧化硅;48.61份APS。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备:取0.01质量份EbriB,0.03质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将0.9质量份PEGMA、0.31质量份MAEBA、18体积份无水甲苯、0.28质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.49质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:3份CuBr2;40份PEGMA;30份MAEBA;27份HMTETA;28份Sn(Oct)2;1份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

实施例8

(1)含有表面活性剂的介孔二氧化硅的制备:取0.15质量份CTAB、3.75体积份TEOA溶液和96体积份水机械搅拌1h后,快速加入1.0体积份正硅酸乙酯,升温到70℃,持续反应2h。反应完成后,自然冷却至室温,10000rpm离心分离,用水洗涤数次,30℃真空干燥24h,得白色粉末(MSN@CTAB)。

所述步骤(1)中反应物的重量份数如下:0.15份CTAB;0.06份TEOA;0.95份TEOS;98.78份水。

(2)表面氨基化介孔二氧化硅的制备:取0.6质量份MSN@CTAB分散在20体积份无水甲苯中,N2下90℃回流2h,用注射器将硅烷偶联剂0.5体积份APS逐滴加入,N2下90℃回流24h。反应完成后,冷却至室温,离心(10000rpm,10min)分离,并用甲苯和乙醇分别洗涤两次。然后再用60体积份甲醇和3.8体积份浓HCl在80℃下搅拌36h除去模板剂CTAB,离心并用甲醇洗涤三次,40℃、35mbar下真空干燥24h,得到的白色粉末即为氨基修饰的介孔二氧化硅(MSN-NH2)。

所述步骤(2)中的反应物的重量份数如下:51.39份含模板剂的介孔二氧化硅;48.61份APS。

(3)含有醛基功能基团双亲性聚合物的P(PEGMA-co-MAEBA)的制备:取0.01质量份EbriB,0.03质量份CuBr2混合,密封后抽真空-通氮气三次,然后依次将0.9质量份PEGMA、0.31质量份MAEBA、18体积份无水甲苯、0.28质量份HMTETA加入,搅拌10min使得催化剂配合物Cu/HMTETA形成。随后将0.49质量份Sn(Oct)2溶于2体积份甲苯中加入反应瓶中,搅拌10min后转入70℃油浴反应24h,冷却至室温,并将反应溶液暴露于空气中,加入50体积份THF,搅拌溶解,过中性氧化铝柱子去除催化剂。浓缩反应液,在冷乙醚中沉淀三次,40℃、35mbar下真空干燥12h,得到粘稠状固体即为产物P(PEGMA-co-MAEBA)。

所述步骤(3)中的反应物的重量份数如下:3份CuBr2;40份PEGMA;30份MAEBA;27份HMTETA;28份Sn(Oct)2;1份EbriB。

(4)制备载药纳米粒子。

将MSN-NH2(0.1质量份)分散在15体积份pH>2-DOX)用水彻底洗涤并离心,25℃、35mbar下真空干燥24h。再将MSN-NH2-DOX悬浮于pH>

实施例9

测定pH响应性席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子体外释放性能。

取3mg载DOX颗粒分散于3mL PBS(pH 7.4、6.5)或醋酸缓冲液(pH5.0)后转入透析袋(MWCO3000)中,将透析袋放入47mL PBS或醋酸缓冲液(V0=50mL)中后置于药物溶出仪中,在37℃,100rpm转速下进行体外释放,定时取样4mL(Ve=4mL)测其480nm吸光度,并加入4mL新鲜缓冲液,计算不同时间释放液中阿霉素的浓度。每个pH值下平行进行3次,取平均值绘制释放曲线,见图11。

由图11可知,在前4h,三种环境中DOX的释放速率相差不大,药物累计释放量均有一个较快的增加。随着时间的增加,在pH 7.4,载药颗粒释放DOX缓慢,32h药物的累计释放量仅为17%。在pH 6.5,32h后药物的累计释放量仅略高于在正常生理条件下的,为23%,没有表现出明显的pH响应释放特性。而在pH 5.0,DOX释放加快,32h后药物的累计释放量为62%。

实施例10

pH响应性席夫碱共聚物包覆的介孔二氧化硅载药纳米粒子的细胞毒性测试。

采用HepG2细胞进行细胞毒性实验。选用含10%热灭活胎牛血清(FBS)和1%双抗(100μL/mL青霉素和0.1mg/mL链霉素)的DMEM培养基培养HepG2癌细胞,并将细胞接种于96孔板中(浓度为1×104细胞/孔),孔板置于37℃,饱和湿度,5%CO2培养箱中培养24h。用含有不同浓度载药颗粒的新鲜培养基替换旧的培养基,培养48h,PBS洗涤,加入用DMEM稀释的MTT培养4h。吸走未还原的MTT溶液,并用PBS洗涤之后加入DMSO(200μL)溶解MTT结晶。将96孔板放置于37℃摇床中振荡10min,利用酶标仪测定570nm下每个孔的吸光度,进而计算细胞存活率结果如图12所示。

从图12可以看出,Polymer@MSN-DOX和游离DOX均对HepG2细胞的生长和增值有显著的抑制作用。经过48h培养后,Polymer@MSN-DOX表现出明显的细胞毒性(低于20%),说明Polymer@MSN-DOX能达到良好的杀死肿瘤细胞的效果。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号