首页> 外文OA文献 >Non-equilibrium dynamics of biological matter in microfluidic environments - from red blood cell flickering to conformational transitions of actin filaments
【2h】

Non-equilibrium dynamics of biological matter in microfluidic environments - from red blood cell flickering to conformational transitions of actin filaments

机译:微流体环境中生物物质的非平衡动力学 - 从红细胞闪烁到肌动蛋白丝的构象转变

摘要

Even the most basic and seemingly simple living biological systems exist far from thermodynamic equilibrium and studying their dynamic behavior represents a crucial step towards a better understanding of their fundamental properties. Here, we present the investigations of two different, out-of-equilibrium biological systems, namely single cell studies on the human red blood cell (RBC) and single macromolecule analysis of actin filaments, both by exploiting the exceptional physics at the micro-scale and the corresponding unique capabilities of experimental control.ududIn particular, existing approaches to RBC analysis on the single-cell level usually rely on chemical or physical manipulations that often cause difficulties with preserving the RBC's integrity in a controlled microenvironment. We introduce a straightforward, self-filling microfluidic device that autonomously separates and isolates single RBCs directly from unprocessed human blood samples and confines them in diffusion-controlled microchambers by solely exploiting their unique intrinsic properties. Using bright-field microscopy, this noninvasive approach enables the time-resolved analysis of RBC flickering during the reversible shape evolution from the discocyte to the echinocyte morphology. A better understanding of this central shape transformation is especially relevant for blood storage applications as the formation of echinocytes can affect blood handling. We are further able to study the photo-induced oxygenation cycle of single functional RBCs by Raman microscopy without the limitations typically observed in optical tweezers based methods. Due to its specialized geometry, our device is particularly suited for studies on single RBCs under precise control of their environment. The provision of important insights into the RBC's biomedical and biophysical properties will improve the understanding of RBC microcirculation and can further contribute to advances in pathology diagnosis.ududFurthermore, we study the non-equilibrium conformational dynamics of semiflexible actin filaments experiencing hydrodynamic forces. Improving the knowledge about these dynamic processes of semiflexible polymers is of particular importance for the description of unusual transport in cellular flows and pattern formation processes in cytoplasmic streaming. The actin filaments are flowing through structured microchannels with alternating high- and low-velocity segments. These flow fields of spatially varying flow strength result in a compressive force on the filaments when they are entering the low-velocity regions and conversely an extensional force is acting on them when they are reentering the high-velocity segments. The semiflexible actin filaments undergo a length-dependent buckling transition under compression with a corresponding change in end-to-end distance and a rise in bending energy. However, the degree of increase of the length-normalized bending energy shows no evident dependence on the contour length. Increasing the fluid flow velocity results in a large rise of the compressive hydrodynamic force with a strong increase in storage of elastic energy due to the bending of the semiflexible filaments. At the passage from the low-velocity segments to the high-velocity ones, an extensional force is acting on the partially elastically relaxed filaments and a conformational transition from a coiled to a stretched state with a suppression of thermal fluctuations can be observed. Despite the symmetry of the microfluidic channels and therefore a similar rate of the absolute values of extension or compression in the specific channel segments, the observed stretch-coil and coil-stretch transitions distinctly differ in the evolution of the conformational changes and bending energies. This asymmetry of the non-equilibrium and non-stationary conformational transitions shows a strong dependence on the contour and persistence length, the degree of relaxation and the extensional or compressional rate. Many polymer solutions are non-Newtonian fluids and our studies may therefore have an impact on the analysis as well as sorting of polymers by elucidating the non-Newtonian flow behavior of semiflexible filaments in specific microflows, which may consequently lead to a better understanding of intercellular flows.
机译:即使是最基本,看似简单的生物系统也远未达到热力学平衡,研究其动态行为也代表了迈向更好地了解其基本特性的关键一步。在这里,我们介绍两种不同的非平衡生物学系统的研究,即对人类红细胞(RBC)的单细胞研究和对肌动蛋白丝的单分子分析,两者都是通过在微观尺度上利用异常的物理学来进行的。特别是,在单细胞水平上进行RBC分析的现有方法通常依赖于化学或物理操作,这些操作通常会给在受控微环境中保存RBC完整性带来困难。我们介绍了一种简单,自填充的微流控设备,该设备可以自动将未经处理的人体血液样本中的单个RBC直接分离并分离出来,并仅通过利用其独特的固有特性将它们限制在扩散控制的微腔室内。使用明场显微镜,这种非侵入性方法可以对从单核细胞到棘突细胞形态的可逆形状演变过程中的RBC闪烁进行时间分辨分析。更好地理解这种中心形状的转变对于血液存储应用尤其重要,因为棘突细胞的形成会影响血液处理。我们还能够通过拉曼显微镜研究单个功能性红细胞的光诱导氧合循环,而没有在基于光镊的方法中通常观察到的限制。由于其特殊的几何形状,我们的设备特别适合在精确控制其环境的情况下对单个RBC进行研究。提供有关RBC的生物医学和生物物理特性的重要见解将增进对RBC微循环的了解,并可以进一步促进病理学诊断的进展。对于描述半流动性聚合物的这些动态过程的知识,对于描述细胞流动中异常运输和细胞质流中模式形成过程的描述尤为重要。肌动蛋白丝流过具有交替的高速段和低速段的结构化微通道。这些空间强度变化的流场在细丝进入低速区域时在细丝上产生压缩力,相反,当细丝重新进入高速段时,拉伸力作用在细丝上。半柔性肌动蛋白丝在压缩下经历了与长度有关的屈曲转变,端到端距离发生了相应的变化,弯曲能量也随之增加。但是,长度归一化弯曲能的增加程度没有显示出对轮廓长度的明显依赖。由于半挠性细丝的弯曲,流体流速的增加导致压缩流体动力的大幅度增加,并且弹性能的存储大大增加。在从低速段到高速段的通道上,拉伸力作用在部分弹性松弛的长丝上,并且可以观察到从卷曲状态到拉伸状态的构象过渡,同时抑制了热波动。尽管微流体通道是对称的,因此在特定通道段中的延伸或压缩的绝对值的速率相似,但观察到的拉伸-线圈和线圈-拉伸转变在构象变化和弯曲能的演化上明显不同。非平衡和非平稳构象转变的这种不对称性显示出对轮廓和持续长度,松弛程度以及伸展或压缩速率的强烈依赖性。许多聚合物溶液是非牛顿流体,因此我们的研究可能会通过阐明特定微流中的半挠性细丝的非牛顿流动行为,从而对聚合物的分析和分选产生影响,从而可能导致对细胞间更好的了解流。

著录项

  • 作者

    Göllner Michael;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号