首页> 外文OA文献 >The classification of some fuzzy subgroups of finite groups under a natural equivalence and its extension, with particular emphasis on the number of equivalence classes
【2h】

The classification of some fuzzy subgroups of finite groups under a natural equivalence and its extension, with particular emphasis on the number of equivalence classes

机译:自然等价下的有限群模糊子群及其扩展的分类,特别强调等价类的数量

摘要

In this thesis we use the natural equivalence of fuzzy subgroups studied by Murali and Makamba [25] to characterize fuzzy subgroups of some finite groups. We focus on the determination of the number of equivalence classes of fuzzy subgroups of some selected finite groups using this equivalence relation and its extension. Firstly we give a brief discussion on the theory of fuzzy sets and fuzzy subgroups. We prove a few properties of fuzzy sets and fuzzy subgroups. We then introduce the selected groups namely the symmetric group 3 S , dihedral group 4 D , the quaternion group Q8 , cyclic p-group pn G = Z/ , pn qm G = Z/ + Z/ , p q r G Z Z Z n m = / + / + / and pn qm r s G = Z/ + Z/ + Z/ where p,q and r are distinct primes and n,m, s Î N/ . We also present their subgroups structures and construct lattice diagrams of subgroups in order to study their maximal chains. We compute the number of maximal chains and give a brief explanation on how the maximal chains are used in the determination of the number of equivalence classes of fuzzy subgroups. In determining the number of equivalence classes of fuzzy subgroups of a group, we first list down all the maximal chains of the group. Secondly we pick any maximal chain and compute the number of distinct fuzzy subgroups represented by that maximal chain, expressing each fuzzy subgroup in the form of a keychain. Thereafter we pick the next maximal chain and count the number of equivalence classes of fuzzy subgroups not counted in the first chain. We proceed inductively until all the maximal chains have been exhausted. The total number of fuzzy subgroups obtained in all the maximal chains represents the number of equivalence classes of fuzzy subgroups for the entire group, (see sections 3.2.1, 3.2.2, 3.2.6, 3.2.8, 3.2.9, 3.2.15, 3.16 and 3.17 for the case of selected finite groups). We study, establish and prove the formulae for the number of maximal chains for the groups pn qm G = Z/ + Z/ , p q r G Z Z Z n m = / + / + / and pn qm r s G = Z/ + Z/ + Z/ where p,q and r are distinct primes and n,m, s Î N/ . To accomplish this, we use lattice diagrams of subgroups of these groups to identify the maximal chains. For instance, the group pn qm G = Z/ + Z/ would require the use of a 2- dimensional rectangular diagram (see section 3.2.18 and 5.3.5), while for the group pn qm r s G = Z/ + Z/ + Z/ we execute 3- dimensional lattice diagrams of subgroups (see section 5.4.2, 5.4.3, 5.4.4, 5.4.5 and 5.4.6). It is through these lattice diagrams that we identify routes through which to carry out the extensions. Since fuzzy subgroups represented by maximal chains are viewed as keychains, we give a brief discussion on the notion of keychains, pins and their extensions. We present propositions and proofs on why this counting technique is justifiable. We derive and prove formulae for the number of equivalence classes of the groups pn qm G = Z/ + Z/ , p q r G Z Z Z n m = / + / + / and pn qm r s G = Z/ + Z/ + Z/ where p,q and r are distinct primes and n,m, s Î N/ . We give a detailed explanation and illustrations on how this keychain extension principle works in Chapter Five. We conclude by giving specific illustrations on how we compute the number of equivalence classes of a fuzzy subgroup for the group p2 q2 r 2 G = Z/ + Z/ + Z/ from the number of fuzzy subgroups of the group p q r G = Z/ + Z/ + Z/ 1 2 2 . This illustrates a general technique of computing the number of fuzzy subgroups of G = Z/ + Z/ + Z/ from the number of fuzzy subgroups of 1 -1 = / + / + / pn qm r s G Z Z Z . Our illustration also shows two ways of extending from a lattice diagram of 1 G to that of G .
机译:在本文中,我们使用Murali和Makamba [25]研究的模糊子群的自然等价来刻画某些有限群的模糊子群。我们专注于使用这种等价关系及其扩展来确定某些选定有限组的模糊子群的等价类的数量。首先,我们简要讨论模糊集和模糊子群的理论。我们证明了模糊集和模糊子群的一些性质。然后,我们介绍选定的组,即对称组3 S,二面体组4 D,四元数组Q8,循环p组pn G = Z /,pn qm G = Z / + Z /,pqr GZZZ nm = / + / + /和pn qm rs G = Z / + Z / + Z /,其中p,q和r是不同的素数,而n,m,s是N /。我们还介绍了它们的子组结构并构造了子组的晶格图,以研究其最大链。我们计算最大链数,并简要说明如何在确定模糊子组的等价类数时使用最大链。在确定一组模糊子组的等价类的数量时,我们首先列出该组的所有最大链。其次,我们选择任何最大链并计算该最大链所代表的不同模糊子组的数量,以钥匙串的形式表示每个模糊子组。此后,我们选择下一个最大链并计算在第一链中未计算的模糊子组的等价类的数量。我们归纳地进行下去,直到用尽所有最大的链。在所有最大链中获得的模糊子组的总数代表整个组中模糊子组的等价类的数量(请参阅第3.2.1、3.2.2、3.2.6、3.2.8、3.2.9、3.2节) .15、3.16和3.17(对于选定的有限组)。我们研究,建立并证明pn qm G = Z / + Z /,pqr GZZZ nm = / + / + /和pn qm rs G = Z / + Z / + Z /的最大链数的公式其中p,q和r是不同的素数,而n,m,s N /。为此,我们使用这些组的子组的格子图来识别最大链。例如,组pn qm G = Z / + Z /将需要使用二维矩形图(请参见第3.2.18和5.3.5节),而对于组pn qm rs G = Z / + Z / + Z /我们执行子组的3维晶格图(请参见5.4.2、5.4.3、5.4.4、5.4.5和5.4.6节)。通过这些网格图,我们可以确定执行扩展的路径。由于以最大链表示的模糊子组被视为钥匙链,因此我们简要讨论了钥匙链,销钉及其扩展的概念。我们提出了关于这种计数技术为何合理的命题和证明。我们推导并证明了pn qm G = Z / + Z /,pqr GZZZ nm = / + / + /和pn qm rs G = Z / + Z / + Z /的等价类数的公式,其中p, q和r是不同的素数,n,m,s是N /。在第五章中,我们将对此钥匙链扩展原理的工作原理进行详细的解释和说明。最后,通过给出具体的示例来说明如何从组pqr G = Z /的模糊子组的数量计算组p2 q2 r 2 G = Z / + Z / + Z /的模糊子组的等价类的数量+ Z / + Z / 1 2 2。这说明了根据1 -1 = / + / + / pn qm r s G Z Z Z的模糊子组的数量来计算G = Z / + Z / + Z /的模糊子组的数量的通用技术。我们的插图还显示了从1 G的晶格图扩展到G的晶格图的两种方式。

著录项

  • 作者

    Ndiweni Odilo;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号