首页> 外文OA文献 >Superharmonic microbubble Doppler effect in ultrasound therapy
【2h】

Superharmonic microbubble Doppler effect in ultrasound therapy

机译:超谐疗法中的超谐波微泡多普勒效应

摘要

The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1,000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analysed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5×104-5×107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4mm) and sonicated using a 0.5 megahertz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50,000 cycles or 100 milliseconds) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 megahertz passive cavitation detector and spectrally analysed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e., superharmonics). A Doppler shift was observed on the order of tens of kilohertz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3m/s, prior to the onset of broadband emission, which is an indicator for high magnitude inertial cavitation. Although the microbubble redistribution was shown to persist for the entire sonication period in dense populations, it was constrained to the first few milliseconds in lower concentrations. In conclusion, superharmonic microbubble Doppler effects can provide a quantitative measure of effective velocities of a sonicated microbubble population and could be used for monitoring ultrasound therapy in real-time.
机译:在聚焦超声治疗中引入微泡已经实现了多种非侵入性技术:声波穿透将药物输送到细胞内,声波溶栓以溶解血块,血脑屏障开放以将药物输送到脑内。被动监测负责这些治疗效果的微气泡动力学的当前方法可以通过被动声图确定气穴位置,并通过频谱分析确定气穴模式。在这里,我们介绍了一个可以监视的新功能:微气泡有效速度。先前的研究表明,短成像脉冲产生的回波具有多普勒频移,这是由微气泡的运动产生的。治疗性脉冲较长(> 1,000个周期),因此由于主要和次要声辐射力效应而无法使用脉冲回波技术来监测,因此会产生较大的微气泡分布变化。在我们的实验中,我们使用无源空化检测器捕获并分析了长治疗脉冲期间的多普勒频移。将大量微泡(5×104-5×107微泡ml-1)嵌入到容器(内径:4mm)中,并使用0.5兆赫兹聚焦超声换能器(峰值反射压力:75-366 kPa,脉冲长度)进行超声处理:在水箱内进行50,000个周期或100毫秒)。用同轴对准的7.5 MHz无源空化检测器捕获微泡声发射,并进行频谱分析以测量高于10次谐波的多个谐波(即超谐波)的多普勒频移。相对于初级超谐波峰,观察到多普勒频移约为几十千赫兹,这是由于微气泡的轴向运动引起的。多普勒峰的位置,幅度和宽度取决于声压和微气泡浓度。在宽带发射开始之前,较高的压力将微气泡的有效速度提高到3m / s,这是高惯性空化的指标。尽管微泡的重新分布在整个声波处理过程中一直存在于密集的种群中,但在较低的浓度下它被限制在最初的几毫秒内。总之,超谐波微泡多普勒效应可以提供超声微泡群有效速度的定量度量,并可用于实时监测超声治疗。

著录项

  • 作者

    Pouliopoulos A; Choi JJ;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号