首页> 外文OA文献 >Global analysis of photovoltaic energy output enhanced by phase change material cooling
【2h】

Global analysis of photovoltaic energy output enhanced by phase change material cooling

机译:通过相变材料冷却增强光伏能量输出的全球分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a global analysis to determine the increase in annual energy output attained by a PV system with an integrated phase change material (PCM) layer. The PCM acts as a heat sink and limits the peak temperature of the PV cell thereby increasing efficiency. The simulation uses a one-dimensional energy balance model with ambient temperature, irradiance and wind speed extracted from ERA-Interim reanalysis climate data over a 1.5° longitude. ×. 1.5° latitude global grid. The effect of varying the PCM melting temperature from 0. °C to 50. °C was investigated to identify the optimal melting temperature at each grid location. PCM-enhanced cooling is most beneficial in regions with high insolation and little intra-annual variability in climate. When using the optimal PCM melting temperature, the annual PV energy output increases by over 6% in Mexico and eastern Africa, and over 5% in many locations such as Central and South America, much of Africa, Arabia, Southern Asia and the Indonesian archipelago. In Europe, the energy output enhancement varies between 2% and nearly 5%. In general, high average ambient temperatures correlate with higher optimal PCM melting temperatures. The sensitivity to PCM melting temperature was further investigated at locations where large solar PV arrays currently exist or are planned to be constructed. Significant improvements in performance are possible even when a sub-optimal PCM melting temperature is used. A brief economic assessment based on typical material costs and energy prices shows that PCM cooling is not currently cost-effective for single-junction PV.
机译:本文介绍了一项全球分析,以确定具有集成相变材料(PCM)层的光伏系统所实现的年发电量的增加。 PCM用作散热器并限制PV电池的峰值温度,从而提高效率。该模拟使用一维能量平衡模型,该模型具有从ERA-Interim重新分析气候数据(经度为1.5°)提取的环境温度,辐照度和风速。 ×。 1.5°纬度全球网格。研究了将PCM熔化温度从0.°C更改为50.°C的影响,以确定每个栅格位置的最佳熔化温度。 PCM增强的冷却对日照高且气候年内变化不大的区域最为有利。当使用最佳PCM熔化温度时,墨西哥和东部非洲的年PV能量输出将增加6%以上,在中美洲和南美洲,非洲大部分地区,阿拉伯,南亚和印度尼西亚群岛等许多地区,其年PV能量输出将增加5%以上。在欧洲,能源输出提高幅度在2%至5%之间。通常,较高的平均环境温度与较高的最佳PCM熔化温度相关。在当前存在或计划建造大型太阳能光伏阵列的位置,进一步研究了对PCM熔化温度的敏感性。即使使用次佳的PCM熔化温度,也可能会显着提高性能。根据典型的材料成本和能源价格进行的简短经济评估表明,PCM冷却当前对于单结PV而言不具有成本效益。

著录项

  • 作者

    Smith CJ; Forster PM; Crook R;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号