首页> 外文OA文献 >Performance analysis of SIMO space-time scheduling with convex utility function: Zero-forcing linear processing
【2h】

Performance analysis of SIMO space-time scheduling with convex utility function: Zero-forcing linear processing

机译:具有凸效用函数的sImO空时调度性能分析:迫零线性处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a multiple-antenna system, an optimized design across the link and scheduling layers is crucial toward fully exploiting the temporal and spatial dimensions of the communication channel. In this paper, based on discrete optimization techniques, we derive a novel analytical framework for designing optimal space-time scheduling algorithms with respect to general convex utility functions. We focus on the reverse link (i.e., client to base station) and assume that the mobile terminal has a single transmit antenna while the base station has nR receive antennas. In order that our proposed framework is practicable and can be implemented with a reasonable cost in a real environment, we further assume that the physical layer involves only linear-processing complexity in separating signals from different users. As an illustration of the efficacy of our proposed analytical design framework, we apply the framework to two commonly used system utility functions, namely maximal throughput and proportional fair. We then devise an optimal scheduling algorithm based on our design framework. However, in view of the formidable time complexity of the optimal algorithm, we propose two fast practical scheduling techniques, namely the greedy algorithm and the genetic algorithm (GA). The greedy algorithm, which is similar to the one widely used in 3G1X and Qualcomm high-data-rate (HDR) systems (optimal when nR = 1), exhibits significantly inferior performance when nR > 1 as compared with the optimal approach. On the other hand, the GA is quite promising in terms of performance complexity tradeoff, especially for a system with a large number of users with even a moderately large nR. As a case in point, for a system with 20 users and nR = 4, the GA is more than 36 times faster than the optimal while the performance degradation is less than 10%, making it an attractive choice in the practical implementation for real-time link scheduling.
机译:在多天线系统中,跨链路和调度层的优化设计对于充分利用通信信道的时间和空间维度至关重要。在本文中,基于离散优化技术,我们推导了一种新颖的分析框架,用于针对一般凸效用函数设计最佳时空调度算法。我们专注于反向链路(即,客户端到基站),并假设移动终端具有单个发射天线,而基站具有nR个接收天线。为了使我们提出的框架可行并且可以在实际环境中以合理的成本实现,我们进一步假设物理层在分离来自不同用户的信号时仅涉及线性处理复杂性。为了说明我们提出的分析设计框架的有效性,我们将该框架应用于两个常用的系统实用程序功能,即最大吞吐量和比例公平。然后,我们根据我们的设计框架设计出最佳的调度算法。但是,鉴于最优算法的时间复杂性,我们提出了两种快速实用的调度技术,即贪婪算法和遗传算法(GA)。贪婪算法与3G1X和Qualcomm高数据速率(HDR)系统中广泛使用的算法相似(nR = 1时为最佳),而nR> 1时,与最佳方法相比,性能明显较差。另一方面,就性能复杂度的折衷而言,遗传算法非常有前途,特别是对于具有大量用户甚至nR较大的系统。举例来说,对于拥有20个用户且nR = 4的系统,GA的运行速度比最佳运行速度快36倍以上,而性能下降幅度不到10%,因此对于实际应用而言,这是一个有吸引力的选择时间链接调度。

著录项

  • 作者

    Lau VKN; Kwok YK;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号