首页> 外文OA文献 >Energy transfer between surface plasmon polariton modes with hybrid photorefractive liquid crystal cells
【2h】

Energy transfer between surface plasmon polariton modes with hybrid photorefractive liquid crystal cells

机译:表面等离子体激元模式与混合光折变液晶单元之间的能量转移

摘要

In this thesis, a hybrid photorefractive liquid crystal cell structure with the addition of a thin 40nm Gold layer is proposed that demonstrates significant photorefractive control of Surface Plasmon Polaritons (SPP). The photorefractive effects are generated through optically controlling the conductivity of a ~100nm photoconducting poly-N-vinyl-carboxyl (PVK) layer. Therefore, when a potential is applied across the cell, the liquid crystal alignment and the SPP wavevector is able to be controlled with light. The aim for developing this device is for the eventual demonstration of SPP gain to offset the high optical losses and increase the characteristically short propagation length of SPP. The mechanism we intend to use to demonstrate gain is analogous to the asymmetric energy transfer in a wave mixing system for two laser beams used to typically characterise photorefractive materials.We first characterise the electrical and optical behaviour of the novel photorefractive plasmonic structure proposed with uniform illumination. Our system demonstrates a good photorefractive wavevector shift of 0.207?m-1 for a 1.24eV SPP; this shift is in excess of the FWHM of the SPP resonance in the attenuated total reflection spectrum(0.154?m-1). However, the electric behaviour of the system is found to be highly complex and cannot be fully characterised by an equivalent electrical circuit. In addition, due to electronic stability issues, we require a slow AC potential to demonstrate consistent photorefractive effects.In a step towards realising SPP gain, we then consider the SPP interaction with a refractive index grating written into the liquid crystal layer with the interference pattern of crossed laser beams. We find that a SPP is diffracted into additional SPP modes. Our investigation then determines the ideal parameters that maximise the energy transfer by examining the diffraction efficiency dependence of each variable of the system. The maximum energy transfer observed is 25.3±2.3% for a 1.05eV SPP from a 4?m grating. With the assistance of a numerical simulation of our system we present a series of qualitative and semi-analytical descriptions to describe the mechanisms behind the observed trends. We discover that the diffraction efficiency is dependent of three important effects; the orientation of the grating, the penetration depth of the SPP into the liquid crystal and the magnitude of the periodic electric field in the liquid crystal. In addition, to fully describe the quantitative values observed we must also consider the presence of a thin 100nm region of the liquid crystal near the photoconductor interface that does not strongly respond to the applied electric field due to anchoring forces
机译:在本文中,提出了一种混合光折变液晶单元结构,其中增加了一个40nm的金薄层,证明了对表面等离激元极化子(SPP)的显着光折变控制。通过光学控制〜100nm的光导聚N-乙烯基羧基(PVK)层的电导率来产生光折射效应。因此,当在整个单元上施加电势时,能够利用光来控制液晶取向和SPP波矢量。开发该设备的目的是最终证明SPP增益可以抵消高的光学损耗并增加SPP的特征性短传播长度。我们打算用来证明增益的机制类似于在混波系统中用于典型表征光折变材料的两个激光束的不对称能量转移。我们首先表征具有均匀照明的新型光折变等离激元结构的电学和光学行为。我们的系统证明了1.24eV SPP的光折射波矢量偏移为0.207?m-1。该位移超过了衰减的全反射光谱(0.154Ω·m-1)中SPP共振的FWHM。但是,发现该系统的电性能非常复杂,并且不能用等效电路完全表征。此外,由于电子稳定性问题,我们需要缓慢的交流电势来证明一致的光折射效应。在实现SPP增益的步骤中,我们然后考虑了SPP与折射率光栅的相互作用,该光栅被写入具有干涉图样的液晶层中交叉的激光束。我们发现SPP会衍射成其他SPP模式。然后,我们的研究通过检查系统每个变量的衍射效率依赖性来确定使能量传递最大化的理想参数。对于来自4?m光栅的1.05eV SPP,观察到的最大能量转移为25.3±2.3%。借助于我们系统的数值模拟,我们提供了一系列定性和半分析性描述,以描述观察到的趋势背后的机制。我们发现衍射效率取决于三个重要的影响:光栅的方向,SPP进入液晶的穿透深度以及液晶中的周期性电场的大小。另外,为了充分描述观察到的定量值,我们还必须考虑在光电导体界面附近存在液晶的100nm薄区域,该区域由于锚固力不能强烈响应外加电场

著录项

  • 作者

    Abbott Stephen Barnes;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号