首页> 外文OA文献 >Studies of RNA Processing and Localization: Diversity of small RNA in Plants and the Development of an in vivo RNA Imaging Tool.
【2h】

Studies of RNA Processing and Localization: Diversity of small RNA in Plants and the Development of an in vivo RNA Imaging Tool.

机译:RNA加工和定位研究:植物中小RNA的多样性和体内RNA成像工具的开发。

摘要

Eukaryotic genomes are extensively transcribed giving rise to thousands of non-coding RNAs, the biogenesis of which is highly conserved. While their functionality is debatable, evidence suggests that there are many RNAs, such as microRNAs and short interfering RNAs, involved in the regulation of gene expression. The processing of these RNAs together with their temporal and spatial expression patterns is, therefore, of central importance and requires the development of RNA imaging tools, which invariably rely on fluorescent microscopy. In this thesis I examine the expression of small RNAs (sRNAs) in the land plants and develop an RNA-based system for tracking and purification of cellular RNA complexes.To study the conservation of sRNAs and their biogenesis machinery across a broad spectrum of plants I conducted a survey of sRNA expression in 24 vascular plants. I found that conifers fail to produce a 24-nt class, which mediates heterochromatin formation in angiosperms, and instead produce a very diverse 21-nt size class, possibly generated by a novel Dicer-like (DCL) family that I discovered by searching conifer ESTs. I found no evidence of DCL3 – an enzyme responsible for the 24-nt size class production in angiosperms, indicating that conifers may utilize a diverse 21-nt class to help organize their unusually large genomes. Sequencing of sRNAs from a conifer P. contorta revealed many conserved miRNA families and other sRNAs, indicating that the sRNA-generating machinery was already present in the earliest spermatophytes. Since RNA lacks strong intrinsic fluorescence, it has proven challenging to track RNA molecules in real time. To address this problem I developed a new imaging method that relies on a high affinity RNA aptamer fluorophore system called RNA Mango. This aptamer binds to a series of Thiazole Orange derivatives with nanomolar affinities, while increasing their fluorescence up to 1100-fold. Imaging of RNA Mango by single-molecule fluorescence microscopy, together with visualization of RNA Mango-dye complex in C. elegans gonads demonstrates the potential for live-cell RNA imaging with this system. Furthermore, incorporation of RNA Mango into bacterial 6S RNA along with biotinylation of the fluorophore demonstrates that the aptamer can also be used for purifying biologically important RNAs.
机译:真核基因组被广泛转录,产生了数千个非编码RNA,其生物发生高度保守。尽管它们的功能值得商,,但证据表明,基因表达的调控涉及许多RNA,例如microRNA和短干扰RNA。因此,这些RNA的处理及其时空表达模式至关重要,需要开发RNA成像工具,该工具始终依赖于荧光显微镜。在这篇论文中,我研究了陆地植物中小RNA(sRNA)的表达,并开发了一种基于RNA的系统来跟踪和纯化细胞RNA复合物。为了研究sRNA的保守性及其在广泛植物中的生物发生机制,我进行了24种维管植物中sRNA表达的调查。我发现针叶树无法产生24 nt的类,介导被子植物中异染色质的形成,而是产生了非常多样化的21 nt大小的类,这可能是由我通过搜索针叶树发现的新型Dicer-like(DCL)家族产生的EST。我没有发现DCL3的证据-DCL3是被子植物中24 nt大小等级产生的酶,表明针叶树可能利用多样化的21 nt等级来帮助组织其异常大的基因组。针叶树P. contorta的sRNA测序显示出许多保守的miRNA家族和其他sRNA,这表明最早的种子植物中已经存在产生sRNA的机制。由于RNA缺乏强大的固有荧光,因此证明实时跟踪RNA分子具有挑战性。为了解决这个问题,我开发了一种新的成像方法,该方法依赖于称为RNA Mango的高亲和力RNA适体荧光团系统。该适体以纳摩尔亲和力结合一系列噻唑橙衍生物,同时将其荧光增加到1100倍。通过单分子荧光显微镜对RNA芒果成像,以及在秀丽隐杆线虫性腺中RNA芒果染料复合物的可视化展示了该系统对活细胞RNA成像的潜力。此外,将RNA Mango与细菌6S RNA结合以及荧光团的生物素化表明,适体也可用于纯化生物学上重要的RNA。

著录项

  • 作者

    Dolgosheina Elena;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号