首页> 外文OA文献 >Detecting Dependence Change Points in Multivariate Time Series with Applications in Neuroscience and Finance
【2h】

Detecting Dependence Change Points in Multivariate Time Series with Applications in Neuroscience and Finance

机译:检测多元时间序列中的依存性变化点及其在神经科学和金融领域的应用

摘要

In many applications there are dynamic changes in the dependency structure between multivariate time series. Two examples include neuroscience and finance. The second and third chapters focus on neuroscience and introduce a data-driven technique for partitioning a time course into distinct temporal intervals with different multivariate functional connectivity patterns between a set of brain regions of interest (ROIs). The technique, called Dynamic Connectivity Regression (DCR), detects temporal change points in functional connectivity and estimates a graph, or set of relationships between ROIs, for data in the temporal partition that falls between pairs of change points. Hence, DCR allows for estimation of both the time of change in connectivity and the connectivity graph for each partition, without requiring prior knowledge of the nature of the experimental design. Permutation and bootstrapping methods are used to perform inference on the change points. In the second chapter of this work, we focus on multi-subject data while in the third chapter, we concentrate on single-subject data and extend the DCR methodology in two ways: (i) we alter the algorithm to make it more accurate for individual subject data with a small number of observations and (ii) we perform inference on the edges or connections between brain regions in order to reduce the number of false positives in the graphs. We also discuss a Likelihood Ratio test to compare precision matrices (inverse covariance matrices) across subjects as well as a test across subjects on the single edges or partial correlations in the graph. In the final chapter of this work, we turn to a finance setting. We use the same DCR technique to detect changes in dependency structure in multivariate financial time series for situations where both the placement and number of change points is unknown. In this setting, DCR finds the dependence change points and estimates an undirected graph representing the relationship between time series within each interval created by pairs of adjacent change points. A shortcoming of the proposed DCR methodology is the presence of an excessive number of false positive edges in the undirected graphs, especially when the data deviates from normality. Here we address this shortcoming by proposing a procedure for performing inference on the edges, or partial dependencies between time series, that effectively removes false positive edges. We also discuss two robust estimation procedures based on ranks and the tlasso (Finegold and Drton, 2011) technique, which we contrast with the glasso technique used by DCR.
机译:在许多应用中,多元时间序列之间的依存结构有动态变化。两个例子包括神经科学和金融。第二和第三章着重于神经科学,并介绍了一种数据驱动技术,用于将时间过程划分为不同的时间间隔,这些时间间隔具有一组感兴趣的大脑区域(ROI)之间的不同多元功能连接模式。该技术称为动态连通性回归(DCR),可检测功能连通性中的时间变化点,并为落在变化点对之间的时间分区中的数据估计图形或ROI之间的关系集。因此,DCR允许估计每个分区的连通性变化时间和连通性图,而无需事先了解实验设计的性质。排列和自举方法用于对更改点进行推断。在本文的第二章中,我们将重点放在多主题数据上,而在第三章中,我们将重点放在单主题数据上,并以两种方式扩展DCR方法:(i)我们更改算法以使其更准确具有少量观察结果的单个主题数据;(ii)我们对大脑区域之间的边缘或连接进行推理,以减少图中的假阳性数。我们还将讨论似然比检验,以比较对象之间的精度矩阵(逆协方差矩阵),以及在图中单个边缘或部分相关性上的对象之间的测试。在本工作的最后一章,我们转向财务设置。我们使用相同的DCR技术来检测多元金融时间序列中依赖项结构的变化,以应对变化点的位置和数量均未知的情况。在此设置中,DCR找到依赖项更改点,并估计一个无向图,该图表示由相邻更改点对创建的每个间隔内的时间序列之间的关系。提出的DCR方法的缺点是无向图中存在过多的假正边缘,尤其是当数据偏离正态性时。在这里,我们通过提出一种在边缘或时间序列之间的部分相关性上执行推理的过程来解决此缺点,该过程可以有效地消除假阳性边缘。我们还讨论了两种基于秩和tlasso的鲁棒估计程序(Finegold和Drton,2011),这与DCR使用的glasso技术形成了对比。

著录项

  • 作者

    Cribben Ivor John;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号