首页> 外文OA文献 >Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities
【2h】

Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities

机译:用于光子和声子应用的InGaN异质结构和GeSn纳米晶体的光学研究:发光二极管和声子腔

摘要

InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1−xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving more efficient visible light emitters and terahertz generating nanocavities and in colloidal Ge1−xSnx quantum dots (QDs) for developing efficient silicon compatible optoelectronics.To alleviate the electron overflow, which through strong experimental evidence is revealed to be the dominating mechanism responsible for efficiency degradation at high injection in InGaN based blue LEDs, different strategies involving electron injectors and optimized active regions have been developed. Effectiveness of optimum electron injector (EI) layers in reducing electron overflow and increasing quantum efficiency of InGaN based LEDs was demonstrated by photoluminescence (PL) and electroluminescence spectroscopy along with numerical simulations. Increasing the two-layer EI thickness in double heterostructure LEDs substantially reduced the electron overflow and increased external quantum efficiency (EQE) by three fold. By incorporating δ p-doped InGaN barriers in multiple quantum well (MQW) LEDs, 20% enhancement in EQE was achieved due to improved hole injection without degrading the layer quality. Carrier diffusion length, an important physical parameter that directly affects the performance of optoelectronic devices, was measured in epitaxial GaN using PL spectroscopy.The obtained diffusion lengths at room temperature in p- and n-type GaN were 93±7 nm and 432±30 nm, respectively. Moreover, near field scanning optical microscopy was employed to investigate the spatial variations of extended defects and their effects on the optical quality of semipolar and InGaN heterostructures, which are promoted for higher efficiency light emitters owing to reduced internal polarization fields. The near-field PL from the c+ wings in heterostructures was found to be relatively strong and uniform across the sample but the emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations and basal plane stacking faults. In case of heterostructures, striated regions had weaker PL intensities compared to other regions and the meeting fronts of different facets were characterized by higher Indium content due to the varying internal field.Apart from being the part and parcel of blue LEDs, InGaN heterostructures can be utilized in generation of coherent lattice vibrations at terahertz frequencies. In analogy to LASERs based on photon cavities where light intensity is amplified, acoustic nanocavity devices can be realized for sustaining terahertz phonon oscillations which could potentially be used in acoustic imaging at the nanoscale and ultrafast acousto-optic modulation. Using In0.03Ga0.97N/InxGa1-xN MQWs with varying x, coherent phonon oscillations at frequencies of 0.69-0.80 THz were generated, where changing the MQW period (11.5 nm -10 nm) provided frequency tuning. The magnitude of phonon oscillations was found to increase with indium content in quantum wells, as demonstrated by time resolved differential transmission spectroscopy. Design of an acoustic nanocavity structure was proposed based on the abovementioned experimental findings and also supported by full cavity simulations.Optical gap engineering and carrier dynamics in colloidal Ge1−xSnx QDs were investigated in order to explore their potential in optoelectronics. By changing the Sn content from 5% to 23% in 2 nm-QDs, band-gap tunability from 1.88 eV to 1.61 eV, respectively, was demonstrated at 15 K, consistent with theoretical calculations. At 15 K, time resolved PL spectroscopy revealed slow decay (3 − 27 μs) of luminescence, due to recombination of spin-forbidden dark excitons and effect of surface states. Increase in temperature to 295 K led to three orders of magnitude faster decay (9 − 28 ns) owing to the effects of thermal activation of bright excitons and carrier detrapping from surface states. These findings on the effect of Sn incorporation on optical properties and carrier relaxation and recombination processes are important for future design of efficient Ge1−xSnx QDs based optoelectronic devices.This thesis work represents a comprehensive optical study of InGaN heterostructures and colloidal Ge1−xSnx QDs which would pave the way for more efficient InGaN based LEDs, realization of terahertz generating nanocavities, and efficient Ge1−xSnx based silicon compatible optoelectronic devices.
机译:InGaN异质结构是蓝色发光二极管(LED)的核心,蓝色发光二极管是高效节能和环境友好的现代白光产生源的基本构建块。通过在光谱的另一端进行量子限制和电子能带结构调谐,Ge1-xSnx合金由于其潜在的作用而成为光电探测器和LED的硅相容红外(IR)光学材料,由于其过渡到随着锡的增加直接带隙。本论文致力于建立对InGaN异质结构中的光学过程和载流子动力学的理解,以实现更有效的可见光发射器和太赫兹生成纳米腔以及胶体Ge1-xSnx量子点(QD),以开发有效的硅相容光电器件。电子溢出,通过强有力的实验证据被证明是造成基于InGaN的蓝色LED高注入时效率下降的主要机制,已经开发了涉及电子注入器和优化有源区的不同策略。通过光致发光(PL)和电致发光光谱以及数值模拟证明了最佳电子注入层(EI)在减少电子溢出和提高InGaN基LED的量子效率方面的有效性。增加双异质结构LED中的两层EI厚度可将电子溢出量大大减少,并将外部量子效率(EQE)提高三倍。通过在多量子阱(MQW)LED中掺入δp掺杂的InGaN势垒,由于改善了空穴注入而不会降低层质量,因此EQE提高了20%。载流子扩散长度是直接影响光电器件性能的重要物理参数,使用PL光谱法在外延GaN中进行了测量。在室温下获得的p型和n型GaN扩散长度为93±7 nm和432±30纳米。此外,近场扫描光学显微镜被用来研究扩展缺陷的空间变化及其对半极性和InGaN异质结构的光学质量的影响,由于内部偏振场的减小,这些缺陷被推广用于更高效率的发光体。发现异质结构中来自c +翼的近场PL在整个样本中相对较强且均匀,但由于存在高密度的螺纹位错和基面堆叠断层,因此来自c-翼的发射明显较弱。在异质结构的情况下,与其他区域相比,横纹区域的PL强度较弱,并且由于内部场的变化,不同面的相遇面具有较高的铟含量特征。除了作为蓝色LED的组成部分以外,InGaN异质结构还可以用于产生太赫兹频率的相干晶格振动。与基于光子腔的激光(其中光强度被放大)类似,可以实现声纳腔设备来维持太赫兹声子振荡,该太赫兹声子振荡可潜在地用于纳米级声成像和超快声光调制中。使用具有变化的x的In0.03Ga0.97N / InxGa1-xN MQW,会生成频率为0.69-0.80 THz的相干声子振荡,其中改变MQW周期(11.5 nm -10 nm)可进行频率调谐。时间分辨差分透射光谱法证明,声子振荡的幅度随量子阱中铟含量的增加而增加。基于上述实验结果,提出了一种声学纳米腔结构的设计,并得到了全腔模拟的支持。研究了胶体Ge1-xSnx量子点中的光学间隙工程和载流子动力学,以探索其在光电子学中的潜力。通过在2 nm-QD中将Sn含量从5%更改为23%,在15 K时分别证明了带隙可调性从1.88 eV到1.61 eV,这与理论计算一致。在15 K下,时间分辨的PL光谱显示出发光的缓慢衰减(3-27μs),这归因于自旋禁止的暗激子的重组和表面状态的影响。由于亮激子的热激活和载流子从表面状态中脱出的影响,温度升高至295 K导致衰变速度加快了三个数量级(9-28 ns)。这些关于锡掺入对光学性能以及载流子弛豫和重组过程的影响的发现对于未来基于Ge1-xSnx量子点的高效光电器件的设计具有重要意义。本论文工作是对InGaN异质结构和胶体Ge1-xSnx量子点的全面光学研究。将为更高效的基于InGaN的LED铺平道路,实现太赫兹生成纳米腔,以及基于Ge1-xSnx的高效硅兼容光电器件。

著录项

  • 作者

    Hafiz Shopan d;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 入库时间 2022-08-20 20:52:44

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号