首页> 外文OA文献 >Synthesis of Titania/Titanate Nanostructures for Photocatalytic Applications
【2h】

Synthesis of Titania/Titanate Nanostructures for Photocatalytic Applications

机译:二氧化钛/钛酸盐纳米结构的合成用于光催化应用

摘要

Sodium titanate nanoribbons and nanotubes were synthesised by hydrothermally ageing Aeroxide P25 in 10M NaOH at temperatures between 150 and 200°C. The Na1.48H0.52Ti3O7 nanoribbons comprised a layered TiO6 nanosheet framework with sodium and hydrogen cations interspersed between the sheets. Nanoribbon/nanosheet formation occurred via an amorphous (Ti-O-Na) intermediate phase. At milder temperatures (i.e. 150°C), the kinetics of nanosheet formation are slow enough to allow for their rolling up leading to nanotube formation. Acid washing converted the structure into hydrogen titanate (H2Ti3O7) by ion-exchange and provided uniform nanoribbons and nanotubes.Heat treatment of hydrogen titanate transformed nanotubes to anatase, while nanoribbon transformation to anatase occurred via a TiO2(B) intermediate phase. The enhanced stability provided by the nanoribbon architecture preserved a dominant {010} crystal facet at temperatures higher than 700°C. Nanotube thermal stability was improved by nitric acid treatment. Methanol and oxalic acid photodegradation performance was the highest at calcination temperatures of 500°C for nanotubes and 800°C for nanoribbons. The nanotube optimum represented a transition between the dominance of surface area and crystal phase, while nanoribbon performance was governed primarily by crystal phase. Despite both nanostructures producing particles with similar physical characteristics when calcined at 800°C the particles originating from the nanoribbons exhibited superior photoactivity. This difference was attributed to a greater percentage of {010} crystal facet in these particles which is beneficial for hydroxyl radical generation.The photocatalytic activity of Na1.48H0.52Ti3O7, Na2Ti6O13, H2Ti3O7 nanoribbons and anatase TiO2 nanorods were compared for water splitting, oxalic acid photodegradation and H2/O2 generation using sacrificial agents. The intrinsic properties of the materials affected their performance depending on the particular reaction. The Na2Ti6O13, in the presence of RuO2 co-catalyst, outperformed the TiO2, for the water splitting reaction, generating over 10 times more H2/O2. This derived from their tunnel-like structure which provided better electron/hole separation when compared with TiO2. However, the efficient holes and electrons scavenging in the presence of sacrificial agents overwhelmed the tunnel-like structure effect. In this case photoactivity was governed by the crystal structure: TiO2>Na2Ti6O13>H2Ti3O7~Na1.48H0.52Ti3O7 and by the band gap of the semiconductor which determined its capacity to absorb photons in producing electron/hole pairs.
机译:钛酸钠碳纳米管和纳米管是通过将Aeroxide P25在10M NaOH中在150至200°C的温度下水热老化而合成的。 Na1.48H0.52Ti3O7纳米带包括层状TiO6纳米片框架,其中钠和氢阳离子散布在片之间。纳米带/纳米片的形成是通过无定形(Ti-O-Na)中间相进行的。在较温和的温度下(即150°C),纳米片形成的动力学足够慢,足以使其卷起导致纳米管形成。酸洗通过离子交换将结构转变为钛酸氢盐(H2Ti3O7),并提供均匀的纳米带和纳米管;热处理钛酸氢盐将纳米管转变为锐钛矿,而纳米带则通过TiO2(B)中间相转变为锐钛矿。纳米带结构提供的增强的稳定性在高于700°C的温度下保留了主要的{010}晶面。硝酸处理可以提高纳米管的热稳定性。甲醇和草酸的光降解性能在纳米管的煅烧温度为500°C和纳米带的煅烧温度为800°C时最高。纳米管的最佳代表了表面积和晶相之间的过渡,而纳米带的性能主要由晶相决定。尽管两种纳米结构均在800°C下煅烧时产生具有相似物理特性的颗粒,但源自纳米带的颗粒仍显示出优异的光活性。这种差异归因于这些颗粒中更多的{010}晶面,这有利于羟基自由基的产生。比较了Na1.48H0.52Ti3O7,Na2Ti6O13,H2Ti3O7纳米带和锐钛矿型TiO2纳米棒的光催化活性,用于水分解,草酸。牺牲剂对酸进行光降解和生成H2 / O2。材料的固有性质取决于特定的反应而影响其性能。在RuO2助催化剂存在下,Na2Ti6O13的水分解反应性能优于TiO2,产生的H2 / O2含量高出10倍以上。这是因为它们的隧道状结构与TiO2相比提供了更好的电子/空穴分离。然而,在牺牲剂的存在下有效的空穴和电子清除使隧道状结构效应不堪重负。在这种情况下,光活性取决于以下晶体结构:TiO 2> Na 2 Ti 6 O 13> H 2 Ti 3 O 7〜Na 1.48 H 0.52 Ti 3 O 7,并且取决于半导体的带隙,该带隙确定了其在产生电子/空穴对时吸收光子的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号