首页> 外文OA文献 >Development of a stable sensing interface for an electrochemical impedance label-free DNA hybridisation biosensor
【2h】

Development of a stable sensing interface for an electrochemical impedance label-free DNA hybridisation biosensor

机译:为电化学阻抗无标签的DNA杂交生物传感器开发稳定的传感接口

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The performance of a DNA hybridisation biosensor relies greatly on the stability and selectivity of the sensing interface. This thesis explores several different DNA interface constructs on both gold and silicon surfaces for the development of an electrochemical impedance label-free DNA sensor. The gold sensing interface is comprised of a mixed self-assembled monolayer of single-stranded probe DNA and a diluent, mercaptoethanol. Using electrochemical impedance spectroscopy, the recognition interface was shown to display a good ability to differentiate between different target DNA analytes. However, the surface chemistry was found to be chemically unstable, thus making the sensor unreliable. Silicon sensing interfaces were formed by attaching single-stranded probe DNA to undecylenic acid on p-type Si(111). This surface chemistry showed good selectivity towards complementary DNA but impedance measurements were found to suffer from interference attributed to oxide growth underneath the grafted undecylenic acid monolayer. A novel silicon interface was trialed by attaching alkyne-tagged single-stranded DNA onto a 1,8-nonadiyne modified p-type Si(111) surface via a one-pot tandem ‘click’ reaction. With the addition of an antifouling layer comprised of bovine serum albumin, the recognition interface shows good discrimination between complementary, non-complementary and single-base mismatch target DNA using Faradaic impedance. This surface chemistry was translated onto poorly doped n-type Si(111) to investigate field-induced effects upon the formation of a DNA duplex. DNA hybridisation was found to result in a positive shift in open circuit potential (OCP). This was attributed to the increase in upward band bending due to the extra negative charge from the DNA at the silicon-electrolyte interface, bringing the silicon electrode further into depletion. OCP results were supported by a positive shift of the flat band potential obtained via AC impedance measurements.
机译:DNA杂交生物传感器的性能在很大程度上取决于传感界面的稳定性和选择性。本文探索了在金和硅表面上的几种不同的DNA界面构建体,用于开发无电化学阻抗标记的DNA传感器。金感测界面由单链探针DNA和稀释剂巯基乙醇的混合自组装单层组成。使用电化学阻抗谱,识别界面显示出良好的区分不同目标DNA分析物的能力。但是,发现表面化学性质是化学不稳定的,因此使传感器不可靠。通过将单链探针DNA附着到p型Si(111)上的十一碳烯酸上来形成硅传感界面。这种表面化学性质显示出对互补DNA的良好选择性,但发现阻抗测量受到归因于接枝十一碳烯酸单层下氧化物生长的干扰。通过单罐串联“点击”反应将炔烃标记的单链DNA连接到1,8-壬二炔修饰的p型Si(111)表面上,从而尝试了一种新型的硅界面。通过添加由牛血清白蛋白组成的防污层,使用法拉第阻抗,识别界面可很好地区分互补,非互补和单碱基错配靶DNA。将此表面化学转化为掺杂较差的n型Si(111),以研究场诱导的DNA双链体形成的影响。发现DNA杂交导致开路电位(OCP)发生正向变化。这归因于由于在硅-电解质界面处来自DNA的额外负电荷而导致的向上带弯曲的增加,从而使硅电极进一步耗尽。通过交流阻抗测量获得的平带电势的正移支持了OCP结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号