首页> 外文OA文献 >Kinetic and Stoichiometric Modeling of the Metabolism of Escherichia coli for the Synthesis of Biofuels and Chemicals
【2h】

Kinetic and Stoichiometric Modeling of the Metabolism of Escherichia coli for the Synthesis of Biofuels and Chemicals

机译:用于合成生物燃料和化学品的大肠杆菌代谢的动力学和化学计量模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This thesis presents the mathematical modeling of two new Escherichia coli platforms with economical potential for the production of biofuels and chemicals, namely glycerol fermentation and the reversal of the β-oxidation cycle. With the increase in traditional fuel prices, alternative renewable energy sources are needed, and the efficient production of biofuels becomes imperative. So far studies have focused on using glucose as feedstock for the production of ethanol and other fuels, but a recent increase in glycerol availability and its consequent decrease in price make it an attractive feedstock. Furthermore, the reversed β-oxidation cycle is a highly efficient mechanism for the synthesis of long-chain products. These two platforms have been reported experimentally in E. coli but their mathematical modeling is presented for the first time here.Because mathematical models have proved to be useful in the optimization of microbial metabolism, two complementary models were used in this study: kinetic and stoichiometric. Kinetic models can identify the control structure within a specific pathway, but they require highly detailed information, making them applicable to small sets of reactions. In contrast, stoichiometric models require only mass balance information, making them suitable for genome-scale modeling to study the effect of adding or removing reactions for the optimization of the synthesis of desired products.To study glycerol fermentation, a kinetic model was implemented, allowing prediction of the limiting enzymes of this process: glycerol dehydrogenase and di-hydroxyacetone kinase. This prediction was experimentally validated by increasing their enzymatic activities, resulting in a two-fold increase in the rate of ethanol production. Additionally, a stoichiometric genome-scale model (GEM) was modified to represent the fermentative metabolism of glycerol, identifying key metabolic pathways for glycerol fermentation (including a new glycerol dissimilation pathway). The GEM was used to identify genetic modifications that would increase the synthesis of desired products, such as succinate and butanol. Finally, glucose metabolism using the reversal β-oxidation cycle was modeled using a GEM to simulate the synthesis of a variety of medium and long chain products (including advanced biofuels). The model was used to design strategies that can lead to increase the productivity of target products.
机译:本文提出了两种具有经济潜力的新型大肠杆菌平台的数学模型,这些平台具有生产生物燃料和化学物质的潜力,即甘油发酵和逆转β-氧化循环。随着传统燃料价格的上涨,需要替代可再生能源,有效生产生物燃料变得势在必行。迄今为止,研究集中在使用葡萄糖作为生产乙醇和其他燃料的原料,但是最近甘油利用率的提高和随之而来的价格下降使其成为有吸引力的原料。此外,反向的β-氧化循环是合成长链产物的高效机制。这两个平台已在大肠杆菌中进行了实验报道,但此处首次进行了数学建模。由于已证明数学模型可用于优化微生物代谢,因此在此研究中使用了两个互补模型:动力学模型和化学计量模型。动力学模型可以识别特定途径内的控制结构,但它们需要非常详细的信息,因此适用于少量反应。相比之下,化学计量模型只需要质量平衡信息,使其适合于基因组规模的建模,以研究添加或去除反应对优化所需产物合成的影响。为了研究甘油发酵,实施了动力学模型,从而可以该过程中限制酶的预测:甘油脱氢酶和二羟基丙酮激酶。通过增加其酶促活性,通过实验验证了这一预测,从而使乙醇的产生速率提高了两倍。此外,对化学计量的基因组规模模型(GEM)进行了修改,以代表甘油的发酵代谢,从而确定了甘油发酵的关键代谢途径(包括新的甘油异化途径)。 GEM被用于鉴定可增加所需产物(如琥珀酸酯和丁醇)合成的遗传修饰。最后,使用GEM对使用反向β-氧化循环的葡萄糖代谢进行建模,以模拟各种中链和长链产物(包括高级生物燃料)的合成。该模型用于设计可以提高目标产品生产率的策略。

著录项

  • 作者

    Cintolesi Makuc Angela;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号