首页> 外文OA文献 >Electrostatic instabilities and turbulence in a toroidal magnetized plasma
【2h】

Electrostatic instabilities and turbulence in a toroidal magnetized plasma

机译:环形磁化等离子体中的静电不稳定性和湍流

摘要

This Thesis aims at characterizing the linear properties of electrostatic drift instabilities arising in a toroidal plasma and the mechanisms leading to their development into turbulence. The experiments are performed on the TORoidal Plasma EXperiment (TORPEX) at CRPP-EPFL, Lausanne. The first part of the Thesis focuses on the identification of the nature of the instabilities observed in TORPEX, using a set of electrostatic probes, designed and built for this purpose. The global features of fluctuations, analyzed for different values of control parameters such as the magnetic field, the neutral gas pressure and the injected microwave power, are qualitatively similar in different experimental scenarios. The maximum of fluctuations is observed on the low field side, where the pressure gradient and the gradient of the magnetic field are co-linear, indicating that the curvature of the magnetic field lines has an important role in the destabilization of the waves. The power spectrum is dominated by electrostatic fluctuations with frequencies much lower than the ion cyclotron frequency. Taking advantage of the extended diagnostics coverage, the spectral properties of fluctuations are measured over the whole poloidal cross-section. Both drift and interchange instabilities develop and propagate on TORPEX, with the stability of both being affected by the curvature of the magnetic field. It is shown that modes of different nature are driven at separate locations over the plasma cross-section and that the wavenumber and frequency spectra, narrow at the location where the instabilities are generated, broaden during convection, suggesting an increase in the degree of turbulence. The transition from coherent to turbulent spectral features and the role of nonlinear coupling between modes in the development of turbulence are treated in the second part of this work. It is found that nonlinear mode-mode coupling is responsible for the redistribution of spectral energy from the dominant instabilities to other spectral components and that this mechanism is independent of the nature of the instabilities. Nonlinear interactions between the mode and its nonlinearly generated harmonics are responsible for the filling of the spectral regions between harmonics. Later in the development along the convection path, the unstable mode transfers energy to spectral components with significantly larger frequencies. This transfer of energy can be interpreted in the investigated plasma scenarios as a forward cascade in wavenumbers, with transfer of energy from large to small scales.
机译:本论文旨在表征在环形等离子体中产生的静电漂移不稳定性的线性特性以及导致其发展为湍流的机理。实验是在洛桑CRPP-EPFL的TORoidal血浆实验(TORPEX)上进行的。论文的第一部分着重于使用一组为此目的而设计和制造的静电探针来识别在TORPEX中观察到的不稳定性。对于不同的控制参数(例如磁场,中性气压和注入的微波功率)的值进行分析后,波动的全局特征在不同的实验场景中在质量上相似。在低磁场侧观察到最大的波动,其中压力梯度和磁场梯度是共线的,这表明磁场线的曲率在波动的不稳定中具有重要作用。功率谱由静电起伏控制,其频率远低于离子回旋加速器的频率。利用扩展的诊断范围,可以在整个极向截面上测量波动的光谱特性。漂移和交换不稳定性都在TORPEX上发展和传播,而两者的稳定性都受磁场曲率的影响。结果表明,在等离子体横截面上的不同位置处驱动着不同性质的模式,并且在对流过程中,在产生不稳定性的位置变窄的波数和频谱在对流过程中变宽,表明湍流度增加。在本文的第二部分中讨论了从相干到湍流光谱特征的转变以及模态之间非线性耦合在湍流发展中的作用。发现非线性模式-模式耦合负责频谱能量从主要不稳定性到其他频谱成分的重新分配,并且这种机制与不稳定性的性质无关。模式与其非线性生成的谐波之间的非线性相互作用负责填充谐波之间的频谱区域。在沿对流路径发展的后期,不稳定模式将能量转移到频率明显更大的频谱分量上。在研究的等离子体情况下,这种能量转移可以解释为波数的前向级联,其中能量从大尺度向小尺度转移。

著录项

  • 作者

    Poli Francesca Maria;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号